Regulation of the TRIP BR1 proto oncoprotein a potential therapeutic target for human cutaneous and intracavitory proliferative lesions

180 363 0
Regulation of the TRIP BR1 proto oncoprotein   a potential therapeutic target for human cutaneous and intracavitory proliferative lesions

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

REGULATION OF THE TRIP-BR1 PROTOONCOPROTEIN—A POTENTIAL THERAPEUTIC TARGET FOR HUMAN CUTANEOUS AND INTRACAVITARY PROLIFERATIVE LESIONS BY ZHIJIANG ZANG (MBBS, Kunming Medical College, China; MSc, National University of Singapore, Singapore) THESIS SUBMITTED FOR THE DEGREE OF PHILOSOPHICAL DOCTOR OF SCIENCE DEPARTMENT OF MEDICINE NATIONAL UNIVERISTY OF SINGAPORE 2007 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 ACKNOWLEDGEMENTS I wish to express my deep appreciation to the following individuals who made this work possible. First of all, my sincerest and deepest gratitude to my mentor Prof. Stephen I-Hong Hsu, for his guidance during my doctoral study. He provided a motivating, enthusiastic, and critical atmosphere during the many discussions we had. His constant support and encouragement, his inspiration and patience, his mentorship and friendship are the key for me to be able to submit this thesis. I feel very privileged to have worked with him and had a long journey with him together. With a deep sense of gratitude, I want to thank my co-supervisors, Prof. Manuel Salto-Tellez, who provided timely and valuable help at the crucial time. I like to express my deepest gratitude to Dr. Lakshman Gunaratnam, Brigham and Women's Hospital, for giving me excellent guidance, sharing valuable knowledge, asking challenging questions, reading and revising this thesis and providing good company. His experience and involvement is crucial for me to overcome many obstacles I met in this research project. I’d like to express my sincerest thanks to Prof. Joseph Vincent Bonventre, Robert H. Chief, Renal Division, Brigham and Women's Hospital, Harvard Medical School, for having me in his great lab during July 2005- July 2007. Thank him for allowing me to Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 participate him lab meeting and present my data during this period of time. Thank him for his sound advice and constructive comments on my project. I wish to thank the lab members in the Renal Division, Brigham & Women Hospital of Harvard Medical School for their inspiring discussions and valuable advices. I am especially grateful to Dr. Jagesh Shah, Prof. Antonis S. Zervos, Dr. Tak ah aru Ic h i m u ra, Dr. Benjamin Humphreys, Dr. Li-Li Hsiao, Dr. Won Han, Dr. Alice Marie Sheridan, Dr. Dirk Hentschel, D r. Deguang Zhu and Dr. Vi s h al S . Vaid ya. I wish to thank Ms. Eileen O'Leary and Ms. Xiaoming Sun in Brigham & Women Hospital of Harvard Medical School for assisting me in many different ways. I would like to thank people in School of Medicine of National University of Singapore, especially Prof. Bay Boon Huat, Ms. Stacy Tan, Ms. Geetha Sreedhara Warrier and Ms. Malika Raguraman for their kind helps during the last four years in NUS. Without the assistance from them and others that I did not mention the names, my PhD candidature will not be smooth. Special thanks to fellow colleague Jit Kong Cheong for his good company, friendship and assistance during this long journey. I would like to also thank Susan Nasr who spent a lot of time in reading and editing this thesis although she is busy with preparing MCAT. I am grateful to all the members of the laboratory in Singapore: Dr. Sim Khe Guan, Dr.Yang Maolin Christopher, Chui Sun Yap, Hajjah Shahidah Bte Mohd Said who made the lab such a wonderful workplace and home. Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 I am indebted to Dr. Tan Lai Yong & Lay Chin and Prof. Tan Kim Siang Luke for their invaluable support, encouragement and friendship during 2001-2005 when I was in Singapore. I’d like to thank my wonderful wife Liyun Lai, who has been extremely understanding and supportive of my studies. She has never complained although we had to experience a lot of hardship when we are alone in overseas. Without her sacrifice, it is totally impossible for me to focus on research. I thank my daughter, Yi Zang, for giving me so much joy. Sorry for the countless weekends and holidays that I could not accompany you and your mom during these four years. I love your two! I thank my brother, Zhixin Hu and his wife, my parents-in-law, my aunty and her family for their moral support. Lastly, and the most importantly, I wish to thank my mother, Xixiu Zang and my father Shufan Fu. They bore me, raised me, taught me, and loved me. Although my mother is no longer with us, she is forever remembered. Her love is always in my heart. I am sure she shares my joy and happiness in the heaven. To my mother and father I dedicate this thesis. Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 TABLE OF CONTENTS Page TITLE ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF PUBLICATIONS 11 LIST OF FIGURES & TABLES 12 LIST OF ABBREVIATIONS 16 ABSTRACT 19 CHAPTER ONE---GENERAL INTRODUCTION 1.1 TRIP-Br proteins 1.1.1 TRIP-Br protein family 21 1.1.2 Domain structure of the TRIP-Br Proteins 25 1.1.3 TRIP-Br proteins co-regulate transcriptional activity of E2F-1/DP-1 24 1.1.4 TRIP-Br proteins interact with PHD zinc fingerand /or the bromodomain- containing proteins 1.1.4.1 PHD zinc finger domain and proteins 26 1.1.4.2 Bromodomain and bromodomain-containing proteins 31 1.1.4.3 Interaction between PHD zinc finger/bromodomain -containing transcription factors and TRIP-Br proteins 34 Zhijiang Zang PhD. Thesis 1.1.4.4 Biological significance of the interaction between PHD zinc finger/bromodomain proteins and TRIP-Br proteins Medicine, NUS 2003-2007 37 1.1.5 TRIP-Br1 is a CDK interacting protein 38 1.1.6 TRIP-Br proteins interact with cyclin A 39 1.1.7 TRIP-Br proteins are novel cell cycle regulators 40 1.1.8 The