Functional analysis of human nima related kinase 8 (nek8)

148 263 0
Functional analysis of human nima related kinase 8 (nek8)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

FUNCTIONAL ANALYSIS OF HUMAN NIMA-RELATED KINASE (Nek8) LIU JUN NATIONAL UNIVERSITY OF SINGAPORE 2010 FUNCTIONAL ANALYSIS OF HUMAN NIMA-RELATED KINASE (Nek8) LIU JUN (B. Sc.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2010 ACKNOWLEDGEMENTS First of all, I would like to express my deepest gratitude and appreciation to my supervisor Dr. Liou Yih-Cherng, who guides me into the research area of molecular cell biology. His stimulating suggestions, criticisms and encouragements during my entire postgraduate study period have been a great value for me. I am deeply grateful to Dr. Deng Lih Wen, for her valuable technical advices on cell cycle assays. I would like to thank Lai Cheng Yu for his help of recombinant protein purification. I wish to extend my warmest thanks to all other current and past members of Dr. Liou Yih-Cherng’s laboratory, for their constant assistance and support through these years. They are: Zhou Wei, Xia Yun, Zhao Liqun, Tan Wee Wee, Wang Yu, Yang Qiaoyun, Ye Fan, Song Pei Chee, Pheobe and Tan Pei Ling, Shirley. I would like to acknowledge the National University of Singapore for awarding me the research scholarship. This thesis is dedicated to my beloved family: my parents and my brother, whose love, encouragement, and support have always been my greatest inspiration. Liu Jun 2010 I TABLE OF CONTENTS ACKNOLEGEMENTS……………………………………… I TABLE OF CONTENTS…………………………………… II SUMMARY………………………………………………….VII LIST OF FIGURES………………………………………… IX LIST OF TABLES………… .XI LIST OF ABBREVIATIONS………………………………XII CHAPTER INTRODUCTION……………………………… 1.1 Introduction of the NIMA-related kinase family………………….2 1.1.1 NIMA-related kinases (Nrks) in different biological systems…… 1.1.2 Human NIMA-related kinases (Neks) and their roles in cellular regulation……………………………………………………… . 1.2 NIMA related kinase 8(Nek8)……………………………………. 13 1.2.1 Sequence and molecular structure of Nek8………………………. 14 1.2.2 Functions in cellular regulation and diseases of Nek8……… 14 1.3 Involvment of Nek8 in cellular processes……………………… . 16 1.3.1 Signaling network related to RCC1-like domain and Ran……… 17 1.3.1.1 RCC1 and RCC1 superfamily……………………………… 17 II 1.3.2 Ran network…………………………………………………… . 21 1.3.2.1 Ran-dependent nuclear transport…………………………… 22 1.3.2.2 RanGTP and spindle assembly…………………………… . 25 1.3.2.3 RanGTP and nuclear envelope assembly………………… . 27 1.3.3 Signaling network in ER-stress induced apoptosis……………… 28 1.3.3.1 Activation of the unfolded protein response (UPR)……… . 29 1.3.3.2 ER-associated cell death and survival……………………… 32 1.3.3.3 ER stress and diseases……………………………………… 33 1.4 Hypothesis and objectives………………………………………… 35 CHAPTER MATERIALS AND METHODS………………. 37 2.1 Total RNA isolation and first strand cDNA synthesis………… .38 2.2 DNA amplification and cloning………………………………… . 38 2.3 Site-directed mutagenesis……… .41 2.4 Plasmid DNA isolation, restriction enzyme digestion and sequencing analysis……………………………………………………. 42 2.5 Mammalian cell culture………………………………………… . 45 2.6 Cell-cycle synchronization in mammalian cells………………….45 2.7 Mammalian cell transfection, lysis and immunoprecipitation…. 45 2.8 SDS-PAGE gel electrophoresis and Western blot analysis…… .47 III 2.9 Recombinant protein production in E. coli……………………… 48 2.10 GST-fusion protein binding assays…………………………… . 49 2.11 Immunostaining and confocal flurorescence microscopy…… . 50 2.12 FACS (Fluorescence Activated Cell Sorting)………………… . 51 2.13 FRAP (Fluorescence Recovery After Photobleaching)……… . 51 2.14 Antibodies and reagents…………………………………………. 52 CHAPTER RESULTS………………………………………. 53 3.1 Identification of hNek8……………………………………………. 54 3.1.1 Isolation and sequence verification of human Nek8………… . 54 3.1.2 Bioinfomatics analysis of hNek8……………………………… . 56 3.2 Characterization of hNek8……………………………………… .58 3.2.1 Protein expression profile of Nek8 in mammalian cell lines…… .58 3.2.2 Nek8 in cell cycle regulation…………………………………… . 59 3.2.3 Loss of function of Nek8 using siRNA………………………… . 65 3. Investigation of Nek8 potential binding partners………………. 68 3.3.1 Ran is a potential binding partner of Nek8 based on the domain analysis…………………………………………………… 68 IV 3.3.2 Nek8 can interact with Ran in vitro and in vivo………………… 70 3.3.3 Nek8 prefers to bind to RanGDP…………………………………. 73 3. Investigation of Nek8 functions in nuclear transport………… .77 3.4.1 Cellular localization of Nek8 and functional domains……… 77 3.4.2 Localization changes of Nek8 in the presence of Ran…………….79 3.4.3 Investigation of the effects of Ran on Nek8 in nuclear transport……………………………………………………… . 82 3. Investigation of Nek8’s functions in ER stress………………… 84 3.5.1 Cellular localization of Nek8 in ER region under stress…………. 