Development of new neural stem cell based tumor targeted gene therapy approaches

148 577 0
Development of new neural stem cell based tumor targeted gene therapy approaches

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

DEVELOPMENT OF NEW NEURAL STEM CELL-BASED TUMOR-TARGETED GENE THERAPY APPROACHES ZHU DETU NATIONAL UNIVERSITY OF SINGAPORE 2012 DEVELOPMENT OF NEW NEURAL STEM CELL-BASED TUMOR-TARGETED GENE THERAPY APPROACHES ZHU DETU (B. Sc.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE & INSTITUTE OF BIOENGINEERING AND NANOTECHNOLOGY 2012 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. ZHU DETU 21 August 2012 I ACKNOWLEDGMENTS I would like to acknowledge all who have helped and inspired me during my study at the National University of Singapore and Institute of Bioengineering and Nanotechnology. I am very grateful to my supervisor, Dr. Wang Shu, Associate Professor, Department of Biological Sciences, National University of Singapore, for his invaluable inspiration and guidance during my PhD study. I would like to dedicate my most sincere gratitude to my parents for their constant encouragement and support. I acknowledge the National University of Singapore, for honoring me with studentship and financial assistance in the form of scholarship. II TABLE OF CONTENTS ACKNOWLEDGMENTS I TABLE OF CONTENTS . III SUMMARY .VI LIST OF PUBLICATIONS .VIII LIST OF TABLES IX LIST OF FIGURES X ABBREVIATIONS XII CHAPTER INTRODUCTION . 1.1 Neural stem cells .2 1.1.1 Tumor tropism .2 1.1.2 Cell source 1.1.3 Genetic engineering .5 1.1.4 Side effects of intravenous injection .6 1.2 Fusogenic membrane glycoproteins .7 1.2.1 Bystander effect .7 1.2.1.1 Cell fusion 1.2.1.2 Antitumor immune response activation 1.2.2 Family members .10 1.2.2.1 GALV.fus 10 III 1.2.2.2 Syncytin-1 11 1.2.2.3 VSV-G 12 1.2.3 Applications in tumor gene therapy 12 1.2.3.1 Enhanced antitumor effect .12 1.2.3.2 Difficulties in large-scale clinical application 14 1.3 CD40-CD40 ligand interaction 14 1.3.2 CD40 expression and function in human cells .15 1.3.2 Direct growth inhibition of cancer .18 1.3.3 Antitumor immune response activation .22 1.4. Purpose 26 CHAPTER SELECTIVE KILLING OF CANCER CELLS BY A NOVEL VSV-G MUTANT THAT PROMOTES LOW PH-DEPENDENT CELL FUSION 28 2.1. Introduction 29 2.2. Materials and Methods 32 2.2.1. Cell culture .32 2.2.2. Mutagenesis, baculovirus preparation and cell transduction .33 2.2.3. Indirect immunofluorescence microscopy .34 2.2.4. Syncytia Formation Assay 35 2.2.5. Cytotoxicity assays .35 2.2.6. Reverse transcriptase polymerase chain reaction .36 2.2.7. Western blot .36 IV 2.2.8. In vitro Boyden chamber cell migration assay .37 2.2.9. Animal studies to evaluate therapeutic efficacy .37 2.2.10. Statistical analysis 38 2.3. Results .40 2.3.1. Whole body biodistribution of intravenously administered NSCs in a mouse 4T1 breast cancer model .40 2.3.2. Mutagenesis of VSV-G 44 2.3.3. pH-responsive Properties of VSV-G(H162R) 47 2.3.4. In vitro bystander effect of VSV-G(H162R) 53 2.3.5. Establishment of VSVG(H162R)-expressing NSCs using baculovirus 57 2.3.6. Metastatic breast cancer therapy using VSVG(H162R)-expressing NSCs .62 2.3.7. Side effects of cancer therapy using VSVG(H162R)-expressing NSC 68 2.4. Discussion 70 CHAPTER SELECTIVE KILLING OF CD40-POSITIVE BREAST CANCER CELLS BY NSC-MEDIATED DELIVERY OF CD40 LIGAND IN A MOUSE MODEL 75 3.1. Introduction 76 3.2. Materials and Methods 79 V 3.2.1. Cell culture .79 3.2.2. Baculovirus preparation and cell transduction .80 3.2.3. Cytokine antibody array 80 3.2.4. Cytotoxicity assays .81 3.2.5. Reverse transcriptase polymerase chain reaction .82 3.2.6. Fluorescent-activated cell sorting analysis 82 3.2.7. Animal studies to evaluate therapeutic efficacy .83 3.2.8. Statistical analysis 83 3.3. Results .85 3.3.1. Establishment of CD40L-expressing iPS-NSCs using a baculovirus 85 2.3.2. CD40L induces cytokine production in CD40-positive 4T1 breast cancer cells .87 2.3.3. In vitro bystander effect of CD40L-expressing iPS-NSCs 92 2.3.4. Metastatic breast cancer therapy using CD40L-expressing NSCs 95 2.3.5. Side effects of cancer therapy using CD40L-expressing NSCs .102 3.4. Discussion 104 CHAPTER CONCLUSION 108 References . 113 VI SUMMARY Neural stem cells (NSCs) have recently emerged as one of the most attractive cellular vehicles for targeted gene delivery to cancers due to their migratory capacity and tumor tropism. However, because NSCs can be chemoattracted to non-target regions, especially after intravenous administration, off-target transgene expression is a concern for the clinical application of NSC-mediated cancer gene therapy. To minimize this side effect, therapeutic transgenes that enable tumor cell-selective killing are needed. In this project, I developed two novel approaches to target tumor cells. The first approach uses vesicular stomatitis virus G glycoprotein (VSV-G) to target tumor acidosis. VSV-G is a viral fusogenic membrane glycoprotein that kills tumor cells via syncytia formation. Tumor acidosis is one of the hallmarks of the tumor microenvironment. Here, I have discovered a novel VSV-G mutant that functions specifically at an acidic tumor extracellular pH, thus enabling VSV-G to selectively kill tumor cells. The