integrator model of TRIP-Br protein function in cell cycle regulation 41 1.2 TRIP-Br proteins and cancer 1.2.1 TRIP-Br1 and RBT1 locate at 19q13, a common amplicon in human cancer 44 1.2.2 TRIP-Br proteins promote cell growth 45 1.2.3 TRIP-Br proteins are a family of oncogenes 46 1.2.4 The integrator function of TRIP-Br proteins and cancer 47 CHAPTER TWO---OBJECTIVES 49 CHAPTER THREE---EVALUATION OF THE TRIP-BR PROTEINS AS CHEMOTHERAPEUTIC DRUG TARGET IN HUMAN CUTANEOUS AND INTRACAVITARY HYPERPROLIFERATIVE LESIONS 2.1 Introduction 51 2.2 Material and methods 2.2.1 Materials 54 2.2.1.1 Decoy peptide 54 2.2.1.2 Cell culture 54 2.2.2 Methods 2.2.2.1 Generation and characterization of monoclonal and polyclonal antibodies against hTRIP-Br proteins 55 2.2.2.2 Western blot for detection of TRIP-Br expression 55 2.2.2.3 In vitro and in vivo decoy peptide uptake assay by flow cytometric analysis and confocal microscopy 55 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 2.2.2.4 Cell cycle analysis 55 2.2.2.5 BrdU incorporation assay 56 2.2.2.6 Colony formation assay 57 2.2.2.7 Generation of nude mouse tumor xenograft models 57 2.2.2.8 Chick embryo chorioallantoic membrane (CAM) tumor xenograft model establishment and validation 57 2.2.2.9 In vivo effect of peptide treatment on tumor growth using the chick CAM model 58 2.2.2.10 Statistical analysis 59 2. Results 2.3.1 TRIP-Br decoy peptides inhibit the proliferation of CNE2, Ca Ski and MeWo cells in vitro 60 2.3.2 Tumors xenografts in the chick embryo CAM model are accessible to the topically applied decoy peptide treatment 60 2.3.3 TRIP-Br decoy peptides inhibit the growth of CNE2-, Ca Ski- and Me Wo-derived tumors in the chick embryo CAM model 64 2.4 Discussion 66 CHAPTER FOUR---REGULATION OF THREONINE PROTEIN PHOSPHATASE 2A TRIP-BR1 BY SERINE/ 3.1 Introduction 3.1.1 Protein kinases and protein phosphatases 75 3.1.2 Protein phosphatase 2A (PP2A) 3.1.2.1 Subunit composition, localization and distribution 76 3.1.2.2 Biological role of PP2A 3.1.2.2.1 Regulation by PP2A via protein-protein interaction 81 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 3.1.2.2.2 PP2A and cell cycle 83 3.1.2.2.3 PP2A and tumorigenesis 84 3.2 Materials and methods 3.2.1 Materials 3.2.1.1 Plasmid DNA 87 3.2.1.2 Biochemical reagents 87 3.2.2 Methods 3.2.2.1 Cell culture and maintenance 88 3.2.2.2 Expression and purification of GST fusion proteins 89 3.2.2.3 GST pull-down assay 90 3.2.2.4 Silver staining 90 3.2.2.5 Coomassie Blue staining 91 3.2.2.6 Liquid chromatography/mass spectrometry 91 3.2.2.7 Immunoprecipitation assay 92 3.2.2.8 Serine/threonine protein phosphatase activity assays 92 3.2.2.9 Indirect immunofluorescence staining of cells 93 3.2.2.10 Subcellular fractionation 93 3.2.2.11 Co-localization study of TRIP-Br1 and PP2A-Bα 94 3.2.2.12 DNA and siRNA transfection procedures 94 3.2.2.13 Preparation of proteins from tissue culture 94 3.2.2.14 Protein quantitation 95 3.2.2.15 Western blot for protein immunodetection 95 3.2.2.16 Extraction of total cellular RNA 96 3.2.2.17 Reverse transcription of RNA 96 3.2.2.18 Gel electrophoresis of DNA products 97 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 3.2.2.19 Real time-RCR 97 3.2.2.20 Luciferase assays 98 3.3 Results 3.3.1 Identification of the Bα and Bδ subunits of serine/threonine protein phosphatase 2A as potential interactors of TRIP-Br1 3.3.1.1 Expression and purification of glutathione S-transferase mouse TRIP-Br1 fusion protein 99 3.3.1.2 Probing mammalian cellular protein extracts with GSTmTRIP-Br1 3.3.1.3 Mass spectrometric analysis 3.3.2 3.3.4 3.3.5 3.3.8 110 3.3.2.2 Catalytically active PP2A holoenzyme associates with GST-mTRIP-Br1 114 Endogenous human TRIP-Br1 associates with PP2A holoenzyme in vivo 116 Endogenous TRIP-Br1, a cytoplasmic dominant protein, co-localizes with the Bα subunit of PP2A 120 TRIP-Br1 is a serine-phosphorylated protein 128 3.3.6 Okadaic acid treatment alters the level of serine-phosphorylated and total TRIP-Br1 protein 3.3.7 105 TRIP-Br1 associates with catalytically active PP2A holoenzyme in vitro 3.3.2.1 GST-mTRIP-Br1 binds to the PP2A holoenzyme comprising the A/Bα/C subunits 3.3.3 102 132 Transcriptional silencing of the PP2A catalytic subunit decreases the level of TRIP-Br1 protein 137 Overexpression of the PP2A-C subunit increases the level of TRIP-Br1 protein and TRIP-Br1 co-activated E2F1/DP1transcription 141 3.4 Discussion 150 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 CHAPTER FIVE---CONCLUDING REMARKS 162 REFERENCES 166 10 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 as a potential transcription-based chemotherapeutic target for hyperproliferative lesions have generated data that advance current understanding of this fascinating oncogene family, much work remains to be done to uncover the precise mechanisms by which TRIP-Br proteins are regulated in cells as well as the their therapeutic significance in human diseases. Uncovering the mechanism of TRIP-Br protein regulation will facilitate the application of therapeutic strategies targeting TRIP-Br proteins in human diseases. REFERENCES 165 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Abdullah, J. M., Jing, X., Spassov, D. S., Nachtman, R. G., and Jurecic, R. (2001). Cloning and characterization of Hepp, a novel gene expressed preferentially in hematopoietic progenitors and mature blood cells. Blood Cells Mol Dis 27, 667-676. Adams PD, Kaelin WG, Jr. (1995) Transcriptional control by E2F. Semin Cancer Biol 6, 99-108. Akiyama, N., Shima, H., Hatano, Y., Osawa, Y., Sugimura, T., and Nagao, M. (1995). cDNA cloning of BR gamma, a novel brain-specific isoform of the B regulatory subunit of type-2A protein phosphatase. Eur J Biochem 230, 766-772. Arnold, H. K., and Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 26, 2832-2844. Arino, J., Woon, C. W., Brautigan, D. L., Miller, T. B., Jr., and Johnson, G. L. (1988). Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proc Natl Acad Sci U S A 85, 4252-4256. Barlev, N. A., Poltoratsky, V., Owen-Hughes, T., Ying, C., Liu, L., Workman, J. L., and Berger, S. L. (1998). Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex. Mol Cell Biol 18, 1349-1358. Bennetts, J. S., Fowles, L. F., Berkman, J. L., van Bueren, K. L., Richman, J. M., Simpson, F., and Wicking, C. (2006). Evolutionary conservation and murine embryonic expression of the gene encoding the SERTA domain-containing protein CDCA4 (HEPP). Gene 374, 153-165. Bialojan, C., and Takai, A. (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 256, 283-290. Bicher, A., Ault, K., Kimmelman, A., Gershenson, D., Reed, E., and Liang, B. (1997). Loss of heterozygosity in human ovarian cancer on chromosome 19q. Gynecologic oncology 66, 36-40. Bienz, M. (2006). The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31, 35-40. Blom, N., Gammeltoft, S., and Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351-1362. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. (2004). Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633-1649. Bockstaele, L., Coulonval, K., Kooken, H., Paternot, S., and Roger, P. P. (2006). Regulation of CDK4. Cell division 1, 25. 166 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Bockstaele, L., Kooken, H., Libert, F., Paternot, S., Dumont, J. E., de Launoit, Y., Roger, P. P., and Coulonval, K. (2006). Regulated activating Thr172 phosphorylation of cyclin-dependent kinase 4(CDK4): its relationship with cyclins and CDK "inhibitors". Mol Cell Biol 26, 5070-5085. Calgaro, S., Boube, M., Cribbs, D. L., and Bourbon, H. M. (2002). The Drosophila gene taranis encodes a novel trithorax group member potentially linked to the cell cycle regulatory apparatus. Genetics 160, 547-560. Calin, G. A., di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., Croce, C. M., Barbanti-Brodano, G., Russo, G., and Negrini, M. (2000). Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 19, 1191-1195. Carrozza, M. J., Utley, R. T., Workman, J. L., and Cote, J. (2003). The diverse functions of histone acetyltransferase complexes. Trends Genet 19, 321-329. Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., and Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127-136. Cho, J. M., Song, D. J., Bergeron, J., Benlimame, N., Wold, M. S., and Alaoui-Jamali, M. A. (2000). RBT1, a novel transcriptional co-activator, binds the second subunit of replication protein A. Nucleic Acids Res 28, 3478-3485. Chung H, Nairn AC, Murata K, Brautigan DL. (1999). Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha subunit which promotes dephosphorylation of elongation factor-2. Biochemistry 38, 10371-10376. Clarke, P. R., Hoffmann, I., Draetta, G., and Karsenti, E. (1993). Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts. Mol Biol Cell 4, 397-411. Cohen, P. T., Brewis, N. D., Hughes, V., and Mann, D. J. (1990). Protein serine/threonine phosphatases; an expanding family. FEBS Lett 268, 355-359. Coppola, J. A., and Cole, M. D. (1986). Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature 320, 760-763. Csortos, C., Zolnierowicz, S., Bako, E., Durbin, S. D., and DePaoli-Roach, A. A. (1996). High complexity in the expression of the B' subunit of protein phosphatase 2A0. Evidence for the existence of at least seven novel isoforms. J Biol Chem 271, 2578-2588. Curtis, L. J., Li, Y., Gerbault-Seureau, M., Kuick, R., Dutrillaux, A. M., Goubin, G., Fawcett, J., Cram, S., Dutrillaux, B., Hanash, S., and Muleris, M. (1998). 167 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Amplification of DNA sequences from chromosome 19q13.1 in human pancreatic cell lines. Genomics 53, 42-55. Dani SU, Espindola R. (2002). A model system for testing gene vectors using murine tumor cells on the chorioallantoic membrane of the chick embryo. Genet Mol Res 1,167-175. Darwish, H., Cho, J. M., Loignon, M., and Alaoui-Jamali, M. A. (2007). Overexpression of SERTAD3, a putative oncogene located within the 19q13 amplicon, induces E2F activity and promotes tumor growth. Oncogene 26, 43194328. Desdouets, C., Sobczak-Thepot, J., Murphy, M., and Brechot, C. (1995). Cyclin A: function and expression during cell proliferation. Prog Cell Cycle Res 1, 115-123. Dey, A., Chitsaz, F., Abbasi, A., Misteli, T., and Ozato, K. (2003). The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A 100, 8758-8763. de Alboran, I. M., O'Hagan, R. C., Gartner, F., Malynn, B., Davidson, L., Rickert, R., Rajewsky, K., DePinho, R. A., and Alt, F. W. (2001). Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45-55. De Baere I, Derua R, Janssens V et al. (1999). Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry 38, 16539-16547. Dignam SS, Yang L, Lezzi M, Case ST. (1989). Identification of a developmentally regulated gene for a 140-kDa secretory protein in salivary glands of Chironomus tentans larvae. J Biol Chem 264, 9444-9452. Dominguez, A., Ramos-Morales, F., Romero, F., Rios, R. M., Dreyfus, F., Tortolero, M., and Pintor-Toro, J. A. (1998). hpttg, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 17, 2187-2193. Donella Deana, A., Mac Gowan, C. H., Cohen, P., Marchiori, F., Meyer, H. E., and Pinna, L. A. (1990). An investigation of the substrate specificity of protein phosphatase 2C using synthetic peptide substrates; comparison with protein phosphatase 2A. Biochim Biophys Acta 1051, 199-202. Evan, G. I., Wyllie, A. H., Gilbert, C. S., Littlewood, T. D., Land, H., Brooks, M., Waters, C. M., Penn, L. Z., and Hancock, D. C. (1992). Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119-128. Fry, C. J., and Peterson, C. L. (2001). Chromatin remodeling enzymes: who's on first? Curr Biol 11, R185-197. 168 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Funabiki, H., Kumada, K., and Yanagida, M. (1996). Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J 15, 6617-6628. Gallego, M., and Virshup, D. M. (2005). Protein serine/threonine phosphatases: life, death, and sleeping. Curr Opin Cell Biol 17, 197-202. Gibbons, R. J., and Higgs, D. R. (2000). Molecular-clinical spectrum of the ATR-X syndrome. Am J Med Genet 97, 204-212. Gil-Bernabe, A. M., Romero, F., Limon-Mortes, M. C., and Tortolero, M. (2006). Protein phosphatase 2A stabilizes human securin, whose phosphorylated forms are degraded via the SCF ubiquitin ligase. Mol Cell Biol 26, 4017-4027. Gladden, A. B., and Diehl, J. A. (2005). Location, location, location: the role of cyclin D1 nuclear localization in cancer. J Cell Biochem 96, 906-913. Goodman RH, Smolik S. (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14,1553-1577. Goris J, Hermann J, Hendrix P, Ozon R, Merlevede W. (1989). Okadaic acid, a specific protein phosphatase inhibitor, induces maturation and MPF formation in Xenopus laevis oocytes. FEBS Lett, 245, 91-94. Gotz, J., Probst, A., Ehler, E., Hemmings, B., and Kues, W. (1998). Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc Natl Acad Sci U S A 95, 12370-12375. Groves, M. R., Hanlon, N., Turowski, P., Hemmings, B. A., and Barford, D. (1999). The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99-110. Gupta S, Takhar PP, Degenkolbe R et al. (2003). The human papillomavirus type 11 and 16 E6 proteins modulate the cell-cycle regulator and transcription cofactor TRIPBr1. Virology 317, 155-164. Hatano, Y., Shima, H., Haneji, T., Miura, A. B., Sugimura, T., and Nagao, M. (1993). Expression of PP2A B regulatory subunit beta isotype in rat testis. FEBS Lett 324, 7175. Hayashi, R., Goto, Y., Ikeda, R., Yokoyama, K. K., and Yoshida, K. (2006). CDCA4 is an E2F transcription factor family-induced nuclear factor that regulates E2Fdependent transcriptional activation and cell proliferation. J Biol Chem 281, 3563335648. Heaney, A. P., Singson, R., McCabe, C. J., Nelson, V., Nakashima, M., and Melmed, S. (2000). Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet 355, 716-719. 169 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Hemmings, B. A., Adams-Pearson, C., Maurer, F., Muller, P., Goris, J., Merlevede, W., Hofsteenge, J., and Stone, S. R. (1990). alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29, 3166-3173. Hendrix, P., Turowski, P., Mayer-Jaekel, R. E., Goris, J., Hofsteenge, J., Merlevede, W., and Hemmings, B. A. (1993). Analysis of subunit isoforms in protein phosphatase 2A holoenzymes from rabbit and Xenopus. J Biol Chem 268, 7330-7337. Hiraga, A., and Tamura, S. (2000). Protein phosphatase 2A is associated in an inactive state with microtubules through 2A1-specific interaction with tubulin. Biochem J 346 Pt 2, 433-439. Hirose, T., Fujii, R., Nakamura, H., Aratani, S., Fujita, H., Nakazawa, M., Nakamura, K., Nishioka, K., and Nakajima, T. (2003). Regulation of CREB-mediated transcription by association of CDK4 binding protein p34SEI-1 with CBP. Int J Mol Med 11, 705-712. Hoglund, M., Gorunova, L., Andren-Sandberg, A., Dawiskiba, S., Mitelman, F., and Johansson, B. (1998). Cytogenetic and fluorescence in situ hybridization analyses of chromosome 19 aberrations in pancreatic carcinomas: frequent loss of 19p13.3 and gain of 19q13.1-13.2. Genes, chromosomes & cancer 21, 8-16. Hsu, S. I., Yang, C. M., Sim, K. G., Hentschel, D. M., O'Leary, E., and Bonventre, J. V. (2001). TRIP-Br: a novel family of PHD zinc finger- and bromodomain-interacting proteins that regulate the transcriptional activity of E2F-1/DP-1. EMBO J 20, 22732285. Hubbard, M. J., and Cohen, P. (1993). On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18, 172-177. Hu, Q. J., Dyson, N., and Harlow, E. (1990). The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations. EMBO J 9, 1147-1155. Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H. (1997). Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7, 689-692. Ito, A., Kataoka, T. R., Watanabe, M., Nishiyama, K., Mazaki, Y., Sabe, H., Kitamura, Y., and Nojima, H. (2000). A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J 19, 562-571. Jallepalli, P. V., Waizenegger, I. C., Bunz, F., Langer, S., Speicher, M. R., Peters, J. M., Kinzler, K. W., Vogelstein, B., and Lengauer, C. (2001). Securin is required for chromosomal stability in human cells. Cell 105, 445-457. Janssens, V., and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353, 417-439. 170 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Jaramillo-Babb, V. L., Sugarmans, J. L., Scavetta, R., Wang, S. J., Berndt, N., Born, T. L., Glass, C. K., and Schonthal, A. H. (1996). Positive regulation of cdc2 gene activity by protein phosphatase type 2A. J Biol Chem 271, 5988-5992. Jones, T. A., Barker, H. M., da Cruz e Silva, E. F., Mayer-Jaekel, R. E., Hemmings, B. A., Spurr, N. K., Sheer, D., and Cohen, P. T. (1993). Localization of the genes encoding the catalytic subunits of protein phosphatase 2A to human chromosome bands 5q23-->q31 and 8p12-->p11.2, respectively. Cytogenet Cell Genet 63, 35-41. Kaelin WG Jr, Pallas DC, DeCaprio JA, Kaye FJ, Livingston DM (1991). Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell 64 :521-32. Karaiskou, A., Jessus, C., Brassac, T., and Ozon, R. (1999). Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J Cell Sci 112 ( Pt 21), 3747-3756. Kawabe, T., Muslin, A. J., and Korsmeyer, S. J. (1997). HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 385, 454-458. Khew-Goodall, Y., and Hemmings, B. A. (1988). Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS letters 238, 265-268. Kinoshita N, Yamano H, Niwa H, Yoshida T, Yanagida M. (1993). Negative regulation of mitosis by the fission yeast protein phosphatase ppa2. Genes Dev 7, 1059-71. Kitagawa, Y., Sakai, R., Tahira, T., Tsuda, H., Ito, N., Sugimura, T., and Nagao, M. (1988a). Molecular cloning of rat phosphoprotein phosphatase 2A beta cDNA and increased expressions of phosphatase 2A alpha and 2A beta in rat liver tumors. Biochem Biophys Res Commun 157, 821-827. Kitagawa, Y., Tahira, T., Ikeda, I., Kikuchi, K., Tsuiki, S., Sugimura, T., and Nagao, M. (1988b). Molecular cloning of cDNA for the catalytic subunit of rat liver type 2A protein phosphatase, and detection of high levels of expression of the gene in normal and cancer cells. Biochim Biophys Acta 951, 123-129. Kisker O, Onizuka S, Banyard J et al. (2001) Generation of multiple angiogenesis inhibitors by human pancreatic cancer. Cancer Res 61 7298-304. LaBaer, J., Garrett, M. D., Stevenson, L. F., Slingerland, J. M., Sandhu, C., Chou, H. S., Fattaey, A., and Harlow, E. (1997). New functional activities for the p21 family of CDK inhibitors. Genes Dev 11, 847-862. Lai, I. L., Wang, S. Y., Yao, Y. L., and Yang, W. M. (2007). Transcriptional and subcellular regulation of the TRIP-Br family. Gene 388, 102-109. 171 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Lebrin, F., Bianchini, L., Rabilloud, T., Chambaz, E. M., and Goldberg, Y. (1999). CK2alpha-protein phosphatase 2A molecular complex: possible interaction with the MAP kinase pathway. Mol Cell Biochem 191, 207-212. Lee TH, Turck C, Kirschner MW. (1994). Inhibition of cdc2 activation by INH/PP2A. Mol Biol Cell 5, 323-38. Lechward, K., Sugajska, E., de Baere, I., Goris, J., Hemmings, B. A., and Zolnierowicz, S. (2006). Interaction of nucleoredoxin with protein phosphatase 2A. FEBS Lett 580, 3631-3637. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature 396, 643-649. Li, J., Muscarella, P., Joo, S. H., Knobloch, T. J., Melvin, W. S., Weghorst, C. M., and Tsai, M. D. (2005). Dissection of CDK4-binding and transactivation activities of p34(SEI-1) and comparison between functions of p34(SEI-1) and p16(INK4A). Biochemistry 44, 13246-13256. Lin, S. S., Bassik, M. C., Suh, H., Nishino, M., Arroyo, J. D., Hahn, W. C., Korsmeyer, S. J., and Roberts, T. M. (2006). PP2A regulates BCL-2 phosphorylation and proteasome-mediated degradation at the endoplasmic reticulum. J Biol Chem 281, 23003-23012. Lin, X. H., Walter, J., Scheidtmann, K., Ohst, K., Newport, J., and Walter, G. (1998). Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proc Natl Acad Sci U S A 95, 14693-14698. Losman, J. A., Chen, X. P., Vuong, B. Q., Fay, S., and Rothman, P. B. (2003). Protein phosphatase 2A regulates the stability of Pim protein kinases. J Biol Chem 278, 48004805. Lower, K. M., Turner, G., Kerr, B. A., Mathews, K. D., Shaw, M. A., Gedeon, A. K., Schelley, S., Hoyme, H. E., White, S. M., Delatycki, M. B., et al. (2002). Mutations in PHF6 are associated with Borjeson-Forssman-Lehmann syndrome. Nature genetics 32, 661-665. Lukas, J., Parry, D., Aagaard, L., Mann, D. J., Bartkova, J., Strauss, M., Peters, G., and Bartek, J. (1995). Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375, 503-506. Ma, J., Arnold, H. K., Lilly, M. B., Sears, R. C., and Kraft, A. S. (2007). Negative regulation of Pim-1 protein kinase levels by the B56beta subunit of PP2A. Oncogene. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912-1934. Marchio, A., Meddeb, M., Pineau, P., Danglot, G., Tiollais, P., Bernheim, A., and Dejean, A. (1997). Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Genes, chromosomes & cancer 18, 59-65. 172 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Martinez E, Palhan VB, Tjernberg A et al. (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 21:6782-6795. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. (2002). The protein kinase complement of the human genome. Science 298, 1912-1934. Mayer, R. E., Hendrix, P., Cron, P., Matthies, R., Stone, S. R., Goris, J., Merlevede, W., Hofsteenge, J., and Hemmings, B. A. (1991). Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry 30, 3589-3597. Mellor, J. (2006). It takes a PHD to read the histone code. Cell 126, 22-24. McCright, B., Rivers, A. M., Audlin, S., and Virshup, D. M. (1996). The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiationinduced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271, 22081-22089. Mila, M., Carrio, A., Sanchez, A., Gomez, D., Jimenez, D., Estivill, X., and Ballesta, F. (1999). [Clinical characterization, molecular and FISH studies in 80 patients with clinical suspicion of Williams-Beuren syndrome]. Medicina clinica 113, 46-49. Miyashita, T. (2004). Confocal microscopy for intracellular co-localization of proteins. Methods Mol Biol 261, 399-410. Miwa, W., Yasuda, J., Murakami, Y., Yashima, K., Sugano, K., Sekine, T., Kono, A., Egawa, S., Yamaguchi, K., Hayashizaki, Y., and Sekiya, T. (1996). Isolation of DNA sequences amplified at chromosome 19q13.1-q13.2 including the AKT2 locus in human pancreatic cancer. Biochem Biophys Res Commun 225, 968-974. Muleris, M., Almeida, A., Gerbault-Seureau, M., Malfoy, B., and Dutrillaux, B. (1995). Identification of amplified DNA sequences in breast cancer and their organization within homogeneously staining regions. Genes, chromosomes & cancer 14, 155-163. Murata, T., Kurokawa, R., Krones, A., Tatsumi, K., Ishii, M., Taki, T., Masuno, M., Ohashi, H., Yanagisawa, M., Rosenfeld, M. G., et al. (2001). Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in RubinsteinTaybi syndrome. Hum Mol Genet 10, 1071-1076. Nagao, M., Sakai, R., Kitagawa, Y., Ikeda, I., Sasaki, K., Shima, H., and Sugimura, T. (1989). Role of protein phosphatases in malignant transformation. Princess Takamatsu Symp 20, 177-184. Nagase, T., Murakami, T., Nozaki, H., Inoue, R., Nishito, Y., Tanabe, O., Usui, H., and Takeda, M. (1997). Tissue and subcellular distributions, and characterization of rat brain protein phosphatase 2A containing a 72-kDa delta/B" subunit. J Biochem 122, 178-187. 173 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Okamoto, K., Kamibayashi, C., Serrano, M., Prives, C., Mumby, M. C., and Beach, D. (1996). p53-dependent association between cyclin G and the B' subunit of protein phosphatase 2A. Mol Cell Biol 16, 6593-6602. Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., and Draetta, G. (1992). Cyclin A is required at two points in the human cell cycle. EMBO J 11, 961-971. Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., and Roberts, T. M. (1990). Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60, 167-176. Ramos-Morales, F., Dominguez, A., Romero, F., Luna, R., Multon, M. C., PintorToro, J. A., and Tortolero, M. (2000). Cell cycle regulated expression and phosphorylation of hpttg proto-oncogene product. Oncogene 19, 403-409. Romero, F., Multon, M. C., Ramos-Morales, F., Dominguez, A., Bernal, J. A., PintorToro, J. A., and Tortolero, M. (2001). Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic Acids Res 29, 1300-1307. Petersen, I., Langreck, H., Wolf, G., Schwendel, A., Psille, R., Vogt, P., Reichel, M. B., Ried, T., and Dietel, M. (1997). Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. Br J Cancer 75, 79-86. Peterson, P., and Peltonen, L. (2005). Autoimmune polyendocrinopathy syndrome type (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J Autoimmun 25 Suppl, 49-55. Pivot-Pajot, C., Caron, C., Govin, J., Vion, A., Rousseaux, S., and Khochbin, S. (2003). Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 23, 5354-5365. Ragvin, A., Valvatne, H., Erdal, S., Arskog, V., Tufteland, K. R., Breen, K., AM, O. Y., Eberharter, A., Gibson, T. J., Becker, P. B., and Aasland, R. (2004). Nucleosome binding by the bromodomain and PHD finger of the transcriptional cofactor p300. J Mol Biol 337, 773-788. Ropers, H. H., and Hamel, B. C. (2005). X-linked mental retardation. Nature reviews 6, 46-57. Remboutsika E, Yamamoto K, Harbers M, Schmutz M. (2002). The bromodomain mediates transcriptional intermediary factor 1alpha -nucleosome interactions. J Biol Chem 277, 50318-25. Reynisdottir, I., and Massague, J. (1997). The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev 11, 92-503. 174 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Ribatti D, Vacca A, Cantatore FP et al. (2000). An experimental study in the chick embryo chorioallantoic membrane of the anti-angiogenic activity of cyclosporine in rheumatoid arthritis versus osteoarthritis. Inflamm Res 49, 418-23. Roux, S., Seelig, H. P., and Meyer, O. (1998). Significance of Mi-2 autoantibodies in polymyositis and dermatomyositis. J Rheumatol 25, 395-396. Rubinstein, J. H., and Taybi, H. (1963). Broad thumbs and toes and facial abnormalities. A possible mental retardation syndrome. Am J Dis Child (1960) 105, 588-608. Ruediger, R., Hentz, M., Fait, J., Mumby, M., and Walter, G. (1994). Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J Virol 68, 123-129. Ruediger, R., Roeckel, D., Fait, J., Bergqvist, A., Magnusson, G., and Walter, G. (1992). Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol 12, 4872-4882. Ruediger, R., Van Wart Hood, J. E., Mumby, M., and Walter, G. (1991). Constant expression and activity of protein phosphatase 2A in synchronized cells. Mol Cell Biol 11, 4282-4285. Ruvolo, P. P., Clark, W., Mumby, M., Gao, F., and May, W. S. (2002). A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem 277, 2284722852. Saito, T., Shima, H., Osawa, Y., Nagao, M., Hemmings, B. A., Kishimoto, T., and Hisanaga, S. (1995). Neurofilament-associated protein phosphatase 2A: its possible role in preserving neurofilaments in filamentous states. Biochemistry 34, 7376-7384. Sano, Y., and Ishii, S. (2001). Increased affinity of c-Myb for CREB-binding protein (CBP) after CBP-induced acetylation. J Biol Chem 276, 3674-3682. Schlessinger, J., and Lemmon, M. A. (2003). SH2 and PTB domains in tyrosine kinase signaling. Sci STKE 2003, RE12. Schonthal, A. (1992). Okadaic acid--a valuable new tool for the study of signal transduction and cell cycle regulation? New Biol 4, 16-21. Schonthal, A., and Feramisco, J. R. (1993). Inhibition of histone H1 kinase expression, retinoblastoma protein phosphorylation, and cell proliferation by the phosphatase inhibitor okadaic acid. Oncogene 8, 433-441. Schonthal, A. H. (2001). Role of serine/threonine protein phosphatase 2A in cancer. Cancer letters 170, 1-13. 175 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Schultz DC, Friedman JR, Rauscher FJ, 3rd. (2001). Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15, 428-43. Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., and Virshup, D. M. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 283, 2089-2091. Seimiya, H., Sawada, H., Muramatsu, Y., Shimizu, M., Ohko, K., Yamane, K., and Tsuruo, T. (2000). Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J 19, 2652-2661. Shai A, Brake T, Somoza C, Lambert PF. (2007).The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities. Cancer Res.67,1626-35. Sim, K. G., Cheong, J. K., and Hsu, S. I. (2006). The TRIP-Br family of transcriptional regulators is essential for the execution of cyclin E-mediated cell cycle progression. Cell cycle 5, 1111-1115. Sim, K. G., Zang, Z., Yang, C. M., Bonventre, J. V., and Hsu, S. I. (2004). TRIP-Br links E2F to novel functions in the regulation of cyclin E expression during cell cycle progression and in the maintenance of genomic stability. Cell Cycle 3, 1296-1304. Sontag, E. (2001). Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal 13, 7-16. Sontag, E., Nunbhakdi-Craig, V., Bloom, G. S., and Mumby, M. C. (1995). A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Cell Biol 128, 1131-1144. Sontag, E., Nunbhakdi-Craig, V., Lee, G., Brandt, R., Kamibayashi, C., Kuret, J., White, C. L., 3rd, Mumby, M. C., and Bloom, G. S. (1999). Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 274, 2549025498. Stepanova, L., Leng, X., Parker, S. B., and Harper, J. W. (1996). Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes & Dev 10, 1491-1502. Strack, S., Chang, D., Zaucha, J. A., Colbran, R. J., and Wadzinski, B. E. (1999). Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Lett 460, 462-466. Strack, S., Zaucha, J. A., Ebner, F. F., Colbran, R. J., and Wadzinski, B. E. (1998). Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol 392, 515-527. 