84 3.5.2 Investigation of Nek8’s changes under the ER stress…………… 87 3.5.3 Nek8 can delay cell preceding to apoptosis under ER stress…… 87 3.5.4 Hsp70 is revealed as a Nek8’s binding partner based on the pull down assay…………………………………………………………… 92 3. Investigation of Nek8’s biological functions linked with human diseases………………………………………………………… 95 CHAPTER DISCUSSION AND CONCLUSIONS…………98 4.1 Significance of the Nek8 domain architecture and functional V characterization…………………………………… 99 4.2 The roles of Nek8 in cell cycle regulation………………………. 102 4.3 The roles of Nek8 in nuclear transport…………………………. 104 4.4 The roles of Nek8 in ER-stress induced apoptosis…………… . 108 4.5 Implication of Nek8 related to diseases………………………… 112 4.6 Conclusions and perspectives…………………………………… 114 REFERENCES………………………………………………… 118 VI SUMMARY As a member of NIMA-related kinase family (Nrk), Nek8 has an N-terminal serine/threonine kinase domain highly homologous with that of NIMA. Most of the NIMA-related kinase family members are involved in cell cycle regulation. Roles of Nek8 in cell cycle and other cellular regulation are very little known. Nek8 is only shown to be related to kidney disease. Therefore, the main purpose of the studies in this thesis was to explore Nek8’s functions in cellular regulation. Nek8 contains an N-terminal catalytic domain and a C-terminal RCC1-like domain. We are the first to identify a small GTPase Ran and a chaperone protein hsp70 as binding partners of Nek8. We demonstrate that Nek8 is not an essential cell cycle regulator as most of its family members, in that overexpression of Nek8 has little effect on changing cell cycle progression. We also found that Ran can interact with Nek8 and facilitate translocation of Nek8 between cytoplasm and nucleus, suggesting Nek8 may be involved in the process of nuclear transport. Furthermore, the cellular localization of Nek8 in the endoplasmic reticulum (ER) and its role in delaying apoptosis induced by the ER stress drugs indicate that Nek8 could be responsible for protecting cells from ER stress-induced apoptosis. We found that Nek8 could interact with Hsp70. Hsp70 can enhance cell survival under several lethal conditions and has been revealed to negatively regulate the mitochondrial pathway of apoptosis. Thus it is possible that protection of cells from ER stress-induced apoptosis by Nek8 is due to the association of Nek8 with Hsp70. VII ER stress has been associated with a wide range of diseases, including neurodegeneration, cardiac disease, cancer and diabetes. Nek8 itself has been known to be linked with some diseases, such as cancer and kidney disease. Defects in Nek8 gene can cause polycystic kidney disease (PKD). Nek8 was reported to regulate cilia formation. The mutations in Nek8 may affect its ciliary localization. The observation that jck mice have longer cilia than wild-type mice indicates that Nek8 may control the cilia length. However the detailed mechanism under this disease is not clear. Our observation of Nek8’s role to protect cells from apoptosis induced by ER stress could provide a new direction for study on Nek8 in the kidney disease and cancers. VIII REFERENCES 118 References Andrews, P. D., E. Knatko, W. J. Moore and J. R. Swedlow (2003). "Mitotic mechanics: the auroras come into view." Curr Opin Cell Biol 15(6): 672-83. Arruda-Carvalho, M., B. Njaine, M. S. Silveira, R. Linden and L. B. Chiarini (2007). "Hop/STI1 modulates retinal proliferation and cell death independent of PrPC." Biochem Biophys Res Commun 361(2): 474-80. Askjaer, P., V. Galy, E. Hannak and I. W. Mattaj (2002). "Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos." Mol Biol Cell 13(12): 4355-70. Atala, A., M. R. Freeman, J. Mandell and D. R. Beier (1993). "Juvenile cystic kidneys (jck): a new mouse mutation which causes polycystic kidneys." Kidney Int 43(5): 1081-5. Back, S. H., M. Schroder, K. Lee, K. Zhang and R. J. Kaufman (2005). "ER stress signaling by regulated splicing: IRE1/HAC1/XBP1." Methods 35(4): 395-416. Bamba, C., Y. Bobinnec, M. Fukuda and E. Nishida (2002). "The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo." Curr Biol 12(6): 503-7. Belham, C., M. J. Comb and J. Avruch (2001). "Identification of the NIMA family kinases NEK6/7 as regulators of the p70 ribosomal S6 kinase." Curr Biol 11(15): 1155-67. Belham, C., J. Roig, J. A. Caldwell, Y. Aoyama, B. E. Kemp, M. Comb and J. Avruch (2003). "A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases." J Biol Chem 278(37): 34897-909. Belmont, P. J., A. Tadimalla, W. J. Chen, J. J. Martindale, D. J. Thuerauf, M. Marcinko, N. Gude, M. A. Sussman and C. C. Glembotski (2008). "Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin (RCAN1), a novel ATF6-inducible gene." J Biol Chem 283(20): 14012-21. Ben-David, Y., K. Letwin, L. Tannock, A. Bernstein and T. Pawson (1991). "A mammalian protein kinase with potential for serine/threonine and tyrosine phosphorylation is related to cell cycle regulators." Embo J 10(2): 317-25. 119 References Bertolotti, A., Y. Zhang, L. M. Hendershot, H. P. Harding and D. Ron (2000). "Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response." Nat Cell Biol 2(6): 326-32. Bilbao-Cortes, D., M. Hetzer, G. Langst, P. B. Becker and I. W. Mattaj (2002). "Ran binds to chromatin by two distinct mechanisms." Curr Biol 12(13): 1151-6. Bischoff, F. R., C. Klebe, J. Kretschmer, A. Wittinghofer and H. Ponstingl (1994). "RanGAP1 induces GTPase activity of nuclear Ras-related Ran." Proc Natl Acad Sci U S A 91(7): 2587-91. Bischoff, F. R. and H. Ponstingl (1991). "Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1." Nature 354(6348): 80-2. Bischoff, F. R. and H. Ponstingl (1991). "Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide." Proc Natl Acad Sci U S A 88(23): 10830-4. Bischoff, F. R. and H. Ponstingl (1995). "Catalysis of guanine nucleotide exchange of Ran by RCC1 and stimulation of hydrolysis of Ran-bound GTP by Ran-GAP1." Methods Enzymol 257: 135-44. Bowers, A. J. and J. F. Boylan (2004). "Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors." Gene 328: 135-42. Breckenridge, D. G., M. Germain, J. P. Mathai, M. Nguyen and G. C. Shore (2003). "Regulation of apoptosis by endoplasmic reticulum pathways." Oncogene 22(53): 8608-18. Chaillan-Huntington, C., C. V. Braslavsky, J. Kuhlmann and M. Stewart (2000). "Dissecting the interactions between NTF2, RanGDP, and the nucleoporin XFXFG repeats." J Biol Chem 275(8): 5874-9. Chang, J., R. H. Baloh and J. Milbrandt (2009). "The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons." J Cell Sci 122(Pt 13): 2274-82. Chen, A., A. Yanai, E. Arama, G. Kilfin and B. Motro (1999). "NIMA-related kinases: isolation and characterization of murine nek3 and nek4 cDNAs, and chromosomal localization of nek1, nek2 and nek3." Gene 234(1): 127-37. 120 References Chen, J., L. Li, Y. Zhang, H. Yang, Y. Wei, L. Zhang, X. Liu and L. Yu (2006). "Interaction of Pin1 with Nek6 and characterization of their expression correlation in Chinese hepatocellular carcinoma patients." Biochem Biophys Res Commun 341(4): 1059-65. Chen, T., T. L. Muratore, C. E. Schaner-Tooley, J. Shabanowitz, D. F. Hunt and I. G. Macara (2007). "N-terminal alpha-methylation of RCC1 is necessary for stable chromatin association and normal mitosis." Nat Cell Biol 9(5): 596-603. Chen, Y., P. L. Chen, C. F. Chen, X. Jiang and D. J. Riley (2008). "Never-in-mitosis related kinase functions in DNA damage response and checkpoint control." Cell Cycle 7(20): 3194-201. Chen, Y., W. J. Craigen and D. J. Riley (2009). "Nek1 regulates cell death and mitochondrial membrane permeability through phosphorylation of VDAC1." Cell Cycle 8(2): 257-67. Clarke, P. R. and C. Zhang (2004). "Spatial and temporal control of nuclear envelope assembly by Ran GTPase." Symp Soc Exp Biol(56): 193-204. Clarke, P. R. and C. Zhang (2008). "Spatial and temporal coordination of mitosis by Ran GTPase." Nat Rev Mol Cell Biol 9(6): 464-77. Copanaki, E., T. Schurmann, A. Eckert, K. Leuner, W. E. Muller, J. H. Prehn and D. Kogel (2007). "The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion." Biochim Biophys Acta 1773(2): 157-65. Credle, J. J., J. S. Finer-Moore, F. R. Papa, R. M. Stroud and P. Walter (2005). "On the mechanism of sensing unfolded protein in the endoplasmic reticulum." Proc Natl Acad Sci U S A 102(52): 18773-84. Dorin, D., K. Le Roch, P. Sallicandro, P. Alano, D. Parzy, P. Poullet, L. Meijer and C. Doerig (2001). "Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum Biochemical properties and possible involvement in MAPK regulation." Eur J Biochem 268(9): 2600-8. Feige, E., O. Shalom, S. Tsuriel, N. Yissachar and B. Motro (2006). "Nek1 shares structural and functional similarities with NIMA kinase." Biochim Biophys Acta 1763(3): 272-81. 121 References Fry, A. M. (2002). "The Nek2 protein kinase: a novel regulator of centrosome structure." Oncogene 21(40): 6184-94. Fry, A. M., L. Arnaud and E. A. Nigg (1999). "Activity of the human centrosomal kinase, Nek2, depends on an unusual leucine zipper dimerization motif." J Biol Chem 274(23): 16304-10. Fry, A. M., P. Descombes, C. Twomey, R. Bacchieri and E. A. Nigg (2000). "The NIMA-related kinase X-Nek2B is required for efficient assembly of the zygotic centrosome in Xenopus laevis." J Cell Sci 113 ( Pt 11): 1973-84. Fry, A. M., P. Meraldi and E. A. Nigg (1998). "A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators." Embo J 17(2): 470-81. Furuno, N., K. Nakagawa, U. Eguchi, M. Ohtsubo, T. Nishimoto and E. Soeda (1991). "Complete nucleotide sequence of the human RCC1 gene involved in coupling between DNA replication and mitosis." Genomics 11(2): 459-61. Garcia-Gonzalo, F. R. and J. L. Rosa (2005). "The HERC proteins: functional and evolutionary insights." Cell Mol Life Sci 62(16): 1826-38. Ghribi, O. (2006). "The role of the endoplasmic reticulum in the accumulation of beta-amyloid peptide in Alzheimer's disease." Curr Mol Med 6(1): 119-33. Hadjebi, O., E. Casas-Terradellas, F. R. Garcia-Gonzalo and J. L. Rosa (2008). "The RCC1 superfamily: from genes, to function, to disease." Biochim Biophys Acta 1783(8): 1467-79. Hayes, M. J., Y. Kimata, S. L. Wattam, C. Lindon, G. Mao, H. Yamano and A. M. Fry (2006). "Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C." Nat Cell Biol 8(6): 607-14. Hayward, D. G. and A. M. Fry (2006). "Nek2 kinase in chromosome instability and cancer." Cancer Lett 237(2): 155-66. Hetzer, M., D. Bilbao-Cortes, T. C. Walther, O. J. Gruss and I. W. Mattaj (2000). "GTP hydrolysis by Ran is required for nuclear envelope assembly." Mol Cell 5(6): 1013-24. 122 References Hilton, L. K., M. C. White and L. M. Quarmby (2009). "The NIMA-related kinase NEK1 cycles through the nucleus." Biochem Biophys Res Commun 389(1): 52-6. Holland, P. M., A. Milne, K. Garka, R. S. Johnson, C. Willis, J. E. Sims, C. T. Rauch, T. A. Bird and G. D. Virca (2002). "Purification, cloning, and characterization of Nek8, a novel NIMA-related kinase, and its candidate substrate Bicd2." J Biol Chem 277(18): 16229-40. Hoozemans, J. J., R. Veerhuis, E. S. Van Haastert, J. M. Rozemuller, F. Baas, P. Eikelenboom and W. Scheper (2005). "The unfolded protein response is activated in Alzheimer's disease." Acta Neuropathol 110(2): 165-72. Horiike, Y., H. Kobayashi and T. Sekiguchi (2008). "Ran GTPase guanine nucleotide exchange factor RCC1 is phosphorylated on serine 11 by cdc2 kinase in vitro." Mol Biol Rep. Hutten, S. and R. H. Kehlenbach (2006). "Nup214 is required for CRM1-dependent nuclear protein export in vivo." Mol Cell Biol 26(18): 6772-85. Jayachandran, G., J. Sazaki, M. Nishizaki, K. Xu, L. Girard, J. D. Minna, J. A. Roth and L. Ji (2007). "Fragile histidine triad-mediated tumor suppression of lung cancer by targeting multiple components of the Ras/Rho GTPase molecular switch." Cancer Res 67(21): 10379-88. Jiang, B., W. Xiao, Y. Shi, M. Liu and X. Xiao (2005). "Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells." Cell Stress Chaperones 10(3): 252-62. Kahana, J. A. and D. W. Cleveland (1999). "Beyond nuclear transport. Ran-GTP as a determinant of spindle assembly." J Cell Biol 146(6): 1205-10. Kalab, P. and R. Heald (2008). "The RanGTP gradient - a GPS for the mitotic spindle." J Cell Sci 121(Pt 10): 1577-86. Kaneko, M. and Y. Nomura (2003). "ER signaling in unfolded protein response." Life Sci 74(2-3): 199-205. Kaplowitz, N. and C. Ji (2006). "Unfolding new mechanisms of alcoholic liver 123 References disease in the endoplasmic reticulum." J Gastroenterol Hepatol 21 Suppl 3: S7-9. Kim, I., W. Xu and J. C. Reed (2008). "Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities." Nat Rev Drug Discov 7(12): 1013-30. Kim, S., K. Lee and K. Rhee (2007). "NEK7 is a centrosomal kinase critical for microtubule nucleation." Biochem Biophys Res Commun 360(1): 56-62. Kohler, M., C. Speck, M. Christiansen, F. R. Bischoff, S. Prehn, H. Haller, D. Gorlich and E. Hartmann (1999). "Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import." Mol Cell Biol 19(11): 7782-91. Krien, M. J., S. J. Bugg, M. Palatsides, G. Asouline, M. Morimyo and M. J. O'Connell (1998). "A NIMA homologue promotes chromatin condensation in fission yeast." J Cell Sci 111 ( Pt 7): 967-76. Lee, A. S. (2005). "The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress." Methods 35(4): 373-81. Lee, E. J., S. H. Hyun, J. Chun and S. S. Kang (2007). "Human NIMA-related kinase is one of the Fe65 WW domain binding proteins." Biochem Biophys Res Commun 358(3): 783-8. Lee, M. Y., H. J. Kim, M. A. Kim, H. J. Jee, A. J. Kim, Y. S. Bae, J. I. Park, J. H. Chung and J. Yun (2008). "Nek6 is involved in G2/M phase cell cycle arrest through DNA damage-induced phosphorylation." Cell Cycle 7(17): 2705-9. Letwin, K., L. Mizzen, B. Motro, Y. Ben-David, A. Bernstein and T. Pawson (1992). "A mammalian dual specificity protein kinase, Nek1, is related to the NIMA cell cycle regulator and highly expressed in meiotic germ cells." Embo J 11(10): 3521-31. Li, H. Y. and Y. Zheng (2004). "Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells." Genes Dev 18(5): 512-27. Liu, C. Y., M. Schroder and R. J. Kaufman (2000). "Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum." J Biol Chem 275(32): 24881-5. 124 References Liu, S., W. Lu, T. Obara, S. Kuida, J. Lehoczky, K. Dewar, I. A. Drummond and D. R. Beier (2002). "A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish." Development 129(24): 5839-46. Mahjoub, M. R., M. L. Trapp and L. M. Quarmby (2005). "NIMA-related kinases defective in murine models of polycystic kidney diseases localize to primary cilia and centrosomes." J Am Soc Nephrol 16(12): 3485-9. Manning, G., D. B. Whyte, R. Martinez, T. Hunter and S. Sudarsanam (2002). "The protein kinase complement of the human genome." Science 298(5600): 1912-34. Marcu, M. G., M. Doyle, A. Bertolotti, D. Ron, L. Hendershot and L. Neckers (2002). "Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha." Mol Cell Biol 22(24): 8506-13. Matsuyama, S., J. Llopis, Q. L. Deveraux, R. Y. Tsien and J. C. Reed (2000). "Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis." Nat Cell Biol 2(6): 318-25. Melchior, F., T. Guan, N. Yokoyama, T. Nishimoto and L. Gerace (1995). "GTP hydrolysis by Ran occurs at the nuclear pore complex in an early step of protein import." J Cell Biol 131(3): 571-81. Melixetian, M., D. K. Klein, C. S. Sorensen and K. Helin (2009). "NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint." Nat Cell Biol 11(10): 1247-53. Mendes, C. S., C. Levet, G. Chatelain, P. Dourlen, A. Fouillet, M. L. Dichtel-Danjoy, A. Gambis, H. D. Ryoo, H. Steller and B. Mollereau (2009). "ER stress protects from retinal degeneration." Embo J 28(9): 1296-307. Minoguchi, S., M. Minoguchi and A. Yoshimura (2003). "Differential control of the NIMA-related kinases, Nek6 and Nek7, by serum stimulation." Biochem Biophys Res Commun 301(4): 899-906. Mitsui, K., M. Nakanishi, S. Ohtsuka, T. H. Norwood, K. Okabayashi, C. Miyamoto, K. Tanaka, A. Yoshimura and M. Ohtsubo (1999). "A novel human gene encoding HECT domain and RCC1-like repeats interacts with cyclins and is potentially regulated by the tumor suppressor proteins." Biochem Biophys Res Commun 266(1): 125 References 115-22. Mollinari, C., C. Reynaud, S. Martineau-Thuillier, S. Monier, S. Kieffer, J. Garin, P. R. Andreassen, A. Boulet, B. Goud, J. P. Kleman and R. L. Margolis (2003). "The mammalian passenger protein TD-60 is an RCC1 family member with an essential role in prometaphase to metaphase progression." Dev Cell 5(2): 295-307. Moore, J. D. (2001). "The Ran-GTPase and cell-cycle control." Bioessays 23(1): 77-85. Moore, M. S. and G. Blobel (1994). "Purification of a Ran-interacting protein that is required for protein import into the nucleus." Proc Natl Acad Sci U S A 91(21): 10212-6. Muhlhausser, P. and U. Kutay (2007). "An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown." J Cell Biol 178(4): 595-610. Murray, A. W. (1991). "Cell Biology. Never-in-mitosis in mitosis." Nature 353(6346): 701-2. Natoli, T. A., T. C. Gareski, W. R. Dackowski, L. Smith, N. O. Bukanov, R. J. Russo, H. Husson, D. Matthews, P. Piepenhagen and O. Ibraghimov-Beskrovnaya (2008). "Pkd1 and Nek8 mutations affect cell-cell adhesion and cilia in cysts formed in kidney organ cultures." Am J Physiol Renal Physiol 294(1): F73-83. Nemergut, M. E., C. A. Mizzen, T. Stukenberg, C. D. Allis and I. G. Macara (2001). "Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B." Science 292(5521): 1540-3. Nigg, E. A. (2001). "Mitotic kinases as regulators of cell division and its checkpoints." Nat Rev Mol Cell Biol 2(1): 21-32. Nishitoh, H., A. Matsuzawa, K. Tobiume, K. Saegusa, K. Takeda, K. Inoue, S. Hori, A. Kakizuka and H. Ichijo (2002). "ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats." Genes Dev 16(11): 1345-55. Noguchi, K., H. Fukazawa, Y. Murakami and Y. Uehara (2004). "Nucleolar Nek11 is 126 References a novel target of Nek2A in G1/S-arrested cells." J Biol Chem 279(31): 32716-27. O'Connell, M. J., M. J. Krien and T. Hunter (2003). "Never say never. The NIMA-related protein kinases in mitotic control." Trends Cell Biol 13(5): 221-8. O'Connell, M. J., C. Norbury and P. Nurse (1994). "Premature chromatin condensation upon accumulation of NIMA." Embo J 13(20): 4926-37. O'Regan, L. and A. M. Fry (2009). "The Nek6 and Nek7 protein kinases are required for robust mitotic spindle formation and cytokinesis." Mol Cell Biol 29(14): 3975-90. Ohtsubo, M., R. Kai, N. Furuno, T. Sekiguchi, M. Sekiguchi, H. Hayashida, K. Kuma, T. Miyata, S. Fukushige, T. Murotsu and et al. (1987). "Isolation and characterization of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation." Genes Dev 1(6): 585-93. Osmani, A. H., S. L. McGuire, K. L. O'Donnell, R. T. Pu and S. A. Osmani (1991). "Role of the cell-cycle-regulated NIMA protein kinase during G2 and mitosis: evidence for two pathways of mitotic regulation." Cold Spring Harb Symp Quant Biol 56: 549-55. Osmani, S. A., G. S. May and N. R. Morris (1987). "Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans." J Cell Biol 104(6): 1495-504. Osmani, S. A., R. T. Pu and N. R. Morris (1988). "Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase." Cell 53(2): 237-44. Otto, E. A., M. L. Trapp, U. T. Schultheiss, J. Helou, L. M. Quarmby and F. Hildebrandt (2008). "NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis." J Am Soc Nephrol 19(3): 587-92. Panzeri, C., C. De Palma, A. Martinuzzi, A. Daga, G. De Polo, N. Bresolin, C. C. Miller, E. L. Tudor, E. Clementi and M. T. Bassi (2006). "The first ALS2 missense mutation associated with JPLS reveals new aspects of alsin biological function." Brain 129(Pt 7): 1710-9. Pelka, P., A. Scime, C. Mandalfino, M. Joch, P. Abdulla and P. Whyte (2007). 127 References "Adenovirus E1A proteins direct subcellular redistribution of Nek9, a NimA-related kinase." J Cell Physiol 212(1): 13-25. Plafker, K. and I. G. Macara (2000). "Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBP1." Mol Cell Biol 20(10): 3510-21. Polci, R., A. Peng, P. L. Chen, D. J. Riley and Y. Chen (2004). "NIMA-related protein kinase is involved early in the ionizing radiation-induced DNA damage response." Cancer Res 64(24): 8800-3. Pu, R. T., G. Xu, L. Wu, J. Vierula, K. O'Donnell, X. S. Ye and S. A. Osmani (1995). "Isolation of a functional homolog of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans and functional analysis of conserved residues." J Biol Chem 270(30): 18110-6. Rapley, J., M. Nicolas, A. Groen, L. Regue, M. T. Bertran, C. Caelles, J. Avruch and J. Roig (2008). "The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation." J Cell Sci 121(Pt 23): 3912-21. Rellos, P., F. J. Ivins, J. E. Baxter, A. Pike, T. J. Nott, D. M. Parkinson, S. Das, S. Howell, O. Fedorov, Q. Y. Shen, A. M. Fry, S. Knapp and S. J. Smerdon (2007). "Structure and regulation of the human Nek2 centrosomal kinase." J Biol Chem 282(9): 6833-42. Renault, L., J. Kuhlmann, A. Henkel and A. Wittinghofer (2001). "Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1)." Cell 105(2): 245-55. Renault, L., N. Nassar, I. Vetter, J. Becker, C. Klebe, M. Roth and A. Wittinghofer (1998). "The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller." Nature 392(6671): 97-101. Renault, L., N. Nassar, A. Wittinghofer, M. Roth and I. R. Vetter (1999). "Crystallization and preliminary X-ray analysis of human RCC1, the regulator of chromosome condensation." Acta Crystallogr D Biol Crystallogr 55(Pt 1): 272-5. Richards, M. W., L. O'Regan, C. Mas-Droux, J. M. Blot, J. Cheung, S. Hoelder, A. M. Fry and R. Bayliss (2009). "An autoinhibitory tyrosine motif in the cell-cycle-regulated Nek7 kinase is released through binding of Nek9." Mol Cell 128 References 36(4): 560-70. Roig, J., A. Groen, J. Caldwell and J. Avruch (2005). "Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly." Mol Biol Cell 16(10): 4827-40. Roig, J., A. Mikhailov, C. Belham and J. Avruch (2002). "Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression." Genes Dev 16(13): 1640-58. Ryoo, H. D., P. M. Domingos, M. J. Kang and H. Steller (2007). "Unfolded protein response in a Drosophila model for retinal degeneration." Embo J 26(1): 242-52. Schultz, S. J., A. M. Fry, C. Sutterlin, T. Ried and E. A. Nigg (1994). "Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans." Cell Growth Differ 5(6): 625-35. Schweitzer, B. and P. Philippsen (1992). "NPK1, a nonessential protein kinase gene in Saccharomyces cerevisiae with similarity to Aspergillus nidulans nimA." Mol Gen Genet 234(1): 164-7. Seeburg, D. P., D. Pak and M. Sheng (2005). "Polo-like kinases in the nervous system." Oncogene 24(2): 292-8. Shalom, O., N. Shalva, Y. Altschuler and B. Motro (2008). "The mammalian Nek1 kinase is involved in primary cilium formation." FEBS Lett 582(10): 1465-70. Smith, L. A., N. O. Bukanov, H. Husson, R. J. Russo, T. C. Barry, A. L. Taylor, D. R. Beier and O. Ibraghimov-Beskrovnaya (2006). "Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease." J Am Soc Nephrol 17(10): 2821-31. Sohara, E., Y. Luo, J. Zhang, D. K. Manning, D. R. Beier and J. Zhou (2008). "Nek8 regulates the expression and localization of polycystin-1 and polycystin-2." J Am Soc Nephrol 19(3): 469-76. Sorokin, A. V., E. R. Kim and L. P. Ovchinnikov (2007). "Nucleocytoplasmic transport of proteins." Biochemistry (Mosc) 72(13): 1439-57. 129 References Sperandio, S., K. Poksay, I. de Belle, M. J. Lafuente, B. Liu, J. Nasir and D. E. Bredesen (2004). "Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix." Cell Death Differ 11(10): 1066-75. Tahara, K., M. Takagi, M. Ohsugi, T. Sone, F. Nishiumi, K. Maeshima, Y. Horiuchi, N. Tokai-Nishizumi, F. Imamoto, T. Yamamoto, S. Kose and N. Imamoto (2008). "Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid." J Cell Biol 180(3): 493-506. Takahashi, R. and Y. Imai (2003). "Pael receptor, endoplasmic reticulum stress, and Parkinson's disease." J Neurol 250 Suppl 3: III25-9. Takai, N., R. Hamanaka, J. Yoshimatsu and I. Miyakawa (2005). "Polo-like kinases (Plks) and cancer." Oncogene 24(2): 287-91. Tan, B. C. and S. C. Lee (2004). "Nek9, a novel FACT-associated protein, modulates interphase progression." J Biol Chem 279(10): 9321-30. Tanaka, K. and E. A. Nigg (1999). "Cloning and characterization of the murine Nek3 protein kinase, a novel member of the NIMA family of putative cell cycle regulators." J Biol Chem 274(19): 13491-7. Tirasophon, W., A. A. Welihinda and R. J. Kaufman (1998). "A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells." Genes Dev 12(12): 1812-24. Todd, D. J., A. H. Lee and L. H. Glimcher (2008). "The endoplasmic reticulum stress response in immunity and autoimmunity." Nat Rev Immunol 8(9): 663-74. Trapp, M. L., A. Galtseva, D. K. Manning, D. R. Beier, N. D. Rosenblum and L. M. Quarmby (2008). "Defects in ciliary localization of Nek8 is associated with cystogenesis." Pediatr Nephrol 23(3): 377-87. Upadhya, P., E. H. Birkenmeier, C. S. Birkenmeier and J. E. Barker (2000). "Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice." Proc Natl Acad Sci U S A 97(1): 217-21. 130 References Urano, F., X. Wang, A. Bertolotti, Y. Zhang, P. Chung, H. P. Harding and D. Ron (2000). "Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1." Science 287(5453): 664-6. Uto, K., N. Nakajo and N. Sagata (1999). "Two structural variants of Nek2 kinase, termed Nek2A and Nek2B, are differentially expressed in Xenopus tissues and development." Dev Biol 208(2): 456-64. Wang, Y., A. A. Knowlton, T. G. Christensen, T. Shih and S. C. Borkan (1999). "Prior heat stress inhibits apoptosis in adenosine triphosphate-depleted renal tubular cells." Kidney Int 55(6): 2224-35. Wang, Y. J., Y. S. Ho, J. H. Jeng, H. J. Su and C. C. Lee (2000). "Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone." Chem Biol Interact 128(3): 173-88. Wennerberg, K., K. L. Rossman and C. J. Der (2005). "The Ras superfamily at a glance." J Cell Sci 118(Pt 5): 843-6. Westwood, I., D. M. Cheary, J. E. Baxter, M. W. Richards, R. L. van Montfort, A. M. Fry and R. Bayliss (2009). "Insights into the conformational variability and regulation of human Nek2 kinase." J Mol Biol 386(2): 476-85. White, M. C. and L. M. Quarmby (2008). "The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis." BMC Cell Biol 9: 29. Wilde, A. and Y. Zheng (2009). "Ran out of the nucleus for apoptosis." Nat Cell Biol 11(1): 11-2. Wong, C. H., H. Chan, C. Y. Ho, S. K. Lai, K. S. Chan, C. G. Koh and H. Y. Li (2009). "Apoptotic histone modification inhibits nuclear transport by regulating RCC1." Nat Cell Biol 11(1): 36-45. Wu, J. and R. J. Kaufman (2006). "From acute ER stress to physiological roles of the Unfolded Protein Response." Cell Death Differ 13(3): 374-84. Wu, J., M. J. Matunis, D. Kraemer, G. Blobel and E. Coutavas (1995). "Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region." J Biol 131 References Chem 270(23): 14209-13. Xu, C., B. Bailly-Maitre and J. C. Reed (2005). "Endoplasmic reticulum stress: cell life and death decisions." J Clin Invest 115(10): 2656-64. Xue, X., J. H. Piao, A. Nakajima, S. Sakon-Komazawa, Y. Kojima, K. Mori, H. Yagita, K. Okumura, H. Harding and H. Nakano (2005). "Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha." J Biol Chem 280(40): 33917-25. Yasuhara, N., Y. Eguchi, T. Tachibana, N. Imamoto, Y. Yoneda and Y. Tsujimoto (1997). "Essential role of active nuclear transport in apoptosis." Genes Cells 2(1): 55-64. Ye, X. S., G. Xu, R. T. Pu, R. R. Fincher, S. L. McGuire, A. H. Osmani and S. A. Osmani (1995). "The NIMA protein kinase is hyperphosphorylated and activated downstream of p34cdc2/cyclin B: coordination of two mitosis promoting kinases." Embo J 14(5): 986-94. Yin, M. J., L. Shao, D. Voehringer, T. Smeal and B. Jallal (2003). "The serine/threonine kinase Nek6 is required for cell cycle progression through mitosis." J Biol Chem 278(52): 52454-60. Yissachar, N., H. Salem, T. Tennenbaum and B. Motro (2006). "Nek7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression." FEBS Lett 580(27): 6489-95. Yokoya, F., N. Imamoto, T. Tachibana and Y. Yoneda (1999). "beta-catenin can be transported into the nucleus in a Ran-unassisted manner." Mol Biol Cell 10(4): 1119-31. Yokoyama, H., O. J. Gruss, S. Rybina, M. Caudron, M. Schelder, M. Wilm, I. W. Mattaj and E. Karsenti (2008). "Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate." J Cell Biol 180(5): 867-75. Yoshida, H., T. Matsui, A. Yamamoto, T. Okada and K. Mori (2001). "XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor." Cell 107(7): 881-91. 132 References Young, J. C. (2010). "Mechanisms of the Hsp70 chaperone system." Biochem Cell Biol 88(2): 291-300. Zeng, L., A. Zampetaki, A. Margariti, A. E. Pepe, S. Alam, D. Martin, Q. Xiao, W. Wang, Z. G. Jin, G. Cockerill, K. Mori, Y. S. Li, Y. Hu, S. Chien and Q. Xu (2009). "Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow." Proc Natl Acad Sci U S A 106(20): 8326-31. Zhang, C. and P. R. Clarke (2001). "Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system." Curr Biol 11(3): 208-12. Zhang, C., M. W. Goldberg, W. J. Moore, T. D. Allen and P. R. Clarke (2002). "Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly." Eur J Cell Biol 81(11): 623-33. 133 [...]... 3.12 Nek8 binds to Ran in vivo 72 Figure 3.13 Nek8 prefers to bind to RanGDP 75 Figure 3.14 Cellular Localization of Nek8 domains 78 Figure 3.15 Nek8 localization changes in the presence of Ran 80 Figure 3.16 Nek8R2 localization changes in the presence of Ran 81 Figure 3.17 Cellular dynamics of Nek8 in the presence of Ran 83 Figure 3. 18 The cellular localization of Nek8 under LMB treatment 85 Figure... mechanisms of Nek8 in these diseases are far from clear Functional studies on Nek8 are necessary and important 1.3 Involvement of Nek8 in cellular processes To date, no binding partner of Nek8 has been identified except polycystin-2 Signaling pathways that Nek8 is involved are yet to be discovered Bioinformatics analysis of Nek8’s molecular structure and the available information of NIMA- related 16... primary human colon cDNA library, whose ORF (Open Reading Frame) encodes a 692 amino-acid protein with a predicted molecular weight of 75kDa (Bowers and Boylan 2004) Sequence similarity between human Nek8 (hNek8) and murine Nek8 (mNek8) is as high as 99% Thus, the function information of Nek8 in mice can most likely be applied to Nek8 in human The sequence of Nek8 is highly homologous to many known kinases... functions in cell regulation, not limited in the area of cell cycle The divergent cellular functions of Neks are possibly due to their various domains in the C terminus, in addition to the homologous kinase domain in the N-terminus 1.2 NIMA related kinase 8 (Nek8) 13 Chapter 1 Introduction 1.2.1 Sequence and molecular structure of Nek8 Most members of Nrk kinase family were identified only recently, their... 3.5 Localization of Nek8 in different cell cycle stages 60 Figure 3.6 Endogenous Nek8 level in different cell cycle stages 61 Figure 3.7 Cell cycle profiles of cells with Nek8 or Nek8 mutants 63 Figure 3 .8 Endogenous Nek8 protein level after siRNA treatment 66 Figure 3.9 Nek8 protein level is very stable in cells 67 Figure 3.10 Cellular localization of Nek8 and Ran 69 Figure 3.11 Nek8 binds to Ran in... homologs of NIMA found in mouse (Ben-David et al 1991; Letwin et al 1992; Schultz et al 1994; Chen et al 1999) Figure 1.1 shows the schematic map of the NIMA related kinase family (O'Connell et al 2003) These Nrk family members share an N-terminal catalytic domain which is highly similar to the kinase domain of NIMA In addition, in term of function, most of the family members are cell cycle -related kinases... far, at least twelve NIMA- related protein kinases, named as Neks (Nek1-Nek12), have been identified in human genome (O'Connell et al 2003) Among these human NIMA- related kinases, Nek2 is closest to NIMA with 44% identical sequence in the kinase domain (Fry 2002) Nek2 has two spliced isoforms: Nek2A and Nek2B Their molecular structures are shown in Figure 1.1 Nek2A has an N-terminal kinase domain, a leucine... contains all of the required motifs for a functional kinase (Bowers and Boylan 2004), but the downstream substrates of Nek8 have not yet been identified Studies on kinase activity using β-casein as a general substrate showed no activity, suggesting that Nek8 may have specific substrates 1.2.2 Functions in cellular regulation and diseases of Nek8 Murine Nek8 was first identified because of a mutation of this... turned to focus on this kinase family 1.1.1 NIMA- related kinases (Nrks) in different biological systems The NIMA- related protein family is named from the protein NIMA (Never In Mitosis A), which is a serine/theronine kinase first identified in Aspergillus nidulans encoded by nimA gene Mutation in nimA gene can arrest cells in G2 and excess nimA can initiate mitosis, suggesting that the NIMA protein has a... several reports on the functional study of Nrks More evidences found in mammalian Nrks will be demonstrated in chapter 1.1.2 5 Chapter 1 Introduction Figure 1.1 Molecular strucutures of NIMA- related kinase (Nrk) family members 6 Chapter 1 Introduction 1.1.2 Human NIMA- related kinases (Neks) and their roles in cellular regulation Researchers paid more attention on the mammalian NIMA family members recently . FUNCTIONAL ANALYSIS OF HUMAN NIMA- RELATED KINASE 8 (Nek8) LIU JUN NATIONAL UNIVERSITY OF SINGAPORE 2010 FUNCTIONAL ANALYSIS OF HUMAN NIMA- RELATED. REFERENCES………………………………………………… 1 18 VII SUMMARY As a member of NIMA- related kinase family (Nrk), Nek8 has an N-terminal serine/threonine kinase domain highly homologous with that of NIMA. Most of the NIMA- related. NIMA related kinase 8( Nek8)……………………………………. 13 1.2.1 Sequence and molecular structure of Nek8………………………. 14 1.2.2 Functions in cellular regulation and diseases of Nek8……… 14 1.3 Involvment of

Ngày đăng: 11/09/2015, 10:03

Tài liệu cùng người dùng

Tài liệu liên quan