second approach uses CD40 ligand (CD40L) to target CD40+ tumor cells. CD40 is a type I TNF receptor that is selectively expressed on a number of epithelial and mesenchymal tumors, such as breast tumors, bladder tumors and lymphomas, but not on most normal, non-proliferating epithelial tissues. VII Expression of CD40L in CD40+ tumors leads to tumor growth inhibition via apoptosis induction and immunity activation. In our studies, both approaches showed significant therapeutic effects in vitro and in vivo. In a mouse model of 4T1 metastatic breast cancer, both VSV-G and CD40L delivered by NSC-based vectors obtained greater therapeutic efficacy and reduced less toxicity to normal tissues than the conventional HSVtk/GCV suicide gene therapy. These findings are of crucial importance in terms of clinical trials of NSC-mediated cancer gene therapy. This study is the first to deliver tumor-targeted VSV-G and cytokine into tumor sites using NSC-based vehicles, and provides a feasible solution to the current safety issues of intravenously administered NSC. VIII (1999). Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood. 93(3): 780-786. Cronin, J., Zhang, X. Y. and Reiser, J. (2005). Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther. 5(4): 387-398. De Becker, G., Moulin, V., Tielemans, F., De Mattia, F., Urbain, J., Leo, O. and Moser, M. (1998). Regulation of T helper cell differentiation in vivo by soluble and membrane proteins provided by antigen-presenting cells. Eur J Immunol. 28(10): 3161-3171. Denfeld, R. W., Hollenbaugh, D., Fehrenbach, A., Weiss, J. M., von Leoprechting, A., Mai, B., Voith, U., Schopf, E., Aruffo, A. and Simon, J. C. (1996). CD40 is functionally expressed on human keratinocytes. Eur J Immunol. 26(10): 2329-2334. Diaz, R. M., Bateman, A., Emiliusen, L., Fielding, A., Trono, D., Russell, S. J. and Vile, R. G. (2000). A lentiviral vector expressing a fusogenic glycoprotein for cancer gene therapy. Gene Ther. 7(19): 1656-1663. Du, J., Zeng, J., Zhao, Y., Boulaire, J. and Wang, S. (2010). The combined use of viral transcriptional and post-transcriptional regulatory elements to improve baculovirus-mediated transient gene expression in human embryonic stem cells. J Biosci Bioeng. 109(1): 1-8. Duntsch, C. D., Zhou, Q., Jayakar, H. R., Weimar, J. D., Robertson, J. H., Pfeffer, L. M., Wang, L., Xiang, Z. and Whitt, M. A. (2004). Recombinant vesicular stomatitis virus vectors as oncolytic agents in the treatment of high-grade gliomas in an organotypic brain tissue slice-glioma coculture model. J Neurosurg. 100(6): 1049-1059. Ebert, O., Shinozaki, K., Kournioti, C., Park, M. S., Garcia-Sastre, A. and Woo, S. L. (2004). Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res. 64(9): 3265-3270. Eliopoulos, A. G., Dawson, C. W., Mosialos, G., Floettmann, J. E., Rowe, M., Armitage, R. J., Dawson, J., Zapata, J. M., Kerr, D. J., Wakelam, M. J., et al. (1996). CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: involvement of TRAF3 as a common mediator. Oncogene. 13(10): 2243-2254. 116 Eliopoulos, A. G., Stack, M., Dawson, C. W., Kaye, K. M., Hodgkin, L., Sihota, S., Rowe, M. and Young, L. S. (1997). Epstein-Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-kappaB pathway involving TNF receptor-associated factors. Oncogene. 14(24): 2899-2916. Errington, F., Bateman, A., Kottke, T., Thompson, J., Harrington, K., Merrick, A., Hatfield, P., Selby, P., Vile, R. and Melcher, A. (2006). Allogeneic tumor cells expressing fusogenic membrane glycoproteins as a platform for clinical cancer immunotherapy. Clin Cancer Res. 12(4): 1333-1341. Errington, F., Jones, J., Merrick, A., Bateman, A., Harrington, K., Gough, M., O'Donnell, D., Selby, P., Vile, R. and Melcher, A. (2006). Fusogenic membrane glycoprotein-mediated tumour cell fusion activates human dendritic cells for enhanced IL-12 production and T-cell priming. Gene Ther. 13(2): 138-149. Esche, C., Gambotto, A., Satoh, Y., Gerein, V., Robbins, P. D., Watkins, S. C., Lotze, M. T. and Shurin, M. R. (1999). CD154 inhibits tumor-induced apoptosis in dendritic cells and tumor growth. Eur J Immunol. 29(7): 2148-2155. Eslahi, N. K., Muller, S., Nguyen, L., Wilson, E., Thull, N., Rolland, A. and Pericle, F. (2001). Fusogenic activity of vesicular stomatitis virus glycoprotein plasmid in tumors as an enhancer of IL-12 gene therapy. Cancer Gene Ther. 8(1): 55-62. Ferri, K. F., Jacotot, E., Blanco, J., Este, J. A., Zamzami, N., Susin, S. A., Xie, Z., Brothers, G., Reed, J. C., Penninger, J. M., et al. (2000). Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J Exp Med. 192(8): 1081-1092. Fielding, A. K., Chapel-Fernandes, S., Chadwick, M. P., Bullough, F. J., Cosset, F. L. and Russell, S. J. (2000). A hyperfusogenic gibbon ape leukemia envelope glycoprotein: targeting of a cytotoxic gene by ligand display. Hum Gene Ther. 11(6): 817-826. French, R. R., Chan, H. T., Tutt, A. L. and Glennie, M. J. (1999). CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med. 5(5): 548-553. Fu, X., Tao, L., Jin, A., Vile, R., Brenner, M. K. and Zhang, X. (2003). 117 Expression of a fusogenic membrane glycoprotein by an oncolytic herpes simplex virus potentiates the viral antitumor effect. Mol Ther. 7(6): 748-754. Funakoshi, S., Longo, D. L., Beckwith, M., Conley, D. K., Tsarfaty, G., Tsarfaty, I., Armitage, R. J., Fanslow, W. C., Spriggs, M. K. and Murphy, W. J. (1994). Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood. 83(10): 2787-2794. Funakoshi, S., Taub, D. D., Anver, M. R., Raziuddin, A., Asai, O., Reddy, V., Rager, H., Fanslow, W. C., Longo, D. L. and Murphy, W. J. (1997). Immunologic and hematopoietic effects of CD40 stimulation after syngeneic bone marrow transplantation in mice. J Clin Invest. 99(3): 484-491. Galanis, E., Bateman, A., Johnson, K., Diaz, R. M., James, C. D., Vile, R. and Russell, S. J. (2001). Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Hum Gene Ther. 12(7): 811-821. Gallagher, N. J., Eliopoulos, A. G., Agathangelo, A., Oates, J., Crocker, J. and Young, L. S. (2002). CD40 activation in epithelial ovarian carcinoma cells modulates growth, apoptosis, and cytokine secretion. Mol Pathol. 55(2): 110-120. Garrone, P., Neidhardt, E. M., Garcia, E., Galibert, L., van Kooten, C. and Banchereau, J. (1995). Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med. 182(5): 1265-1273. Gauchat, J. F., Aubry, J. P., Mazzei, G., Life, P., Jomotte, T., Elson, G. and Bonnefoy, J. Y. (1993). Human CD40-ligand: molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production. FEBS Lett. 315(3): 259-266. Ghia, P., Transidico, P., Veiga, J. P., Schaniel, C., Sallusto, F., Matsushima, K., Sallan, S. E., Rolink, A. G., Mantovani, A., Nadler, L. M., et al. (2001). Chemoattractants MDC and TARC are secreted by malignant B-cell precursors following CD40 ligation and support the migration of leukemia-specific T cells. Blood. 98(3): 533-540. Glass, R., Synowitz, M., Kronenberg, G., Walzlein, J. H., Markovic, D. S., Wang, L. P., Gast, D., Kiwit, J., Kempermann, G. and Kettenmann, H. (2005). Glioblastoma-induced attraction of endogenous neural 118 precursor cells is associated with improved survival. J Neurosci. 25(10): 2637-2646. Greenlee, R. T., Hill-Harmon, M. B., Murray, T. and Thun, M. (2001). Cancer statistics, 2001. CA Cancer J Clin. 51(1): 15-36. Grell, M., Zimmermann, G., Gottfried, E., Chen, C. M., Grunwald, U., Huang, D. C., Wu Lee, Y. H., Durkop, H., Engelmann, H., Scheurich, P., et al. (1999). Induction of cell death by tumour necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-anchored TNF. EMBO J. 18(11): 3034-3043. Grewal, I. S. and Flavell, R. A. (1998). CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 16: 111-135. Grewal, I. S., Xu, J. and Flavell, R. A. (1995). Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature. 378(6557): 617-620. Grisson, R. D., Chenine, A. L., Yeh, L. Y., He, J., Wood, C., Bhat, G. J., Xu, W., Kankasa, C. and Ruprecht, R. M. (2004). Infectious molecular clone of a recently transmitted pediatric human immunodeficiency virus clade C isolate from Africa: evidence of intraclade recombination. J Virol. 78(24): 14066-14069. Guedan, S., Grases, D., Rojas, J. J., Gros, A., Vilardell, F., Vile, R., Mercade, E., Cascallo, M. and Alemany, R. (2011). GALV expression enhances the therapeutic efficacy of an oncolytic adenovirus by inducing cell fusion and enhancing virus distribution. Gene Ther. Guedan, S., Gros, A., Cascallo, M., Vile, R., Mercade, E. and Alemany, R. (2008). Syncytia formation affects the yield and cytotoxicity of an adenovirus expressing a fusogenic glycoprotein at a late stage of replication. Gene Ther. 15(17): 1240-1245. Hammond, C. and Helenius, A. (1995). Quality control in the secretory pathway. Curr Opin Cell Biol. 7(4): 523-529. Henriquez, N. V., Floettmann, E., Salmon, M., Rowe, M. and Rickinson, A. B. (1999). Differential responses to CD40 ligation among Burkitt lymphoma lines that are uniformly responsive to Epstein-Barr virus latent membrane protein 1. J Immunol. 162(6): 3298-3307. Herrlinger, U., Woiciechowski, C., Sena-Esteves, M., Aboody, K. S., Jacobs, A. 119 H., Rainov, N. G., Snyder, E. Y. and Breakefield, X. O. (2000). Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther. 1(4): 347-357. Hess, S. and Engelmann, H. (1996). A novel function of CD40: induction of cell death in transformed cells. J Exp Med. 183(1): 159-167. Higuchi, H., Bronk, S. F., Bateman, A., Harrington, K., Vile, R. G. and Gores, G. J. (2000). Viral fusogenic membrane glycoprotein expression causes syncytia formation with bioenergetic cell death: implications for gene therapy. Cancer Res. 60(22): 6396-6402. Hirano, A., Longo, D. L., Taub, D. D., Ferris, D. K., Young, L. S., Eliopoulos, A. G., Agathanggelou, A., Cullen, N., Macartney, J., Fanslow, W. C., et al. (1999). Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand. Blood. 93(9): 2999-3007. Hoffmann, D., Bangen, J. M., Bayer, W. and Wildner, O. (2006). Synergy between expression of fusogenic membrane proteins, chemotherapy and facultative virotherapy in colorectal cancer. Gene Ther. 13(21): 1534-1544. Hoffmann, D., Bayer, W. and Wildner, O. (2007). In situ tumor vaccination with adenovirus vectors encoding measles virus fusogenic membrane proteins and cytokines. World J Gastroenterol. 13(22): 3063-3070. Hoffmann, D., Bayer, W. and Wildner, O. (2007). Local and distant immune-mediated control of colon cancer growth with fusogenic membrane glycoproteins in combination with viral oncolysis. Hum Gene Ther. 18(5): 435-450. Hoffmann, D., Bayer, W. and Wildner, O. (2007). Therapeutic immune response induced by intratumoral expression of the fusogenic membrane protein of vesicular stomatitis virus and cytokines encoded by adenoviral vectors. Int J Mol Med. 20(5): 673-681. Hoffmann, D., Grunwald, T., Kuate, S. and Wildner, O. (2007). Mechanistic analysis and comparison of viral fusogenic membrane proteins for their synergistic effects on chemotherapy. Cancer Biol Ther. 6(4): 510-518. Hoffmann, D. and Wildner, O. (2006). Enhanced killing of pancreatic cancer cells by expression of fusogenic membrane glycoproteins in combination with chemotherapy. Mol Cancer Ther. 5(8): 2013-2022. 120 Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P. and Strauss, M. (1995). Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A. 92(22): 10099-10103. Hortobagyi, G. N. (1998). Treatment of breast cancer. N Engl J Med. 339(14): 974-984. Hu, Y. C. (2008). Baculoviral vectors for gene delivery: a review. Curr Gene Ther. 8(1): 54-65. Immonen, A., Vapalahti, M., Tyynela, K., Hurskainen, H., Sandmair, A., Vanninen, R., Langford, G., Murray, N. and Yla-Herttuala, S. (2004). AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther. 10(5): 967-972. Ito, D., Ogasawara, K., Iwabuchi, K., Inuyama, Y. and Onoe, K. (2000). Induction of CTL responses by simultaneous administration of liposomal peptide vaccine with anti-CD40 and anti-CTLA-4 mAb. J Immunol. 164(3): 1230-1235. Jayakar, H. R., Jeetendra, E. and Whitt, M. A. (2004). Rhabdovirus assembly and budding. Virus Res. 106(2): 117-132. Johnson, K. J., Peng, K. W., Allen, C., Russell, S. J. and Galanis, E. (2003). Targeting the cytotoxicity of fusogenic membrane glycoproteins in gliomas through protease-substrate interaction. Gene Ther. 10(9): 725-732. Johnson, M., Sato, M., Burton, J., Gambhir, S. S., Carey, M. and Wu, L. (2005). Micro-PET/CT monitoring of herpes thymidine kinase suicide gene therapy in a prostate cancer xenograft: the advantage of a cell-specific transcriptional targeting approach. Mol Imaging. 4(4): 463-472. Jyothi, M. D. and Khar, A. (2000). Regulation of CD40L expression on natural killer cells by interleukin-12 and interferon gamma: its role in the elicitation of an effective antitumor immune response. Cancer Immunol Immunother. 49(10): 563-572. Kavanaugh, M. P., Miller, D. G., Zhang, W., Law, W., Kozak, S. L., Kabat, D. and Miller, A. D. (1994). Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci U S A. 121 91(15): 7071-7075. Keane, M. M., Ettenberg, S. A., Lowrey, G. A., Russell, E. K. and Lipkowitz, S. (1996). Fas expression and function in normal and malignant breast cell lines. Cancer Res. 56(20): 4791-4798. Kiener, P. A., Moran-Davis, P., Rankin, B. M., Wahl, A. F., Aruffo, A. and Hollenbaugh, D. (1995). Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes. J Immunol. 155(10): 4917-4925. Kikuchi, T. and Crystal, R. G. (1999). Anti-tumor immunity induced by in vivo adenovirus vector-mediated expression of CD40 ligand in tumor cells. Hum Gene Ther. 10(8): 1375-1387. Kikuchi, T., Moore, M. A. and Crystal, R. G. (2000). Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood. 96(1): 91-99. Kim, S. K., Kim, S. U., Park, I. H., Bang, J. H., Aboody, K. S., Wang, K. C., Cho, B. K., Kim, M., Menon, L. G., Black, P. M., et al. (2006). Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 12(18): 5550-5556. Kirkham, L. A., Bateman, A. R., Melcher, A. A., Vile, R. G. and Fielding, A. K. (2002). Lack of specificity of cell-surface protease targeting of a cytotoxic hyperfusogenic gibbon ape leukaemia virus envelope glycoprotein. J Gene Med. 4(6): 592-600. Kluth, B., Hess, S., Engelmann, H., Schafnitzel, S., Riethmuller, G. and Feucht, H. E. (1997). Endothelial expression of CD40 in renal cell carcinoma. Cancer Res. 57(5): 891-899. Knupfer, H. and Preiss, R. (2007). Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res Treat. 102(2): 129-135. Kost, T. A., Condreay, J. P. and Jarvis, D. L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol. 23(5): 567-575. Lee, E. S., Gao, Z. and Bae, Y. H. (2008). Recent progress in tumor pH targeting nanotechnology. J Control Release. 132(3): 164-170. 122 Lee, E. X., Lam, D. H., Wu, C., Yang, J., Tham, C. K., Ng, W. H. and Wang, S. (2011). Glioma gene therapy using induced pluripotent stem cell derived neural stem cells. Mol Pharm. 8(5): 1515-1524. Li, H., Haviv, Y. S., Derdeyn, C. A., Lam, J., Coolidge, C., Hunter, E., Curiel, D. T. and Blackwell, J. L. (2001). Human immunodeficiency virus type 1-mediated syncytium formation is compatible with adenovirus replication and facilitates efficient dispersion of viral gene products and de novo-synthesized virus particles. Hum Gene Ther. 12(18): 2155-2165. Li, S., Tokuyama, T., Yamamoto, J., Koide, M., Yokota, N. and Namba, H. (2005). Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells. Cancer Gene Ther. 12(7): 600-607. Li, Y., Drone, C., Sat, E. and Ghosh, H. P. (1993). Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. J Virol. 67(7): 4070-4077. Lin, E. H., Salon, C., Brambilla, E., Lavillette, D., Szecsi, J., Cosset, F. L. and Coll, J. L. (2010). Fusogenic membrane glycoproteins induce syncytia formation and death in vitro and in vivo: a potential therapy agent for lung cancer. Cancer Gene Ther. 17(4): 256-265. Linardakis, E., Bateman, A., Phan, V., Ahmed, A., Gough, M., Olivier, K., Kennedy, R., Errington, F., Harrington, K. J., Melcher, A., et al. (2002). Enhancing the efficacy of a weak allogeneic melanoma vaccine by viral fusogenic membrane glycoprotein-mediated tumor cell-tumor cell fusion. Cancer Res. 62(19): 5495-5504. Loskog, A., Bjorkland, A., Brown, M. P., Korsgren, O., Malmstrom, P. U. and Totterman, T. H. (2001). Potent antitumor effects of CD154 transduced tumor cells in experimental bladder cancer. J Urol. 166(3): 1093-1097. MacDonald, A. S., Straw, A. D., Bauman, B. and Pearce, E. J. (2001). CD8dendritic cell activation status plays an integral role in influencing Th2 response development. J Immunol. 167(4): 1982-1988. MacDonald, A. S., Straw, A. D., Dalton, N. M. and Pearce, E. J. (2002). Cutting edge: Th2 response induction by dendritic cells: a role for CD40. J Immunol. 168(2): 537-540. 123 Mackey, M. F., Gunn, J. R., Ting, P. P., Kikutani, H., Dranoff, G., Noelle, R. J. and Barth, R. J., Jr. (1997). Protective immunity induced by tumor vaccines requires interaction between CD40 and its ligand, CD154. Cancer Res. 57(13): 2569-2574. Mao, C. P., Hung, C. F., Kang, T. H., He, L., Tsai, Y. C., Wu, C. Y. and Wu, T. C. (2010). Combined administration with DNA encoding vesicular stomatitis virus G protein enhances DNA vaccine potency. J Virol. 84(5): 2331-2339. Marches, R., Racila, E., Tucker, T. F., Picker, L., Mongini, P., Hsueh, R., Vitetta, E. S., Scheuermann, R. H. and Uhr, J. W. (1995). Tumour dormancy and cell signalling--III: Role of hypercrosslinking of IgM and CD40 on the induction of cell cycle arrest and apoptosis in B lymphoma cells. Ther Immunol. 2(3): 125-136. Matlin, K. S., Reggio, H., Helenius, A. and Simons, K. (1982). Pathway of vesicular stomatitis virus entry leading to infection. J Mol Biol. 156(3): 609-631. Medema, J. P., Schuurhuis, D. H., Rea, D., van Tongeren, J., de Jong, J., Bres, S. A., Laban, S., Toes, R. E., Toebes, M., Schumacher, T. N., et al. (2001). Expression of the serpin serine protease inhibitor protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: differential modulation by T helper type and type cells. J Exp Med. 194(5): 657-667. Mi, S., Lee, X., Li, X., Veldman, G. M., Finnerty, H., Racie, L., LaVallie, E., Tang, X. Y., Edouard, P., Howes, S., et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 403(6771): 785-789. Miyashita, T., McIlraith, M. J., Grammer, A. C., Miura, Y., Attrep, J. F., Shimaoka, Y. and Lipsky, P. E. (1997). Bidirectional regulation of human B cell responses by CD40-CD40 ligand interactions. J Immunol. 158(10): 4620-4633. Nardacci, R., Antinori, A., Kroemer, G. and Piacentini, M. (2005). Cell death mechanisms in HIV-associated dementia: the involvement of syncytia. Cell Death Differ. 12 Suppl 1: 855-858. Olah, Z., Lehel, C., Anderson, W. B., Eiden, M. V. and Wilson, C. A. (1994). The cellular receptor for gibbon ape leukemia virus is a novel high 124 affinity sodium-dependent phosphate transporter. J Biol Chem. 269(41): 25426-25431. Paulie, S., Rosen, A., Ehlin-Henriksson, B., Braesch-Andersen, S., Jakobson, E., Koho, H. and Perlmann, P. (1989). The human B lymphocyte and carcinoma antigen, CDw40, is a phosphoprotein involved in growth signal transduction. J Immunol. 142(2): 590-595. Pellat-Deceunynck, C., Bataille, R., Robillard, N., Harousseau, J. L., Rapp, M. J., Juge-Morineau, N., Wijdenes, J. and Amiot, M. (1994). Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood. 84(8): 2597-2603. Perfettini, J. L., Castedo, M., Roumier, T., Andreau, K., Nardacci, R., Piacentini, M. and Kroemer, G. (2005). Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ. 12 Suppl 1: 916-923. Pericle, F., Epling-Burnette, P. K., Podack, E. R., Wei, S. and Djeu, J. Y. (1997). CD40-CD40L interactions provide "third-party" costimulation for T cell response against B7-1-transfected human breast tumor cells. J Leukoc Biol. 61(2): 201-208. Posner, M. R., Cavacini, L. A., Upton, M. P., Tillman, K. C., Gornstein, E. R. and Norris, C. M., Jr. (1999). Surface membrane-expressed CD40 is present on tumor cells from squamous cell cancer of the head and neck in vitro and in vivo and regulates cell growth in tumor cell lines. Clin Cancer Res. 5(8): 2261-2270. Quiding-Jarbrink, M., Lakew, M., Nordstrom, I., Banchereau, J., Butcher, E., Holmgren, J. and Czerkinsky, C. (1995). Human circulating specific antibody-forming cells after systemic and mucosal immunizations: differential homing commitments and cell surface differentiation markers. Eur J Immunol. 25(2): 322-327. Rainov, N. G. and Kramm, C. M. (2003). Recombinant retrovirus vectors for treatment of malignant brain tumors. Int Rev Neurobiol. 55: 185-203. Rainov, N. G. and Ren, H. (2003). Clinical trials with retrovirus mediated gene therapy--what have we learned? J Neurooncol. 65(3): 227-236. Ramachandra, C. J., Shahbazi, M., Kwang, T. W., Choudhury, Y., Bak, X. Y., Yang, J. and Wang, S. (2011). Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using 125 baculoviral vectors. Nucleic Acids Res. 39(16): e107. Roche, S., Albertini, A. A., Lepault, J., Bressanelli, S. and Gaudin, Y. (2008). Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited. Cell Mol Life Sci. 65(11): 1716-1728. Roche, S., Bressanelli, S., Rey, F. A. and Gaudin, Y. (2006). Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science. 313(5784): 187-191. Roche, S., Rey, F. A., Gaudin, Y. and Bressanelli, S. (2007). Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science. 315(5813): 843-848. Roy, M., Aruffo, A., Ledbetter, J., Linsley, P., Kehry, M. and Noelle, R. (1995). Studies on the interdependence of gp39 and B7 expression and function during antigen-specific immune responses. Eur J Immunol. 25(2): 596-603. Schattner, E. J., Mascarenhas, J., Bishop, J., Yoo, D. H., Chadburn, A., Crow, M. K. and Friedman, S. M. (1996). CD4+ T-cell induction of Fas-mediated apoptosis in Burkitt's lymphoma B cells. Blood. 88(4): 1375-1382. Scheller, C. and Jassoy, C. (2001). Syncytium formation amplifies apoptotic signals: a new view on apoptosis in HIV infection in vitro. Virology. 282(1): 48-55. Simpson, G. R., Han, Z., Liu, B., Wang, Y., Campbell, G. and Coffin, R. S. (2006). Combination of a fusogenic glycoprotein, prodrug activation, and oncolytic herpes simplex virus for enhanced local tumor control. Cancer Res. 66(9): 4835-4842. Simpson, G. R., Horvath, A., Annels, N. E., Pencavel, T., Metcalf, S., Seth, R., Peschard, P., Price, T., Coffin, R. S., Mostafid, H., et al. (2012). Combination of a fusogenic glycoprotein, pro-drug activation and oncolytic HSV as an intravesical therapy for superficial bladder cancer. Br J Cancer. 106(3): 496-507. Sims, T. L., Jr., Hamner, J. B., Bush, R. A., Williams, R. F., Zhou, J., Kim, S. U., Aboody, K. S., Danks, M. K. and Davidoff, A. M. (2008). Neural progenitor cell-mediated delivery of interferon beta improves neuroblastoma response to cyclophosphamide. Ann Surg Oncol. 15(11): 126 3259-3267. Sin, J. I., Kim, J. J., Zhang, D. and Weiner, D. B. (2001). Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type CD4+ T cell-mediated protective immunity against herpes simplex virus type in vivo. Hum Gene Ther. 12(9): 1091-1102. Sovak, M. A., Arsura, M., Zanieski, G., Kavanagh, K. T. and Sonenshein, G. E. (1999). The inhibitory effects of transforming growth factor beta1 on breast cancer cell proliferation are mediated through regulation of aberrant nuclear factor-kappaB/Rel expression. Cell Growth Differ. 10(8): 537-544. Srinivasan, A., Li, F., Wong, A., Kodandapani, L., Smidt, R., Jr., Krebs, J. F., Fritz, L. C., Wu, J. C. and Tomaselli, K. J. (1998). Bcl-xL functions downstream of caspase-8 to inhibit Fas- and tumor necrosis factor receptor 1-induced apoptosis of MCF7 breast carcinoma cells. J Biol Chem. 273(8): 4523-4529. Stewart, A. K., Lassam, N. J., Quirt, I. C., Bailey, D. J., Rotstein, L. E., Krajden, M., Dessureault, S., Gallinger, S., Cappe, D., Wan, Y., et al. (1999). Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase clinical trial. Gene Ther. 6(3): 350-363. Stojdl, D. F., Lichty, B., Knowles, S., Marius, R., Atkins, H., Sonenberg, N. and Bell, J. C. (2000). Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 6(7): 821-825. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131(5): 861-872. Temchura, V. V., Tenbusch, M., Nchinda, G., Nabi, G., Tippler, B., Zelenyuk, M., Wildner, O., Uberla, K. and Kuate, S. (2008). Enhancement of immunostimulatory properties of exosomal vaccines by incorporation of fusion-competent G protein of vesicular stomatitis virus. Vaccine. 26(29-30): 3662-3672. Terheyden, P., Straten, P., Brocker, E. B., Kampgen, E. and Becker, J. C. (2000). CD40-ligated dendritic cells effectively expand 127 melanoma-specific CD8+ CTLs and CD4+ IFN-gamma-producing T cells from tumor-infiltrating lymphocytes. J Immunol. 164(12): 6633-6639. Thomas, W. D., Smith, M. J., Si, Z. and Hersey, P. (1996). Expression of the co-stimulatory molecule CD40 on melanoma cells. Int J Cancer. 68(6): 795-801. Todryk, S. M., Tutt, A. L., Green, M. H., Smallwood, J. A., Halanek, N., Dalgleish, A. G. and Glennie, M. J. (2001). CD40 ligation for immunotherapy of solid tumours. J Immunol Methods. 248(1-2): 139-147. Tong, A. W., Papayoti, M. H., Netto, G., Armstrong, D. T., Ordonez, G., Lawson, J. M. and Stone, M. J. (2001). Growth-inhibitory effects of CD40 ligand (CD154) and its endogenous expression in human breast cancer. Clin Cancer Res. 7(3): 691-703. Tong, A. W., Seamour, B., Chen, J., Su, D., Ordonez, G., Frase, L., Netto, G. and Stone, M. J. (2000). CD40 ligand-induced apoptosis is Fas-independent in human multiple myeloma cells. Leuk Lymphoma. 36(5-6): 543-558. Tong, A. W. and Stone, M. J. (2003). Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther. 10(1): 1-13. Tyler, M. A., Ulasov, I. V., Sonabend, A. M., Nandi, S., Han, Y., Marler, S., Roth, J. and Lesniak, M. S. (2009). Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther. 16(2): 262-278. Uckun, F. M., Gajl-Peczalska, K., Myers, D. E., Jaszcz, W., Haissig, S. and Ledbetter, J. A. (1990). Temporal association of CD40 antigen expression with discrete stages of human B-cell ontogeny and the efficacy of anti-CD40 immunotoxins against clonogenic B-lineage acute lymphoblastic leukemia as well as B-lineage non-Hodgkin's lymphoma cells. Blood. 76(12): 2449-2456. Uhl, M., Weiler, M., Wick, W., Jacobs, A. H., Weller, M. and Herrlinger, U. (2005). Migratory neural stem cells for improved thymidine kinase-based gene therapy of malignant gliomas. Biochem Biophys Res Commun. 328(1): 125-129. 128 Urashima, M., Suzuki, H., Yuza, Y., Akiyama, M., Ohno, N. and Eto, Y. (2000). An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood. 95(4): 1258-1263. van Kooten, C. and Banchereau, J. (2000). CD40-CD40 ligand. J Leukoc Biol. 67(1): 2-17. van Mierlo, G. J., den Boer, A. T., Medema, J. P., van der Voort, E. I., Fransen, M. F., Offringa, R., Melief, C. J. and Toes, R. E. (2002). CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci U S A. 99(8): 5561-5566. van Zeijl, M., Johann, S. V., Closs, E., Cunningham, J., Eddy, R., Shows, T. B. and O'Hara, B. (1994). A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc Natl Acad Sci U S A. 91(3): 1168-1172. Varghese, S. and Rabkin, S. D. (2002). Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 9(12): 967-978. Verhasselt, B., Van Damme, J., van Larebeke, N., Put, W., Bracke, M., De Potter, C. and Mareel, M. (1992). Interleukin-1 is a motility factor for human breast carcinoma cells in vitro: additive effect with interleukin-6. Eur J Cell Biol. 59(2): 449-457. von Leoprechting, A., van der Bruggen, P., Pahl, H. L., Aruffo, A. and Simon, J. C. (1999). Stimulation of CD40 on immunogenic human malignant melanomas augments their cytotoxic T lymphocyte-mediated lysis and induces apoptosis. Cancer Res. 59(6): 1287-1294. Vyth-Dreese, F. A., Boot, H., Dellemijn, T. A., Majoor, D. M., Oomen, L. C., Laman, J. D., Van Meurs, M., De Weger, R. A. and De Jong, D. (1998). Localization in situ of costimulatory molecules and cytokines in B-cell non-Hodgkin's lymphoma. Immunology. 94(4): 580-586. Wang, S. and Balasundaram, G. (2010). Potential cancer gene therapy by baculoviral transduction. Curr Gene Ther. 10(3): 214-225. Werneburg, B. G., Zoog, S. J., Dang, T. T., Kehry, M. R. and Crute, J. J. (2001). Molecular characterization of CD40 signaling intermediates. J Biol Chem. 276(46): 43334-43342. 129 Wingett, D. G., Vestal, R. E., Forcier, K., Hadjokas, N. and Nielson, C. P. (1998). CD40 is functionally expressed on human breast carcinomas: variable inducibility by cytokines and enhancement of Fas-mediated apoptosis. Breast Cancer Res Treat. 50(1): 27-36. Wurtzen, P. A., Nissen, M. H. and Claesson, M. H. (2001). Maturation of dendritic cells by recombinant human CD40L-trimer leads to a homogeneous cell population with enhanced surface marker expression and increased cytokine production. Scand J Immunol. 53(6): 579-587. Yamada, M., Shiroko, T., Kawaguchi, Y., Sugiyama, Y., Egilmez, N. K., Chen, F. A. and Bankert, R. B. (2001). CD40-CD40 ligand (CD154) engagement is required but not sufficient for modulating MHC class I, ICAM-1 and Fas expression and proliferation of human non-small cell lung tumors. Int J Cancer. 92(4): 589-599. Yang, J., Lam, D. H., Goh, S. S., Lee, E. X., Zhao, Y., Tay, F. C., Chen, C., Du, S., Balasundaram, G., Shahbazi, M., et al. (2012). Tumor Tropism of Intravenously Injected Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells and Their Gene Therapy Application in a Metastatic Breast Cancer Model. Stem Cells. Young, L. S., Dawson, C. W., Brown, K. W. and Rickinson, A. B. (1989). Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor molecule of B lymphocytes. Int J Cancer. 43(5): 786-794. Young, L. S., Eliopoulos, A. G., Gallagher, N. J. and Dawson, C. W. (1998). CD40 and epithelial cells: across the great divide. Immunol Today. 19(11): 502-506. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science. 318(5858): 1917-1920. Zeng, J., Du, J., Lin, J., Bak, X. Y., Wu, C. and Wang, S. (2009). High-efficiency transient transduction of human embryonic stem cell-derived neurons with baculoviral vectors. Mol Ther. 17(9): 1585-1593. Zeng, J., Du, J., Zhao, Y., Palanisamy, N. and Wang, S. (2007). Baculoviral vector-mediated transient and stable transgene expression in human 130 embryonic stem cells. Stem Cells. 25(4): 1055-1061. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. and Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 19(12): 1129-1133. Zhao, D., Najbauer, J., Annala, A. J., Garcia, E., Metz, M. Z., Gutova, M., Polewski, M. D., Gilchrist, M., Glackin, C. A., Kim, S. U., et al. (2012). Human neural stem cell tropism to metastatic breast cancer. Stem Cells. 30(2): 314-325. Zhao, J. M., Wen, Y. J., Li, Q., Wang, Y. S., Wu, H. B., Xu, J. R., Chen, X. C., Wu, Y., Fan, L. Y., Yang, H. S., et al. (2008). A promising cancer gene therapy agent based on the matrix protein of vesicular stomatitis virus. FASEB J. 22(12): 4272-4280. Zhao, Y., Lam, D. H., Yang, J., Lin, J., Tham, C. K., Ng, W. H. and Wang, S. (2012). Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther. 19(2): 189-200. Zhao, Y. and Wang, S. (2010). Human NT2 neural precursor-derived tumor-infiltrating cells as delivery vehicles for treatment of glioblastoma. Hum Gene Ther. 21(6): 683-694.     131 [...]... well-documented oncogenic potential of these genes The ability of human pluripotent stem cells such as human embryonic stem cells (hESCs) to generate virtually any differentiated cell type provides the possibility of using these cells as new sources of human NSCs Self-renewing hESCs are inherently immortal, and their proliferation capacity is preserved during long-term cell culture Hence, they have become... of unlimited amounts of uniform human stem cells (Zhang et al., 2001; Ben-Hur et al., 2004) However, despite their unique potential, the use of hESCs remains ethically controversial, because the process of generating hESC lines involves the destruction of human embryos To circumvent this problem, another type of human pluripotent stem cells, human induced pluripotent stem cells (iPSCs), which are generated... through the reprogramming of adult somatic cells by forced expression of several transcriptional factors, can be used as a new source of NSCs (Takahashi et al., 2007; Yu et al., 2007) Standardization of the large-scale mass production of cell therapeutics is a prerequisite for the widespread application of cell therapy Thus, standardization in generating human iPSC-derived cells offers the potential for...LIST OF PUBLICATIONS Manuscripts Detu Zhu, Lam Dang Hoang and Shu Wang Systemic delivery of fusogenic membrane glycoprotein-expressing neural stem cells to selectively kill tumor cells through low pH-induced cell fusion 2012 (submitted to Molecular Therapy) Detu Zhu, Lam Dang Hoang and Shu Wang Selective killing of CD40-positive breast cancer cells by NSC-mediated delivery of CD40 ligand... The powerful bystander killing effects of FMGs arise from the induction of local syncytia formation, the activation of antitumor immune response and the spread of 7 pro-apoptotic agents via syncytiosomes 1.2.1.1 Cell fusion Overexpression of FMGs in tumor cells leads to massive cell to cell fusion, formation of gigantic, multinucleated syncytia and subsequent cell death in 2-5 days (Higuchi et al.,... delivery vectors for tumor- targeted therapy 1.1.1 Tumor tropism Metastatic tumors are the most aggressive type of neoplasm in humans, characterized by a high infiltrative ability and resistance to conventional therapeutic treatments such as surgical excision, radiotherapy and chemotherapy Currently, gene therapy has emerged as a promising new approach for treating aggressive malignant tumors; however,... cancers (Hoffmann and Wildner, 2006) In addition, FMGs are also intensively explored in other researches as an adjunctive agent for oncolytic virotherapy (Ahmed et al., 2003; Ebert et al., 2004; Grisson et al., 2004), chemotherapy (Hoffmann et al., 2006; Hoffmann et al., 2007) and immunotherapy by cytokine genes (Eslahi et al., 2001; Hoffmann et al., 2007; Hoffmann et al., 2007), allogeneic tumor cell vaccines... transgene expression in hES cells (Zeng et al., 2007) 1.1.4 Side effects of intravenous injection The systemic intravenous administration of NSCs is an attractive option, given that intravenous injection is a minimally invasive procedure, and the injected cells may home in on multiple intracranial tumor foci and solid tumors of a non -neural origin through the circulation However, the majority of intravenously... situation, tumor- targeted therapeutic gene is urgently needed 1.2 Fusogenic membrane glycoproteins Fusogenic membrane glycoproteins (FMGs) are a class of glycoproteins derived from viral envelope genes that can induce cell membrane fusion and cytotoxicity in mammalian cells In the year 2000, a research group found that overexpression of FMGs in tumor cell cultures would induce the formation of gigantic,... chemokines or cytokines throughout the solid tumor, or promote the cross presentation of tumor- associated antigens 1.2.3.2 Difficulties in large-scale clinical application Despite the powerful bystander effects mentioned above, the application of FMG in tumor gene therapy is impeded due to the lack of tumor targeting It has been reported that the generation of high-titer viral vectors encoding the GALV.fus . DEVELOPMENT OF NEW NEURAL STEM CELL- BASED TUMOR- TARGETED GENE THERAPY APPROACHES ZHU DETU NATIONAL UNIVERSITY OF SINGAPORE 2012 1 DEVELOPMENT OF NEW NEURAL STEM. OF NEW NEURAL STEM CELL- BASED TUMOR- TARGETED GENE THERAPY APPROACHES ZHU DETU (B. Sc.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES. HSVtk/GCV suicide gene therapy. These findings are of crucial importance in terms of clinical trials of NSC-mediated cancer gene therapy. This study is the first to deliver tumor- targeted VSV-G

Ngày đăng: 09/09/2015, 10:06

Từ khóa liên quan

Mục lục

  • 21 August 2012 ACKNOWLEDGMENTS

  • TABLE OF CONTENTS

  • SUMMARY

  • LIST OF PUBLICATIONS

  • LIST OF TABLES

  • LIST OF FIGURES

  • ABBREVIATIONS

  • CHAPTER 1

  • INTRODUCTION

    • 1.1 Neural stem cells

      • 1.1.1 Tumor tropism

      • 1.1.2 Cell source

      • 1.1.3 Genetic engineering

      • 1.1.4 Side effects of intravenous injection

      • 1.2 Fusogenic membrane glycoproteins

        • 1.2.1 Bystander effect

          • 1.2.1.1 Cell fusion

          • 1.2.1.2 Antitumor immune response activation

          • 1.2.2 Family members

            • 1.2.2.1 GALV.fus

            • 1.2.2.2 Syncytin-1

            • 1.2.2.3 VSV-G

            • 1.2.3 Applications in tumor gene therapy

              • 1.2.3.1 Enhanced antitumor effect

              • 1.2.3.2 Difficulties in large-scale clinical application

Tài liệu cùng người dùng

Tài liệu liên quan