176 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Stratmann, R., and Lehner, C. F. (1996). Separation of sister chromatids in mitosis requires the Drosophila pimples product, a protein degraded after the metaphase/anaphase transition. Cell 84, 25-35. Sugimoto, M., Martin, N., Wilks, D. P., Tamai, K., Huot, T. J., Pantoja, C., Okumura, K., Serrano, M., and Hara, E. (2002). Activation of cyclin D1-kinase in murine fibroblasts lacking both p21(Cip1) and p27(Kip1). Oncogene 21, 8067-8074. Sugimoto, M., Nakamura, T., Ohtani, N., Hampson, L., Hampson, I. N., Shimamoto, A., Furuichi, Y., Okumura, K., Niwa, S., Taya, Y., and Hara, E. (1999). Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1). Genes & Dev 13, 3027-3033. Sun L, Stoecklin G, Van Way S et al. (2007). Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J Biol Chem 282, 3766-77. Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi, T., and Saji, S. (2000). Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut 47, 268-271. Takahashi, M., Shibata, H., Shimakawa, M., Miyamoto, M., Mukai, H., and Ono, Y. (1999). Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the golgi apparatus. J Biol Chem 274, 17267-17274. Tanabe, O., Nagase, T., Murakami, T., Nozaki, H., Usui, H., Nishito, Y., Hayashi, H., Kagamiyama, H., and Takeda, M. (1996). Molecular cloning of a 74-kDa regulatory subunit (B" or delta) of human protein phosphatase 2A. FEBS Lett 379, 107-111. Tang, D. J., Hu, L., Xie, D., Wu, Q. L., Fang, Y., Zeng, Y., Sham, J. S., and Guan, X. Y. (2005). Oncogenic transformation by SEI-1 is associated with chromosomal instability. Cancer Res 65, 6504-6508. Tang, T. C., Sham, J. S., Xie, D., Fang, Y., Huo, K. K., Wu, Q. L., and Guan, X. Y. (2002). Identification of a candidate oncogene SEI-1 within a minimal amplified region at 19q13.1 in ovarian cancer cell lines. Cancer Res 62, 7157-7161. Tehrani, M. A., Mumby, M. C., and Kamibayashi, C. (1996). Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem 271, 5164-5170. Thompson, F. H., Nelson, M. A., Trent, J. M., Guan, X. Y., Liu, Y., Yang, J. M., Emerson, J., Adair, L., Wymer, J., Balfour, C., et al. (1996). Amplification of 19q13.1-q13.2 sequences in ovarian cancer. G-band, FISH, and molecular studies. Cancer Genet Cytogenet 87, 55-62. Turowski, P., Favre, B., Campbell, K. S., Lamb, N. J., and Hemmings, B. A. (1997). Modulation of the enzymatic properties of protein phosphatase 2A catalytic subunit by the recombinant 65-kDa regulatory subunit PR65alpha. Eur J Biochem 248, 200208. 177 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Trimarchi JM, Lees JA. (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3:11-20. Trumpp, A., Refaeli, Y., Oskarsson, T., Gasser, S., Murphy, M., Martin, G. R., and Bishop, J. M. (2001). c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768-773. Turowski, P., Myles, T., Hemmings, B. A., Fernandez, A., and Lamb, N. J. (1999). Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell 10, 1997-2015. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001). The sequence of the human genome. Science 291, 1304-1351. Virshup, D. M. (2000). Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol 12, 180-185. Voorhoeve, P. M., Hijmans, E. M., and Bernards, R. (1999). Functional interaction between a novel protein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related p107 protein. Oncogene 18, 515-524. Walter, G., Ruediger, R., Slaughter, C., and Mumby, M. (1990). Association of protein phosphatase 2A with polyoma virus medium tumor antigen. Proc Natl Acad Sci U S A 87, 2521-2525. Wang, Z. J., Churchman, M., Campbell, I. G., Xu, W. H., Yan, Z. Y., McCluggage, W. G., Foulkes, W. D., and Tomlinson, I. P. (1999). Allele loss and mutation screen at the Peutz-Jeghers (LKB1) locus (19p13.3) in sporadic ovarian tumours. Br J Cancer 80, 70-72. Watanabe-Fukunaga, R., Iida, S., Shimizu, Y., Nagata, S., and Fukunaga, R. (2005). SEI family of nuclear factors regulates p53-dependent transcriptional activation. Genes Cells 10, 851-860. Wera, S., Fernandez, A., Lamb, N. J., Turowski, P., Hemmings-Mieszczak, M., Mayer-Jaekel, R. E., and Hemmings, B. A. (1995). Deregulation of translational control of the 65-kDa regulatory subunit (PR65 alpha) of protein phosphatase 2A leads to multinucleated cells. J Biol Chem 270, 21374-21381. Wera, S., and Hemmings, B. A. (1995). Serine/threonine protein phosphatases. Biochem J 311 ( Pt 1), 17-29. Westphal, R. S., Anderson, K. A., Means, A. R., and Wadzinski, B. E. (1998). A signaling complex of Ca2+-calmodulin-dependent protein kinase IV and protein phosphatase 2A. Science 280, 1258-1261. Westphal, R. S., Coffee, R. L., Jr., Marotta, A., Pelech, S. L., and Wadzinski, B. E. (1999). Identification of kinase-phosphatase signaling modules composed of p70 S6 178 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J Biol Chem 274, 687-692. Woo, R. A., and Poon, R. Y. (2003). Cyclin-dependent kinases and S phase control in mammalian cells. Cell cycle 2, 316-324. Woetmann A, Nielsen M, Christensen ST, Brockdorff J, Kaltoft K, Engel AM, Skov S, Brender C, Geisler C, Svejgaard A, Rygaard J, Leick V, Odum N.(1999). Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3. Proc Natl Acad Sci U S A 96: 10620-10625. Yan, Y., and Mumby, M. C. (1999). Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases. J Biol Chem 274, 31917-31924. Yan, Z., Fedorov, S. A., Mumby, M. C., and Williams, R. S. (2000). PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Mol Cell Biol 20, 1021-1029. Yang, X. J. (2004). Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26, 1076-1087. Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., Hahn, W. C., Stukenberg, P. T., Shenolikar, S., Uchida, T., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6, 308-318. Yokoyama Y, Iwata R, Hongo J, Murakami S, Wada A. (1969). A papillary outgrowth pattern of early cervical cancer. Acta Obstet Gynaecol Jpn 16, 258-262. Zeng, L., and Zhou, M. M. (2002). Bromodomain: an acetyl-lysine binding domain. FEBS letters 513, 124-128. Zhang, H., Zha, X., Tan, Y., Hornbeck, P. V., Mastrangelo, A. J., Alessi, D. R., Polakiewicz, R. D., and Comb, M. J. (2002). Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J Biol Chem 277, 3937939387. Zhou, X. Z., Kops, O., Werner, A., Lu, P. J., Shen, M., Stoller, G., Kullertz, G., Stark, M., Fischer, G., and Lu, K. P. (2000). Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol cell 6, 873-883. Zhu, D., Kosik, K. S., Meigs, T. E., Yanamadala, V., and Denker, B. M. (2004). Galpha12 directly interacts with PP2A: evidence FOR Galpha12-stimulated PP2A phosphatase activity and dephosphorylation of microtubule-associated protein, tau. J Biol Chem 279, 54983-54986. Zhu, L. (2005). Tumour suppressor retinoblastoma protein Rb: a transcriptional regulator. Eur J Cancer 41, 2415-2427. 179 Zhijiang Zang PhD. Thesis Medicine, NUS 2003-2007 Zolnierowicz, S., Csortos, C., Bondor, J., Verin, A., Mumby, M. C., and DePaoliRoach, A. A. (1994). Diversity in the regulatory B-subunits of protein phosphatase 2A: identification of a novel isoform highly expressed in brain. Biochemistry 33, 11858-11867. 180 [...]... cervical (Ca Ski) and melanoma (MeWo) cancer cell lines in vitro as well as in corresponding chick embryo chorioallantoic membrane (CAM) tumor xenografts in vivo, suggesting that TRIP Br1 may represent a novel therapeutic target for the treatment of human cutaneous and intracavitary hyperproliferative lesions To further understand the regulation of this potential therapeutic target, GST-mTRIP -Br1 fusion... function of TRIP- Br proto- oncoprotein may represent important chemotherapeutic drug target for superficial cutaneous and intracavitary hyperproliferative lesions The protein level of TRIP- Br1 is positively regulates by serine/threonine protein phosphatase 2A, via dephoshrlation of serine residue(s) on TRIP- Br1 Uncovering the mechanism of TRIP- Br protein regulation will facilitate the application of therapeutic. .. Progression and in the Maintenance of Genomic Stability Cell Cycle 3:1296-304 3 Zang ZJ, et al Regulation of TRIP- Br1 by serine/threonine protein phosphatase 2A (In preparation) CONFERENCE PAPERS Zang Z, et al Proof -of- principal studies of peptides that antagonize the integrator function of TRIP- Br transcription factors for the treatment of cutaneous and intracavitary lesion (Poster presentation), ASN 2006 Annual... (containing a putative nuclear localization signal), a novel uncharacterized motif termed SERTA (SEI-1, RBT1 and TARA), a PHD zinc finger- and/ or bromodomain-containing protein binding motif, and a conserved acidic C-terminal domain (shown to mediate a transactivation function for TRIP- Br1 and TRIP- Br2) (Calgaro et al., 2002) All four domains are highly evolutionarily conserved across mammalian species The. .. level of TRIP- Br1 protein Furthermore, overexpression of the PP 2A- C subunit increased the TRIP- Br1 protein level and TRIP- Br1 co-activated of E2F1/DP1 transcription These results suggest that PP 2A holoenzyme ABαC associates with TRIP- Br1 in vitro and in vivo in mammalian cells The level of TRIP- Br1 protein is positively regulated by PP 2A In summary, our data indicates that antagonizing the integrator... transcriptional activity It was first noted that GAL4 -TRIP- Br1 and GAL4 -TRIP- Br2 fusion protein stimulates both basal and enhancer-activated transcription when recruited to a heterologous promoter bearing GAL4 DNA binding site (Hsu et al., 2001) Thereafter, potent transactivation activity was demonstrated for the RBT-1 and CDCA4 proteins (Cho et al., 2000; Hayashi et al., 2006) Truncation analysis suggests that the. .. structurally and functionally related mammalian proteins (TRIP- Br1, TRIP- Br2, RBT1 and CDCA4) and a Drosophila homologue, TARA Murine TRIP- Br1 (p34SEI-1/SEI-1/SERTAD1) was originally identified from a mouse whole embryo cDNA library based on its unique ability to interact with the composite PHD-bromodomain of the transcription factor KRIP-1 (KRAB associated protein, also known as TIF1β or KAP 1) in a yeast... CBP, p300, PCAF and STAF65γ have been shown to interact with multiple members of the TRIP- Br protein family (TRIP- Br1, TRIP- Br2 and CDCA4) in vitro and in vivo to regulate transcription (Watanabe-Fukunaga et al.,2005; Lai et al., 2007; Hirose et al., 2003; Hsu et al., 2001) The features and proposed functions of these proteins are summarized in Table 1.3 Deletion analysis reveals that amino acid residues... Deletions, translocations, or point mutations in the CBP gene which alter the histone 28 Zhijiang Zang PhD Thesis Medicine, NUS 2003-2007 acetyltransferase activity (HAT) of the encoded mutant protein lead to RubinsteinTaybi Syndrome (RTS), a human developmental disorder comprised by mental retardation, an unusual facial appearance, broad thumbs, and broad big toes (Murata et al., 2001; Rubinstein and Taybi,... et al., 2001) The magnitude of the co-activation by TRIP- Br proteins was similar to that observed for MDM2, a known E2F1 interactor that stimulates transcriptional activity and DNA synthesis (Hsu et al., 2001) Further investigations determined that TRIP- Br1 and TRIP- Br2 bind DP1 but not E2F1, which may constitute the basis of TRIP- Br protein- mediated E2F1/DP1 transcriptional coactivation (Hsu et al., . that TRIP Br1 may represent a novel therapeutic target for the treatment of human cutaneous and intracavitary hyperproliferative lesions. To further understand the regulation of this potential. REGULATION OF THE TRIP- BR1 PROTO- ONCOPROTEIN A POTENTIAL THERAPEUTIC TARGET FOR HUMAN CUTANEOUS AND INTRACAVITARY PROLIFERATIVE LESIONS BY ZHIJIANG ZANG (MBBS, Kunming Medical College,. School of Medicine of National University of Singapore, especially Prof. Bay Boon Huat, Ms. Stacy Tan, Ms. Geetha Sreedhara Warrier and Ms. Malika Raguraman for their kind helps during the last

Ngày đăng: 12/09/2015, 08:19

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan