Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 216 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
216
Dung lượng
1,11 MB
Nội dung
DERIVATIVES OF PYRAZOLO[1,5-a][1,3,5]TRIAZINES AS ENZYME INHIBITORS WITH POTENTIAL THERAPEUTIC VALUE SUN LINGYI (B. Sc. (Pharm.)), Shanghai Jiao Tong Univ. A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACY NATIONAL UNIVERSITY OF SINGAPORE 2013 ACKNOWLEDGEMENTS I wish to express my heartfelt gratitude to my supervisor Assoc. Prof. Chui Wai Keung, Head, Department of Pharmacy, for his enormous and continuous support throughout my PhD study. I sincerely appreciate him for granting me such a great freedom to work independently while at the same time providing valuable suggestions. The most important thing I have learned from him is how to think critically when setting up the experiments, which would benefit me a lot in my future career. This project was supported by NMRC Grant R-148-000-102-275. Thanks to Assoc. Prof. Chan Sun Yung, who was the head of department during large portion of my PhD study, for providing me the necessary facilities to finish this project. Thanks to National University of Singapore for providing me the research scholarship. Thanks to Dr. Anton Dolzhenko for his guidance and precious advice in my chemistry work. My gratitude also goes to Dr. Gigi Chiu Ngar Chee, Ms. Tan Bee Jen and Ms. Gan Fei Fei for their kind help in my cell work. Their precious advice helped me solve lots of problems encountered in the cell work. Special thanks are extended to lab technologists Ms. Ng Sek Eng and Ms. Lye Pey Pey for their support in processing my orders. I also want to thank all my labmates, Dr. Yang Hong, Dr. Ong Pauline, Dr. Sachdeva Nikhil, Dr. Bera Hriday, Ms. Ng Hui Li, Mr. Li Ka Chun and FYP student Ms. Li Jia Rong and Ms. Ang Xiao Hui for your daily help, and I would not forget your nice collaboration during those safety audits. My dear friends, Mr. Li Jian, Dr. Sun Feng, Dr. Zhang Yaochun, Dr. Wang Likun, Dr. Li Lin, Dr. Wang Zhe, Mr. Li Fang, Ms. Yang Shili, Mr. Liu Yuanjie, Mr. Sun Longwei, and Mr. Tan Kuan Boone, it was so lucky for me to recognize all of you! The time we spent together in playing War Craft Ⅲ or basketball was so precious that I would memorize forever. I am grateful to my dear parents and relatives. I understand that it is difficult for my parents to make a decision that let their son go aboard, and I sincerely appreciate your respect towards my own choice. In addition, I also want to thank my dear girlfriend Ms. Chen Xiao for accompanying me in the past three years. I did not get significant results before our encounter thus I believe it was you who brought me the good fortune. This last paragraph is for those who have ever helped me during the past four years but not mentioned above due to the limited space: Thank you so much! i CONTENTS PAGE ACKNOWLEDGEMENTS i SUMMARY . v ABBREVIATIONS viii LIST OF TABLES . x LIST OF FIGURES xii LIST OF SCHEMES xiv 1. Introduction 1.1 A brief overview of enzyme inhibitors as drugs 1.1.1 Oxidoreductases (EC 1) as targets for developing enzyme inhibitors as drugs 1.1.2 Transferases (EC 2) as targets for developing enzyme inhibitors as drugs 1.1.3 Hydrolase (EC 3) as targets for developing enzyme inhibitors as drugs 1.1.4 Lyases (EC 4) as targets for developing enzyme inhibitors as drugs . 1.2 Thymidine phosphorylase as a target for developing enzyme inhibitors possessing therapeutic values 12 1.2.1 Physiological functions of thymidine phosphorylase 13 1.2.2 Pathological functions of thymidine phosphorylase 14 1.2.2.1 Thymidine phosphorylase in cancers . 14 1.2.2.2 Thymidine phosphorylase in other diseases 20 1.2.3 Thymidine phosphorylase inhibitors and their potential therapeutic values . 22 1.2.3.1 Pyrimidine derivatives as inhibitors of thymidine phosphorylase 23 ii 1.2.3.2 Purine derivatives as inhibitors of thymidine phosphorylase 29 1.2.3.3 Thymidine phosphorylase inhibitors based on other structures 31 1.2.3.4 Therapeutic potential of inhibitors of thymidine phosphorylase 32 1.3 Synthesis of pyrazolo[1,5-a][1,3,5]triazines 34 1.3.1 Synthesis of pyrazolo[1,5-a][1,3,5] triazines from pyrazole scaffold . 35 1.3.2 Synthesis of pyrazolo[1,5-a][1,3,5] triazines from 1,3,5-triazine scaffold 42 1.3.3 Synthesis of pyrazolo[1,5-a][1,3,5] triazines by concurrent formation of both the 1,3,5-triazine and pyrazole rings . 43 1.3.4 Synthesis of pyrazolo[1,5-a][1,3,5] triazines by ring transformation reactions . 44 1.4 Biological activity of pyrazolo[1,5-a][1,3,5]triazines . 47 1.4.1 Enzyme inhibitors containing the pyrazolo[1,5-a][1,3,5]triazine scaffold 47 1.4.2 Other biological activities . 51 1.5 Hypothesis and objectives 54 1.5.1 Hypothesis . 54 1.5.2 Objectives 57 2. Fused bicyclic pyrazolo[1,5-a][1,3,5]triazine derivatives as inhibitors of thymidine phosphorylase . 60 2.1 Chemistry . 62 2.2 Thymidine phosphorylase inhibitory activity 77 2.3 Enzyme inhibition kinetic studies 83 2.4 Antiangiogenic potential studies 85 2.4.1 Cytotoxicity study of selected TP inhibitors against MDA-MB-231 . 86 iii 2.4.2 Inhibition of MMP-9 secretion in MDA-MB-231 by selected TP inhibitors . 89 2.5 Summary 91 3. 5-Chlorouracil-linked-pyrazolo[1,5-a][1,3,5]triazines as inhibitors of thymidine phosphorylase . 94 3.1 Chemistry . 96 3.2 Thymidine phosphorylase inhibitory activity 103 3.3 Enzyme inhibition kinetics studies . 109 3.4 Antiangiogenic potential studies 112 3.4.1 Cytotoxic studies of selected TP inhibitors against MDA-MB-231 . 112 3.4.2 Inhibition of MMP-9 secretion in MDA-MB-231 by selected TP inhibitors . 114 3.5 Summary 118 4. Conclusion and Future work 120 4.1 Conclusion 121 4.2 Future work 129 5. Materials and methods . 133 5.1 Chemistry . 134 5.1.1 Preparation and characterization of intermediates 135 5.1.2 Preparation and characterization of target compounds . 152 5.2 Biological tests . 178 5.2.1 Evaluation of inhibitory activity against thymidine phosphorylase 178 5.2.2 Thymidine phosphorylase inhibition kinetic studies 179 5.2.3 MTT assay 180 5.2.4 Gelatine zymography 181 Bibliography 183 iv SUMMARY Thymidine phosphorylase (TP) is an enzyme that promotes tumour growth and metastasis thus is an attractive druggable target. Currently, the most potent TP inhibitors are pyrimidine derivatives; although some purine based inhibitors have also been reported but their potency against TP is still weak. The goal of this project was to develop new TP inhibitors that are analogues of purine. It was hypothesized that the pyrazolo[1,5-a][1,3,5]triazine scaffold equipped with a homophthalimide moiety would exhibit TP inhibitory activity through proper structural modifications. In addition, it was also hypothesized that compounds consisting of both pyrimidine moiety and purine related moiety could inhibit TP through dual site interaction. In particular, to test the first hypothesis, a total of 59 1,3-dihydro-pyrazolo[1,5-a][1,3,5]triazin-2,4-diones as well as their isosteric 2- thioxo analogues were synthesized and subjected to an in vitro enzyme bioassay. All target compounds were obtained in good yields (32%-94%) via a synthetic approach that required annulation of the 1,3,5-triazine ring onto substituted 3-amino pyrazoles. Results of the subsequent enzyme test showed that although 1,3-dihydro-pyrazolo[1,5-a][1,3,5]triazin-2,4-diones were not active against TP, most of their isosteric 2- thioxo analogues exhibited TP inhibitory activity with IC50 values ranging from 87.3µM to 40nM. The best compound 17r showed an IC50 value of 40nM which is around 800 times more v potent than the lead compound 7DX. Therefore, the first hypothesis was proven to be partially true. Further enzyme inhibitory kinetic studies revealed that 17r was a non-competitive inhibitor, suggesting that it might bind to an allosteric site. To test the second hypothesis, 31 compounds consisting of both pyrimidine moiety and purine moiety designed as 3H-2-(5-chlorouracil-6-methylthio)-pyrazolo[1,5-a][1,3,5]triazin-4-ones were synthesized and evaluated by the in vitro enzyme assay. A multiple-step convergent synthetic scheme was devised to generate the target compounds in good yields (40%-96%). The intermediate 5-chloro-6-chloromethyluracil was synthesized by a 4-step reaction and then coupled with 1,3-dihydro-pyrazolo[1,5-a][1,3,5]triazin-2-thioxo-4-ones to yield the target compounds. Subsequent enzyme tests showed that this type of compounds was active against TP with IC50 values ranging from 67.8µM to 0.36µM, and the second hypothesis in this study was proven to be true. The best compound in this series, 24r, was subjected to enzyme inhibitory kinetic studies. Results revealed that 24r demonstrated a mixed-type of enzyme inhibition kinetics, thus suggesting that it might potentially bind at two different sites on the enzyme. In addition, a total of 26 compounds with IC50 values less than 10µM were selected from the two series of compounds synthesized to explore their vi potential antiangiogenic properties. They were subjected to a gelatin zymography assay that evaluated their potential suppressive effect on the secretion of the angiogenic factor MMP-9 in cancer cells. Based on the results obtained, compounds among them did suppress the secretion of MMP-9 thus might possess some therapeutic value in antiangiogenesis. (Words-458) vii ABBREVIATIONS 2DDR 2-Deoxy-D –ribose 2DDR-1P 2-Deoxy-D –ribose-1-phosphate 2DLR 2-Deoxy-L-ribose 6A5BP 6-Amino-5-bromo-3H-pyrimidin-4-one 6A5BU 6-Amino-5-bromouracil 6A5CU 6-Amino-5-chlorouracil 6AT 6-Aminothymine 7DX 7-Deazaxanthine BNIMU 5-Bromo-2-nitro-imidazolylmethyluracil BPMU 5-Bromo-6-(pyrrolidinylmethyl)uracil CAM Chorio-allantoic membrane CB Cannabinoid CDK2 Cyclin-dependent kinase CIIMU 5-Chloro-6-[(2-iminoimidazolidinyl)methyl]uracil hydrobromide CIPMP 5-Chloro-6-[1-(2-iminopyrrolidinyl)methyl]-3H-pyrimidin-4-one hydrochloride CNIMU 5-Chloro-2-nitro-imidazolylmethyluracil CNS Central nervous system CRF Corticotropin-releasing factor DISC Death-inducing signaling complex dNTPs Deoxyribonucleoside triphosphates ECM Extracellular matrix EPC Endothelial progenitor cells FAK Focal adhesion kinase viii HCMM Hydrazine carboxamide 2-[(1-methyl-2,5-dioxo-4-pentyl -4-imidazolidinyl)methylene] HUVEC Humbilical vein endothelial cells MIC Minimal inhibitory concentration MIMC 3- [(3-Methoxy-4-methylphenyl) imino] methyl-4H-chromen -4-one MMP Matrix metalloproteinase MNEC Maximal non-effective concentration MNGIE Mitochondrial neurogastrointestinal encephalopathy MPIC 3-(2-Methylphenyl) isocoumarin MW Molecular weight PDE Phosphodiesterases PD-ECGF Protein platelet-derived endothelial cell growth factor PMA Phorbol 12-myristate 13-acetate RA Reumatoid arthritis SAR Structure activity relationship SCO2 Synthesis of cytochrome c oxidase TFT Trifluorothymidine TP Thymidine phosphorylase TPI 5-Chloro-6-[1-(2-iminopyrrolidinyl)methyl]uracil hydrochloride TPIPA 3-(2,4,5-Trioxo-3-phenylethyl-imidazolodin-1-yl)propionamide TS Thymidylate synthase VEGF Vascular endothelial growth factor XO Xanthine oxidase ix HTLV-III/LAV replication, to patients with AIDS or AIDS-related complex. Lancet 1986, 1, 575. 13. Druker, B. J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G. M.; Fanning, S.; Zimmermann, J.; Lydon, N. B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 1996, 2, 561. 14. Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2011, 155, 219. 15. Sugimoto, H.; Ogura, H.; Arai, Y.; Limura, Y.; Yamanishi, Y. Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. Jpn. J. Pharmacol. 2002, 89, 7. 16. Gubareva, L. V. Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus. Res. 2004, 103, 199. 17. Editorial: Dopa decarboxylase inhibitors. Br. Med. J. 1974, 4, 250. 18. Hely, M. A.; Morris, J. G.; Reid, W. G.; O'Sullivan, D. J.; Williamson, P. M.; Rail, D.; Broe, G. A.; Margrie, S. The Sydney Multicentre Study of Parkinson's disease: a randomised, prospective five year study comparing low dose bromocriptine with low dose levodopa-carbidopa. J. Neurol. Neurosur. Ps. 1994, 57, 903. 19. Fox, S. B.; Moghaddam, A.; Westwood, M.; Turley, H.; Bicknell, R.; Gatter, K. C.; Harris, A. L. Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in normal tissues: an immunohistochemical study. J. Pathol. 1995, 176, 183. 20. Reigan, P.; Edwards, P. N.; Gbaj, A.; Cole, C.; Barry, S. T.; Page, K. M.; Ashton, S. E.; Luke, R. W.; Douglas, K. T.; Stratford, I. J.; Jaffar, M.; Bryce, R. A.; Freeman, S. Aminoimidazolylmethyluracil analogues as potent inhibitors of thymidine phosphorylase and their bioreductive nitroimidazolyl prodrugs. J. Med. Chem. 2005, 48, 392. 21. Focher, F.; Spadari, S. Thymidine Phosphorylase: A Two-Face Janus in Anticancer Chemotherapy. Curr. Cancer Drug Tar. 2001, 1, 141. 22. Shaw, T.; Smillie, R. H.; Miller, A. E.; MacPhee, D. G. The role of blood platelets in nucleoside metabolism: regulation of platelet thymidine phosphorylase. Mutat. Res. 1988, 200, 117. 23. Jackson, M. R.; Carney, E. W.; Lye, S. J.; Knox Ritchie, J. W. Localization of two angiogenic growth factors (PDECGF and VEGF) in human placentae throughout gestation. Placenta 1994, 15, 341. 24. Usuki, K.; Norberg, L.; Larsson, E.; Miyazono, K.; Hellman, U.; Wernstedt, C.; Rubin, K.; Heldin, C. H. Localization of platelet-derived endothelial cell growth factor in human placenta and purification of an alternatively processed form. Cell Regul. 1990, 1, 577. 25. Zhang, L.; Mackenzie, I. Z.; Rees, M. C.; Bicknell, R. Regulation of the expression of the angiogenic enzyme platelet-derived endothelial cell growth 185 factor/thymidine phosphorylase in endometrial isolates by ovarian steroids and cytokines. Endocrinology 1997, 138, 4921. 26. Abbas, M. M.; Evans, J. J.; Sykes, P. H.; Benny, P. S. Modulation of vascular endothelial growth factor and thymidine phosphorylase in normal human endometrial stromal cells. Fertil. Steril. 2004, 3, 1048. 27. Osuga, Y.; Toyoshima, H.; Mitsuhashi, N.; Taketani, Y. The presence of platelet-derived endothelial cell growth factor in human endometrium and its characteristic expression during the menstrual cycle and early gestational period. Hum. Reprod. 1995, 10, 989. 28. Moghaddam, A.; Zhang, H. T.; Fan, T. P.; Hu, D. E.; Lees, V. C.; Turley, H.; Fox, S. B.; Gatter, K. C.; Harris, A. L.; Bicknell, R. Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 998. 29. Arima, J.; Imazono, Y.; Takebayashi, Y.; Nishiyama, K.; Shirahama, T.; Akiba, S.; Furukawa, T.; Akiyama, S.; Ohi, Y. Expression of thymidine phosphorylase as an indicator of poor prognosis for patients with transitional cell carcinoma of the bladder. Cancer 2000, 88, 1131. 30. O'Brien, T. S.; Fox, S. B.; Dickinson, A. J.; Turley, H.; Westwood, M.; Moghaddam, A.; Gatter, K. C.; Bicknell, R.; Harris, A. L. Expression of the angiogenic factor thymidine phosphorylase/platelet-derived endothelial cell growth factor in primary bladder cancers. Cancer Res. 1996, 56, 4799. 31. Yoshimura, A.; Kuwazuru, Y.; Furukawa, T.; Yoshida, H.; Yamada, K.; Akiyama, S. Purification and tissue distribution of human thymidine phosphorylase; high expression in lymphocytes, reticulocytes and tumors. Biochim. Biophys. Acta. 1990, 23, 107. 32. Yoshikawa, T.; Suzuki, K.; Kobayashi, O.; Sairenji, M.; Motohashi, H.; Tsuburaya, A.; Nakamura, Y.; Shimizu, A.; Yanoma, S.; Noguchi, Y. Thymidine phosphorylase/platelet-derived endothelial cell growth factor is upregulated in advanced solid types of gastric cancer. Br. J. Cancer. 1999, 79, 1145. 33. Takebayashi, Y.; Miyadera, K.; Akiyama, S.; Hokita, S.; Yamada, K.; Akiba, S.; Yamada, Y.; Sumizawa, T.; Aikou, T. Expression of thymidine phosphorylase in human gastric carcinoma. Jpn. J. Cancer Res. 1996, 87, 288. 34. Caulkett, P. W. R.; Jones, G.; Collis, M. G.; Poucher, S. M. Preparation of (amino)heteroaryl[1,2,4]triazolo[1,5-a]triazines and related compounds as adenosine A2 receptor antagonists. EP459702A1, 1991. 35. Takebayashi, Y.; Yamada, K.; Miyadera, K.; Sumizawa, T.; Furukawa, T.; Kinoshita, F.; Aoki, D.; Okumura, H.; Yamada, Y.; Akiyama, S.; Aikou, T. The activity and expression of thymidine phosphorylase in human solid tumours. Eur. J. Cancer 1996, 7, 1227. 36. O'Byrne, K. J.; Koukourakis, M. I.; Giatromanolaki, A.; Cox, G.; Turley, H.; Steward, W. P.; Gatter, K.; Harris, A. L. Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. Br. J. Cancer 2000, 82, 1427. 186 37. Takebayashi, Y.; Natsugoe, S.; Baba, M.; Akiba, S.; Fukumoto, T.; Miyadera, K.; Yamada, Y.; Takao, S.; Akiyama, S.; Aikou, T. Thymidine phosphorylase in human esophageal squamous cell carcinoma. Cancer 1999, 85, 282. 38. Fujimoto, J.; Sakaguchi, H.; Hirose, R.; Wen, H.; Tamaya, T. Clinical implication of expression of platelet-derived endothelial cell growth factor (PD-ECGF) in metastatic lesions of uterine cervical cancers. Cancer Res. 1999, 59, 3041. 39. Ferrara, N.; Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 2005, 438, 967. 40. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 2005, 438, 932. 41. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug. Discov. 2007, 6, 273. 42. Bergers, G.; Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 2003, 3, 401. 43. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 1971, 285, 1182. 44. Los, M.; Roodhart, J. M.; Voest, E. E. Target practice: lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. Oncologist 2007, 12, 443. 45. Usuki, K.; Saras, J.; Waltenberger, J.; Miyazono, K.; Pierce, G.; Thomason, A.; Heldin, C.-H. Platelet-derived endothelial cell growth factor has thymidine phosphorylase activity. Biochem. Biophys. Res. Commun. 1992, 184, 1311. 46. Ishikawa, F.; Miyazono, K.; Hellman, U.; Drexler, H.; Wernstedt, C.; Hagiwara, K.; Usuki, K.; Takaku, F.; Risau, W.; Heldin, C. H. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 1989, 338, 557. 47. Haraguchi, M.; Miyadera, K.; Uemura, K.; Sumizawa, T.; Furukawa, T.; Yamada, K.; Akiyama, S.; Yamada, Y. Angiogenic activity of enzymes. Nature. 1994 Mar 17;368(6468):198. 48. Liekens, S.; Bilsen, F.; De Clercq, E.; Priego, E. M.; Camarasa, M. J.; Perez-Perez, M. J.; Balzarini, J. Anti-angiogenic activity of a novel multi-substrate analogue inhibitor of thymidine phosphorylase. FEBS Lett. 2002, 510, 83. 49. Uchimiya, H.; Furukawa, T.; Okamoto, M.; Nakajima, Y.; Matsushita, S.; Ikeda, R.; Gotanda, T.; Haraguchi, M.; Sumizawa, T.; Ono, M.; Kuwano, M.; Kanzaki, T.; Akiyama, S. Suppression of thymidine phosphorylase-mediated angiogenesis and tumor growth by 2-deoxy-L-ribose. Cancer Res. 2002, 62, 2834. 50. Pula, G.; Mayr, U.; Evans, C.; Prokopi, M.; Vara, D. S.; Yin, X.; Astroulakis, Z.; Xiao, Q.; Hill, J.; Xu, Q.; Mayr, M. Proteomics identifies thymidine phosphorylase as a key regulator of the angiogenic potential of 187 colony-forming units and endothelial progenitor cell cultures. Circ. Res. 2009, 104, 32. 51. Miyadera, K.; Sumizawa, T.; Haraguchi, M.; Yoshida, H.; Konstanty, W.; Yamada, Y.; Akiyama, S. Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res. 1995, 55, 1687. 52. Hotchkiss, K. A.; Ashton, A. W.; Klein, R. S.; Lenzi, M. L.; Zhu, G. H.; Schwartz, E. L. Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res. 2003, 63, 527. 53. Sengupta, S.; Sellers, L. A.; Matheson, H. B.; Fan, T. P. Thymidine phosphorylase induces angiogenesis in vivo and in vitro: an evaluation of possible mechanisms. Br. J. Pharmacol. 2003, 139, 219. 54. Stevenson, D. P.; Milligan, S. R.; Collins, W. P. Effects of platelet-derived endothelial cell growth factor/thymidine phosphorylase, substrate, and products in a three-dimensional model of angiogenesis. Am. J. Pathol. 1998, 152, 1641. 55. Tenhunen, R.; Marver, H. S.; Schmid, R. Microsomal heme oxygenase. Characterization of the enzyme. J. Biol. Chem. 1969, 244, 6388. 56. Brown, N. S.; Jones, A.; Fujiyama, C.; Harris, A. L.; Bicknell, R. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res. 2000, 60, 6298. 57. Loboda, A.; Jazwa, A.; Grochot-Przeczek, A.; Rutkowski, A. J.; Cisowski, J.; Agarwal, A.; Jozkowicz, A.; Dulak, J. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox. Signal. 2008, 10, 1767. 58. Dulak, J.; Deshane, J.; Jozkowicz, A.; Agarwal, A. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation 2008, 117, 231. 59. Deramaudt, B. M.; Braunstein, S.; Remy, P.; Abraham, N. G. Gene transfer of human heme oxygenase into coronary endothelial cells potentially promotes angiogenesis. J. Cell. Biochem. 1998, 68, 121. 60. Hu, J.; Van den Steen, P. E.; Sang, Q. X.; Opdenakker, G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Discov. 2007, 6, 480. 61. Nakajima, Y.; Haraguchi, M.; Furukawa, T.; Yamamoto, M.; Nakanishi, H.; Tatematsu, M.; Akiyama, S. 2-Deoxy-L-ribose inhibits the invasion of thymidine phosphorylase-overexpressing tumors by suppressing matrix metalloproteinase-9. Int. J. Cancer 2006, 119, 1710. 62. Gotanda, T.; Haraguchi, M.; Tachiwada, T.; Shinkura, R.; Koriyama, C.; Akiba, S.; Kawahara, M.; Nishiyama, K.; Sumizawa, T.; Furukawa, T.; Mimata, H.; Nomura, Y.; Akiyama, S.; Nakagawa, M. Molecular basis for the involvement of thymidine phosphorylase in cancer invasion. Int. J. Mol. Med. 2006, 17, 1085. 188 63. Kurizaki, T.; Toi, M.; Tominaga, T. Relationship between matrix metalloproteinase expression and tumor angiogenesis in human breast carcinoma. Oncol. Rep. 1998, 5, 673. 64. Hotchkiss, K. A.; Ashton, A. W.; Schwartz, E. L. Thymidine phosphorylase and 2-deoxyribose stimulate human endothelial cell migration by specific activation of the integrins alpha beta and alpha V beta 3. J. Biol. Chem. 2003, 278, 19272. 65. Takao, S.; Akiyama, S. I.; Nakajo, A.; Yoh, H.; Kitazono, M.; Natsugoe, S.; Miyadera, K.; Fukushima, M.; Yamada, Y.; Aikou, T. Suppression of metastasis by thymidine phosphorylase inhibitor. Cancer Res. 2000, 60, 5345. 66. Nakajima, Y.; Gotanda, T.; Uchimiya, H.; Furukawa, T.; Haraguchi, M.; Ikeda, R.; Sumizawa, T.; Yoshida, H.; Akiyama, S. Inhibition of metastasis of tumor cells overexpressing thymidine phosphorylase by 2-deoxy-L-ribose. Cancer Res. 2004, 64, 1794. 67. Rofstad, E. K.; Halsor, E. F. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res. 2000, 60, 4932. 68. Takebayashi, Y.; Akiyama, S.-i.; Akiba, S.; Yamada, K.; Miyadera, K.; Sumizawa, T.; Yamada, Y.; Murata, F.; Aikou, T. Clinicopathologic and Prognostic Significance of an Angiogenic Factor, Thymidine Phosphorylase, in Human Colorectal Carcinoma. J. Natl. Cancer I. 1996, 88, 1110. 69. Kitazono, M.; Takebayashi, Y.; Ishitsuka, K.; Takao, S.; Tani, A.; Furukawa, T.; Miyadera, K.; Yamada, Y.; Aikou, T.; Akiyama, S. Prevention of hypoxia-induced apoptosis by the angiogenic factor thymidine phosphorylase. Biochem. Biophys. Res. Commun. 1998, 253, 797. 70. Ikeda, R.; Furukawa, T.; Kitazono, M.; Ishitsuka, K.; Okumura, H.; Tani, A.; Sumizawa, T.; Haraguchi, M.; Komatsu, M.; Uchimiya, H.; Ren, X. Q.; Motoya, T.; Yamada, K.; Akiyama, S. Molecular basis for the inhibition of hypoxia-induced apoptosis by 2-deoxy-D-ribose. Biochem. Biophys. Res. Commun. 2002, 291, 806. 71. Ikeda, R.; Che, X. F.; Ushiyama, M.; Yamaguchi, T.; Okumura, H.; Nakajima, Y.; Takeda, Y.; Shibayama, Y.; Furukawa, T.; Yamamoto, M.; Haraguchi, M.; Sumizawa, T.; Yamada, K.; Akiyama, S. 2-Deoxy-D-ribose inhibits hypoxia-induced apoptosis by suppressing the phosphorylation of p38 MAPK. Biochem. Biophys. Res. Commun. 2006, 342, 280. 72. Ikeda, R.; Furukawa, T.; Mitsuo, R.; Noguchi, T.; Kitazono, M.; Okumura, H.; Sumizawa, T.; Haraguchi, M.; Che, X. F.; Uchimiya, H.; Nakajima, Y.; Ren, X. Q.; Oiso, S.; Inoue, I.; Yamada, K.; Akiyama, S. Thymidine phosphorylase inhibits apoptosis induced by cisplatin. Biochem. Biophys. Res. Commun. 2003, 301, 358. 73. Jeung, H. C.; Che, X. F.; Haraguchi, M.; Furukawa, T.; Zheng, C. L.; Sumizawa, T.; Rha, S. Y.; Roh, J. K.; Akiyama, S. Thymidine phosphorylase 189 suppresses apoptosis induced by microtubule-interfering agents. Biochem. Pharmacol. 2005, 70, 13. 74. Jeung, H. C.; Che, X. F.; Haraguchi, M.; Zhao, H. Y.; Furukawa, T.; Gotanda, T.; Zheng, C. L.; Tsuneyoshi, K.; Sumizawa, T.; Roh, J. K.; Akiyama, S. Protection against DNA damage-induced apoptosis by the angiogenic factor thymidine phosphorylase. FEBS Lett. 2006, 580, 1294. 75. Mori, S.; Takao, S.; Ikeda, R.; Noma, H.; Mataki, Y.; Wang, X.; Akiyama, S.; Aiko, T. Role of thymidine phosphorylase in Fas-induced apoptosis. Hum. Cell. 2001, 14, 323. 76. Mori, S.; Takao, S.; Ikeda, R.; Noma, H.; Mataki, Y.; Wang, X.; Akiyama, S.; Aikou, T. Thymidine phosphorylase suppresses Fas-induced apoptotic signal transduction independent of its enzymatic activity. Biochem. Biophys. Res. Commun. 2002, 295, 300. 77. Matsuura, T.; Kuratate, I.; Teramachi, K.; Osaki, M.; Fukuda, Y.; Ito, H. Thymidine phosphorylase expression is associated with both increase of intratumoral microvessels and decrease of apoptosis in human colorectal carcinomas. Cancer Res. 1999, 59, 5037. 78. Ikeguchi, M.; Cai, J.; Fukuda, K.; Oka, S.; Katano, K.; Tsujitani, S.; Maeta, M.; Kaibara, N. Correlation between spontaneous apoptosis and the expression of angiogenic factors in advanced gastric adenocarcinoma. J. Exp. Clin. Cancer Res. 2001, 20, 257. 79. Ikeguchi, M.; Sakatani, T.; Ueta, T.; Fukuda, K.; Yamaguchi, K.; Tsujitani, S.; Kaibara, N. The expression of thymidine phosphorylase suppresses spontaneous apoptosis of cancer cells in esophageal squamous cell carcinoma. Pathobiology 2001, 69, 36. 80. Okamoto, E.; Osaki, M.; Kase, S.; Adachi, H.; Kaibara, N.; Ito, H. Thymidine phosphorylase expression causes both the increase of intratumoral microvessels and decrease of apoptosis in human esophageal carcinomas. Pathol. Int. 2001, 51, 158. 81. Hata, K.; Fujiwaki, R.; Maede, Y.; Nakayama, K.; Fukumoto, M.; Miyazaki, K. Expression of thymidine phosphorylase in epithelial ovarian cancer: correlation with angiogenesis, apoptosis, and ultrasound-derived peak systolic velocity. Gynecol. Oncol. 2000, 77, 26. 82. Yao, L.; Itoh, S.; Furuta, I. Thymidine phosphorylase expression in oral squamous cell carcinoma. Oral Oncol. 2002, 38, 584. 83. Takeuchi, M.; Otsuka, T.; Matsui, N.; Asai, K.; Hirano, T.; Moriyama, A.; Isobe, I.; Eksioglu, Y. Z.; Matsukawa, K.; Kato, T. et al. Aberrant production of gliostatin/platelet-derived endothelial cell growth factor in rheumatoid synovium. Arthritis Rheum. 1994, 37, 662. 84. Asai, K.; Hirano, T.; Matsukawa, K.; Kusada, J.; Takeuchi, M.; Otsuka, T.; Matsui, N.; Kato, T. High concentrations of immunoreactive gliostatin/platelet-derived endothelial cell growth factor in synovial fluid and serum of rheumatoid arthritis. Clin. Chim. Acta. 1993, 218, 1. 190 85. Waguri, Y.; Otsuka, T.; Sugimura, I.; Matsui, N.; Asai, K.; Moriyama, A.; Kato, T. Gliostatin/platelet-derived endothelial cell growth factor as a clinical marker of rheumatoid arthritis and its regulation in fibroblast-like synoviocytes. Br. J. Rheumatol. 1997, 36, 315. 86. Waguri-Nagaya, Y.; Otsuka, T.; Sugimura, I.; Matsui, N.; Asai, K.; Nakajima, K.; Tada, T.; Akiyama, S.; Kato, T. Synovial inflammation and hyperplasia induced by gliostatin/platelet-derived endothelial cell growth factor in rabbit knees. Rheumatol. Int. 2000, 20, 13. 87. Muro, H.; Waguri-Nagaya, Y.; Mukofujiwara, Y.; Iwahashi, T.; Otsuka, T.; Matsui, N.; Moriyama, A.; Asai, K.; Kato, T. Autocrine induction of gliostatin/platelet-derived endothelial cell growth factor (GLS/PD-ECGF) and GLS-induced expression of matrix metalloproteinases in rheumatoid arthritis synoviocytes. Rheumatology 1999, 38, 1195. 88. Ieda, Y.; Waguri-Nagaya, Y.; Iwahasi, T.; Otsuka, T.; Matsui, N.; Namba, M.; Asai, K.; Kato, T. IL-1beta-induced expression of matrix metalloproteinases and gliostatin/platelet-derived endothelial cell growth factor (GLS/PD-ECGF) in a chondrosarcoma cell line (OUMS-27). Rheumatol. Int. 2001, 21, 45. 89. Tanikawa, T.; Waguri-Nagaya, Y.; Kusabe, T.; Aoyama, M.; Asai, K.; Otsuka, T. Gliostatin/thymidine phosphorylase-regulated vascular endothelial growth-factor production in human fibroblast-like synoviocytes. Rheumatol. Int. 2007, 27, 553. 90. Hammerberg, C.; Fisher, G. J.; Voorhees, J. J.; Cooper, K. D. Elevated thymidine phosphorylase activity in psoriatic lesions accounts for the apparent presence of an epidermal "growth inhibitor," but is not in itself growth inhibitory. J. Invest. Dermatol. 1991, 97, 286. 91. Giatromanolaki, A.; Sivridis, E.; Maltezos, E.; Papazoglou, D.; Simopoulos, C.; Gatter, K. C.; Harris, A. L.; Koukourakis, M. I. Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J. Clin. Pathol. 2003, 56, 209. 92. Saito, S.; Tsuno, N. H.; Sunami, E.; Hori, N.; Kitayama, J.; Kazama, S.; Okaji, Y.; Kawai, K.; Kanazawa, T.; Watanabe, T.; Shibata, Y.; Nagawa, H. Expression of platelet-derived endothelial cell growth factor in inflammatory bowel disease. J. Gastroenterol. 2003, 38, 229. 93. Wang, E. H.; Goh, Y. B.; Moon, I. S.; Park, C. H.; Lee, K. H.; Kang, S. H.; Kang, C. S.; Choi, Y. J. Upregulation of thymidine phosphorylase in chronic glomerulonephritis and its role in tubulointerstitial injury. Nephron. Clin. Pract. 2006, 102, 10. 94. Nishino, I.; Spinazzola, A.; Papadimitriou, A.; Hammans, S.; Steiner, I.; Hahn, C. D.; Connolly, A. M.; Verloes, A.; Guimarães, J.; Maillard, I.; Hamano, H.; Donati, M. A.; Semrad, C. E.; Russell, J. A.; Andreu, A. L.; Hadjigeorgiou, G. M.; Vu, T. H.; Tadesse, S.; Nygaard, T. G.; Nonaka, I.; Hirano, I.; Bonilla, E.; Rowland, L. P.; DiMauro, S.; Hirano, M. Mitochondrial neurogastrointestinal encephalomyopathy: An autosomal 191 recessive disorder due to thymidine phosphorylase mutations. Ann. Neurol. 2000, 47, 792. 95. Spinazzola, A.; Marti, R.; Nishino, I.; Andreu, A. L.; Naini, A.; Tadesse, S.; Pela, I.; Zammarchi, E.; Donati, M. A.; Oliver, J. A.; Hirano, M. Altered thymidine metabolism due to defects of thymidine phosphorylase. J. Biol. Chem. 2002, 277, 4128. 96. Marti, R.; Nishigaki, Y.; Hirano, M. Elevated plasma deoxyuridine in patients with thymidine phosphorylase deficiency. Biochem. Biophys. Res. Commun. 2003, 303, 14. 97. Valentino, M. L.; Martı´, R.; Tadesse, S.; López, L. C.; Manes, J. L.; Lyzak, J.; Hahn, A.; Carelli, V.; Hirano, M. Thymidine and deoxyuridine accumulate in tissues of patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). FEBS Lett. 2007, 581, 3410. 98. Kumagai, Y.; Sugiura, Y.; Sugeno, H.; Takebayashi, Y.; Takenoshita, S.; Yamamoto, T. Thymidine phosphorylase gene mutation is not a primary cause of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Intern. Med. 2006, 45, 443. 99. Haraguchi, M.; Tsujimoto, H.; Fukushima, M.; Higuchi, I.; Kuribayashi, H.; Utsumi, H.; Nakayama, A.; Hashizume, Y.; Hirato, J.; Yoshida, H.; Hara, H.; Hamano, S.; Kawaguchi, H.; Furukawa, T.; Miyazono, K.; Ishikawa, F.; Toyoshima, H.; Kaname, T.; Komatsu, M.; Chen, Z. S.; Gotanda, T.; Tachiwada, T.; Sumizawa, T.; Miyadera, K.; Osame, M.; Noda, T.; Yamada, Y.; Akiyama, S. Targeted deletion of both thymidine phosphorylase and uridine phosphorylase and consequent disorders in mice. Mol. Cell Biol. 2002, 22, 5212. 100. Jaksch, M.; Ogilvie, I.; Yao, J.; Kortenhaus, G.; Bresser, H. G.; Gerbitz, K. D.; Shoubridge, E. A. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency. Hum. Mol. Genet. 2000, 9, 795. 101. Langen, P.; Etzold, G.; Bärwolff, D.; Preussel, B. Inhibition of thymidine phosphorylase by 6-aminothymine and derivatives of 6-aminouracil. Biochem. Pharmacol. 1967, 16, 1833. 102. Baker, B. R.; Kelley, J. L. Irreversible enzyme inhibitors. CLXXI. Inhibition of FUDR [5-fluoro-2'-deoxyuridine] phosphorylase from Walker 256 rat tumor by 5-substituted uracils. J. Med. Chem. 1970, 13, 461. 103. Walter, M. R.; Cook, W. J.; Cole, L. B.; Short, S. A.; Koszalka, G. W.; Krenitsky, T. A.; Ealick, S. E. Three-dimensional structure of thymidine phosphorylase from Escherichia coli at 2.8 A resolution. J. Biol. Chem. 1990, 265, 14016. 104. Klein, R. S.; Lenzi, M.; Lim, T. H.; Hotchkiss, K. A.; Wilson, P.; Schwartz, E. L. Novel 6-substituted uracil analogs as inhibitors of the angiogenic actions of thymidine phosphorylase. Biochem. Pharmacol. 2001, 62, 1257. 192 105. Focher, F.; Ubiali, D.; Pregnolato, M.; Zhi, C.; Gambino, J.; Wright, G. E.; Spadari, S. Novel Nonsubstrate Inhibitors of Human Thymidine Phosphorylase, a Potential Target for Tumor-Dependent Angiogenesis. J. Med. Chem. 2000, 43, 2601. 106. Murray, P. E.; McNally, V. A.; Lockyer, S. D.; Williams, K. J.; Stratford, I. J.; Jaffar, M.; Freeman, S. Synthesis and enzymatic evaluation of pyridinium-Substituted uracil derivatives as novel inhibitors of thymidine phosphorylase. Bioorg. Med. Chem. 2002, 10, 525. 107. Fukushima, M.; Suzuki, N.; Emura, T.; Yano, S.; Kazuno, H.; Tada, Y.; Yamada, Y.; Asao, T. Structure and activity of specific inhibitors of thymidine phosphorylase to potentiate the function of antitumor ′ -deoxyribonucleosides. Biochem. Pharmacol. 2000, 59, 1227. 108. Yano, S.; Kazuno, H.; Suzuki, N.; Emura, T.; Wierzba, K.; Yamashita, J.-i.; Tada, Y.; Yamada, Y.; Fukushima, M.; Asao, T. Synthesis and evaluation of 6-methylene-bridged uracil derivatives. Part 1: Discovery of novel orally active inhibitors of human thymidine phosphorylase. Bioorg. Med. Chem. 2004, 12, 3431. 109. Yano, S.; Kazuno, H.; Sato, T.; Suzuki, N.; Emura, T.; Wierzba, K.; Yamashita, J.-i.; Tada, Y.; Yamada, Y.; Fukushima, M.; Asao, T. Synthesis and evaluation of 6-methylene-bridged uracil derivatives. Part 2: Optimization of inhibitors of human thymidine phosphorylase and their selectivity with uridine phosphorylase. Bioorg. Med. Chem. 2004, 12, 3443. 110. Nencka, R.; Votruba, I.; Hrebabecky, H.; Jansa, P.; Tloust'ova, E.; Horska, K.; Masojidkova, M.; Holy, A. Discovery of 5-Substituted-6-chlorouracils as Efficient Inhibitors of Human Thymidine Phosphorylase. J. Med. Chem. 2007, 50, 6016. 111. Esteban-Gamboa, A.; Balzarini, J.; Esnouf, R.; De Clercq, E.; Camarasa, M.-J.; Pérez-Pérez, M.-J. Design, Synthesis, and Enzymatic Evaluation of Multisubstrate Analogue Inhibitors of Escherichia coli Thymidine Phosphorylase. J. Med. Chem. 2000, 43, 971. 112. Reigan, P.; Gbaj, A.; Chinje, E.; Stratford, I. J.; Douglas, K. T.; Freeman, S. Synthesis and enzymatic evaluation of xanthine oxidase-activated prodrugs based on inhibitors of thymidine phosphorylase. Bioorg. Med. Chem. Lett. 2004, 14, 5247. 113. Balzarini, J.; Gamboa, A. E.; Esnouf, R.; Liekens, S.; Neyts, J.; De Clercq, E.; Camarasa, M.-J.; Pérez-Pérez, M.-J. 7-Deazaxanthine, a novel prototype inhibitor of thymidine phosphorylase. FEBS lett. 1998, 438, 91. 114. Hirota, K.; Sawada, M.; Sajiki, H.; Sako, M. Synthesis of 6-aminouracils and pyrrolo[2,3-d]pyrimidine-2,4-diones and their inhibitory effect on thymidine phosphorylase. Nucleic. Acids Symp. Ser. 1997, 37, 59. 115. Liekens, S.; Hernandez, A.-I.; Ribatti, D.; De Clercq, E.; Camarasa, M.-J.; Perez-Perez, M.-J.; Balzarini, J. The Nucleoside Derivative 5'-O-Trityl-inosine (KIN59) Suppresses Thymidine Phosphorylase-triggered 193 Angiogenesis via a Noncompetitive Mechanism of Action. J. Biol. Chem. 2004, 279, 29598. 116. Casanova, E.; Hernandez, A.-I.; Priego, E.-M.; Liekens, S.; Camarasa, M.-J.; Balzarini, J.; Perez-Perez, M.-J. 5'-O-Tritylinosine and Analogues as Allosteric Inhibitors of Human Thymidine Phosphorylase. J. Med. Chem. 2006, 49, 5562. 117. McNally, V. A.; Gbaj, A.; Douglas, K. T.; Stratford, I. J.; Jaffar, M.; Freeman, S.; Bryce, R. A. Identification of a novel class of inhibitor of human and Escherichia coli thymidine phosphorylase by in silico screening. Bioorg. Med. Chem. Lett. 2003, 13, 3705. 118. Rajabi, M.; Mansell, D.; Freeman, S.; Bryce, R. A. Structure-activity relationship of 2,4,5-trioxoimidazolidines as inhibitors of thymidine phosphorylase. Eur. J. Med. Chem. 2011, 46, 1165. 119. Khan, K. M.; Ahmed, S.; Hussain, S.; snm, N.; Perveen, S.; Choudhary, M. I. q. b. a. l. 3-Substituted Isocoumarins as Thymidine Phosphorylase Inhibitors. Lett. Drug Des. Discov. 2010, 7, 265. 120. Khan, K. M.; Ambreen, N.; Hussain, S.; Perveen, S.; Iqbal Choudhary, M. Schiff bases of 3-formylchromone as thymidine phosphorylase inhibitors. Bioorg. Med. Chem. 2009, 17, 2983. 121. Desgranges, C.; Razaka, G.; Rabaud, M.; Bricaud, H.; Balzarini, J.; de Clercq, E. Phosphorolysis of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and other 5-substituted-2'-deoxyuridines by purified human thymidine phosphorylase and intact blood platelets. Biochem. Pharmacol. 1983, 32, 3583. 122. Matsushita, S.; Nitanda, T.; Furukawa, T.; Sumizawa, T.; Tani, A.; Nishimoto, K.; Akiba, S.; Miyadera, K.; Fukushima, M.; Yamada, Y.; Yoshida, H.; Kanzaki, T.; Akiyama, S.-i. The Effect of a Thymidine Phosphorylase Inhibitor on Angiogenesis and Apoptosis in Tumors. Cancer Res. 1999, 59, 1911. 123. Takao, S.; Akiyama, S.-i.; Nakajo, A.; Yoh, H.; Kitazono, M.; Natsugoe, S.; Miyadera, K.; Fukushima, M.; Yamada, Y.; Aikou, T. Suppression of Metastasis by Thymidine Phosphorylase Inhibitor. Cancer Res. 2000, 60, 5345. 124. Ladva, S. Horizon scanning: Phase II study of TAS-102 for pretreated metastatic colorectal cancer Lancet Oncology: 2012. 125. Checchi, S.; Ridi, M. Derivatives of 5-aminopyrazole. IV. Synthesis of heterocyclic derivatives. Gazz. Chim. Ital. 1957, 87, 597. 126. Vishwakarma, J. N.; Mofizuddin, M.; Ila, H.; Junjappa, H. A facile synthesis of substituted 4,5,6,7-tetrahydropyrazolo[3,4-d]pyrimidine and 1,2,3,4-tetrahydropyrazolo[1,5-a]triazine derivatives. J. Heterocycl. Chem. 1988, 25, 1387. 127. Graubaum, H.; Schweim, H. G. Reactions of 3(5)-aminopyrazole with isocyanates or cyanates and acetone. Arch. Pharm. (Weinheim, Ger.) 1991, 324, 257. 194 128. Bekircan, O.; Kuxuk, M.; Kahveci, B.; Kolayli, S. Convenient synthesis of fused heterocyclic 1,3,5-triazines from some N-acyl imidates and heterocyclic amines as anticancer and antioxidant agents. Arch. Pharm. (Weinheim, Ger.) 2005, 338, 365. 129. Salem, M. A. I.; Madkour, H. M. F.; Al-Nuaimi, I. S.; Al-Qaradawi, S. Y. Study on 3,5-pyrazolidinedione and its derivatives. Part II. J. Serb. Chem. Soc. 1993, 58, 89. 130. Fischer, E.; Kreutzmann, J.; Rembarz, G.; Rosenthal, S. Preparation and reactions of substituted pyrazolo[1,5-a][1,3,5]triazines. Pharmazie 1976, 31, 546. 131. Koren, B.; Kovac, F.; Petric, A.; Stanovnik, B.; Tisler, M. Heterocycles. CXXXIII. Indazoles in organic synthesis. Formation of some fused heterocycles. Tetrahedron 1976, 32, 493. 132. Novinson, T.; Senga, K.; Kobe, J.; Robins, R. K.; O'Brien, D. E.; Albert, A. A. Synthesis of unsymmetrical 2,4-dialkylpyrazolo[1,5-a]-1,3,5-triazines. J. Heterocycl. Chem. 1974, 11, 691. 133. Vogel, A.; Troxler, F. New synthesis of pyrazolo[1,5-a]-s-triazines. Helv. Chim. Acta 1975, 58, 761. 134. Tam, S. Y. K.; Hwang, J. S.; De, l. H. F. G.; Klein, R. S.; Fox, J. J. Nucleosides. CV. Synthesis of the 8-(β-D-ribofuranosyl)pyrazolo[1,5-a]-1,3,5-triazine isosteres of adenosine and inosine. J. Heterocycl. Chem. 1976, 13, 1305. 135. Stevens, M. F. G.; Mackenzie, S. M. Triazines and related products. VI. Synthesis and properties of 4-amino-2(2H)-imino-s-triazino[1,2-c][1,2,3]benzotriazines. J. Chem. Soc., C 1970, 2298. 136. Gescher, A.; Stevens, M. F. G.; Turnbull, C. P. Triazines and related products. Part 18. Decomposition of 1,2,3-benzotriazines and related triazenes with sodium azide in acetic acid: a convenient route to azidoarenes. J. Chem. Soc., Perkin Trans. 1977, 103-6. 137. Stevens, M. F. G.; Bliss, E. A.; Brown, T. B.; Mackenzie, S. M. Triazines and related products. 29. Chemistry, DHFR-inhibitory activity and antitumor activity of substituted 2,4-diamino-6-phenyl-1,3,5-triazines. Eur. J. Med. Chem.--Chim. Ther. 1984, 19, 375. 138. Elmoghayar, M. R. H.; Ghali, E. A.; Ramiz, M. M. M.; Elnagdi, M. H. Activated nitriles in heterocyclic synthesis. IV. Synthesis of 1,3,4-thiadiazole derivatives. Liebigs Ann. Chem. 1985, 1962. 139. Elmoghayar, M. R. H.; Abdalla, S. O.; Yousry, M.; Nasr, A. S. The reaction of isothiocyanates with 2-cyanoethanoic acid hydrazide. A novel synthesis of 1,3,4-thiadiazoles. J. Heterocycl. Chem. 1984, 21, 781. 140. Abed, N. M.; Elagamey, A. G. A.; Harb, A. F. A. Some reactions with α,β-unsaturated acyl isothiocyanates. J. Chem. Soc. Pak. 1988, 10, 151. 141. El-Saraf, G. A.; El-Sayed, A. M.; El-Saghier, A. M. M. One-pot PTC synthesis of poly-fused pyrazoles. Heteroat. Chem. 2003, 14, 211. 195 142. Robins, R. K.; Revankar, G. R.; O'Brien, D. E.; Springer, R. H.; Albert, T. N. A.; Senga, K.; Miller, J. P.; Streeter, D. G. Purine analog inhibitors of xanthine oxidase - structure activity relationships and proposed binding of the molybdenum cofactor. J. Heterocycl. Chem. 1985, 22, 601. 143. Fujii, S.; Kawamura, H.; Kiyokawa, H.; Yamada, S. Preparation of pyrazolotriazines as xanthine oxidase inhibitors. EP269859A2, 1988. 144. Sato, S.; Tatsumi, K.; Nishino, T. A novel xanthine dehydrogenase inhibitor (BOF-4272). Adv. Exp. Med. Biol. 1991, 309A, 135. 145. Okamoto, K.; Nishino, T. Mechanism of Inhibition of Xanthine Oxidase with a New Tight Binding Inhibitor. J. Biol. Chem. 1995, 270, 7816. 146. Naito, S.; Nishimura, M.; Tamao, Y. Evaluation of the Pharmacological Actions and Pharmacokinetics of BOF-4272, a Xanthine Oxidase Inhibitor, in Mouse Liver. J. Pharm. Pharmacol. 2000, 52, 173. 147. Uematsu, T.; Nakashima, M. Pharmacokinetic and pharmacodynamic properties of a novel xanthine oxidase inhibitor, BOF-4272, in healthy volunteers. J. Pharmacol. Exp. Ther. 1994, 270, 453. 148. Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Almassy, R.; Lu, J.; Averill, A.; Yager, K. M.; Chu, S. Structure-based design, synthesis, and study of pyrazolo[1,5-a][1,3,5]triazine derivatives as potent inhibitors of protein kinase CK2. Bioorg. Med. Chem. Lett. 2007, 17, 4191. 149. Prevost, G.; Lonchampt, M.-O.; Kim, S.; Morgan, B.; Ulibarri, G.; Thurieau, C. Pyrazolo[1,5-a]-1,3,5-triazine derivatives with activity as cyclin-dependent kinase (CDK) and glycogen synthase kinase-3 (GSK-3) inhibitors, and their preparation, pharmaceutical compositions, and use as, e.g., antiproliferative agents. WO2002050079A1, 2002. 150. Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Lu, J.; Averill, A.; Almassy, R.; Chu, S. Structure-based design and synthesis of novel macrocyclic pyrazolo[1,5-a] [1,3,5]triazine compounds as potent inhibitors of protein kinase CK2 and their anticancer activities. Bioorg. Med. Chem. Lett. 2008, 18, 619. 151. Kobe, J.; O'Brien, D. E.; Robins, R. K. 2-Aryl-7-substituted pyrazolo[1,5a] 1,3,5-triazines. US3865824A, 1975. 152. Senga, K.; O'Brien, D. E.; Scholten, M. B.; Novinson, T.; Miller, J. P.; Robins, R. K. Synthesis and enzymic activity of various substituted pyrazolo[1,5-a]-1,3,5-triazines as adenosine cyclic 3',5'-phosphate phosphodiesterase inhibitors. J. Med. Chem. 1982, 25, 243. 153. O'Brien, D. E.; Senga, K.; Novinson, T. Pyrazolo(1,5-a)-1,3,5-triazines. US3910907A, 1975. 154. Kobe, J.; Springer, R. H.; O'Brien, D. E. Pyrazolo(1,5a)1,3,5-triazines. US3846423A, 1974. 155. Lübbers, T.; Angehrn, P.; Gmünder, H.; Herzig, S.; Kulhanek, J. Design, synthesis, and structure–activity relationship studies of ATP analogues as DNA gyrase inhibitors. Bioorg. Med. Chem. Lett. 2000, 10, 821. 196 156. Vu, C.; Petter, R. C.; Kumaravel, G. Preparation of triazolotriazines and pyrazolotriazines as A2a adenosine receptor antagonists for the treatment of Parkinson's disease. WO2004092170A2, 2004. 157. de Zwart, M.; Vollinga, R. C.; Beukers, M. W.; Sleegers, D. F.; von Frijtag Drabbe Künzel, J. K.; de Groote, M.; Ijzerman, A. P. Potent antagonists for the human adenosine A2B receptor. Derivatives of the triazolotriazine adenosine receptor antagonist ZM241385 with high affinity. Drug Develop. Res. 1999, 48, 95. 158. He, L.; Gilligan, P. J.; Zaczek, R.; Fitzgerald, L. W.; McElroy, J.; Shen, H. S. L.; Saye, J. A.; Kalin, N. H.; Shelton, S.; Christ, D.; Trainor, G.; Hartig, P. 4-(1,3-Dimethoxyprop-2-ylamino)-2,7-dimethyl-8-(2,4-dichlorophenyl)pyrazo lo[1,5-a]-1,3,5-triazine: A Potent, Orally Bioavailable CRF1 Receptor Antagonist. J. Med. Chem. 2000, 43, 449. 159. Li, Y.-W.; Fitzgerald, L.; Wong, H.; Lelas, S.; Zhang, G.; Lindner, M. D.; Wallace, T.; McElroy, J.; Lodge, N. J.; Gilligan, P.; Zaczek, R. The Pharmacology of DMP696 and DMP904, Non-Peptidergic CRF1 Receptor Antagonists. CNS Drug Rev. 2005, 11, 21. 160. Chen, C. Recent Advances in Small Molecule Antagonists of the Corticotropin- Releasing Factor Type-1 Receptor-Focus on Pharmacology and Pharmacokinetics. Curr. Med. Chem. 2006, 13, 1261. 161. Zhao, Y.; Valdez, G. R.; Fekete, É. M.; Rivier, J. E.; Vale, W. W.; Rice, K. C.; Weiss, F.; Zorrilla, E. P. Subtype-Selective Corticotropin-Releasing Factor Receptor Agonists Exert Contrasting, but Not Opposite, Effects on Anxiety-Related Behavior in Rats. J. Pharmacol. Exp. Ther. 2007, 323, 846. 162. Jagoda, E.; Contoreggi, C.; Lee, M.-J.; Kao, C.-H. K.; Szajek, L. P.; Listwak, S.; Gold, P.; Chrousos, G.; Greiner, E.; Kim, B. M.; Jacobson, A. E.; Rice, K. C.; Eckelman, W. Autoradiographic Visualization of Corticotropin Releasing Hormone Type Receptors with a Nonpeptide Ligand: Synthesis of [76Br]MJL-1-109-2. J. Med. Chem. 2003, 46, 3559. 163. Cao, X.; Liang, L.; Hadcock, J. R.; Iredale, P. A.; Griffith, D. A.; Menniti, F. S.; Factor, S.; Greenamyre, J. T.; Papa, S. M. Blockade of cannabinoid type receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys. J. Pharmacol. Exp. Ther. 2007, 323, 318. 164. Junien, J. L.; Guillaume, M.; Lakatos, C.; Sterne, J. Bronchodilator and antiallergic properties of LA 2851 (2-4-diamino-7-methyl-pyrazolo (1,5-a) 1,3,5-triazine). Arch. Int. Pharmacodyn. Ther. 1981, 252, 313. 165. Junien, J. L.; Lakatos, C.; Brohon, J.; Guillaume, M.; Sterne, J. Anti-inflammatory effect of LA 2851 and reference drugs on some models of inflammation. Investigation of the mechanism of action. Agents Actions 1982, 12, 459. 197 166. Cohen, C. Diaminopyrazolo[1,5-a]-s-triazines. DE2900288A1, 1979. 167. Griffiths, L.; Dachs, G. U.; Bicknell, R.; Harris, A. L.; Stratford, I. J. The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo. Cancer Res. 1997, 57, 570. 168. Capuano, L.; Schrepfer, H. J. Heterocyclizations. IX. Preparation of pyrazolo-, triazolo-, oxazolo-, and thiazolo-s-triazines with a bridgehead nitrogen and of an isopurine N-carboxylic ester. Chem. Ber. 1971, 104, 3039. 169. Lomenzo, S. A.; Rhoden, J. B.; Izenwasser, S.; Wade, D.; Kopajtic, T.; Katz, J. L.; Trudell, M. L. Synthesis and Biological Evaluation of Meperidine Analogues at Monoamine Transporters. J. Med. Chem. 2005, 48, 1336. 170. Velankar, A. D.; Quintini, G.; Prabhu, A.; Weber, A.; Hunaeus, G.; Voland, B.; Wuest, M.; Orjeda, C.; Harel, D.; Varghese, S.; Gore, V.; Patil, M.; Gayke, D.; Herdemann, M.; Heit, I.; Zaliani, A. Synthesis and biological evaluation of novel (4 or 5-aryl)pyrazolyl-indoles as inhibitors of interleukin-2 inducible T-cell kinase (ITK). Bioorg. Med. Chem. 2010, 18, 4547. 171. Joubran, L.; Jackson, W. R.; Campi, E. M.; Robinson, A. J.; Wells, B. A.; Godfrey, P. D.; Callaway, J. K.; Jarrott, B. Arylpropanolamines Incorporating an Antioxidant Function as Neuroprotective Agents. Aust. J. Chem. 2003, 56, 597. 172. Joshi, K. C.; Pathak, V. N.; Garg, U. Synthesis of some new fluorine-containing 5-amino-1,3-disubstituted pyrazoles and 1H-pyrazolo[3,4-b]pyridines. J. Heterocycl. Chem. 1979, 16, 1141. 173. Elgemeie, G. H.; El-Ezbawy, S. R.; Ali, H. A. Reactions of chlorocarbonyl isocyanate with 5-aminopyrazoles and active methylene nitriles: a novel synthesis of pyrazolo[1,5-a]-1,3,5-triazines and barbiturates. Synth. Commun. 2001, 31, 3459. 174. Senga, K.; Kobe, J.; Robins, R. K.; O'Brien, D. E. Synthesis of 1,3-dialkylpyrazolo[1,5-a]-1,3,5-triazine-2,4-diones. Isomers of 1,3-dialkylxanthines. J. Heterocycl. Chem. 1975, 12, 893. 175. Robins, R. K.; Revankar, G. R.; O'Brien, D. E.; Springer, R. H.; Novinson, T.; Albert, A.; Senga, K.; Miller, J. P.; Streeter, D. G. Purine analog inhibitors of xanthine oxidase - structure activity relationships and proposed binding of the molybdenum cofactor. J. Heterocycl. Chem. 1985, 22, 601. 176. Craig, P. N. Interdependence between physical parameters and selection of substituent groups for correlation studies. J. Med. Chem. 1971, 14, 680. 177. Wu, X.-Q.; Wang, J.; Lü, Z.-R.; Tang, H.-M.; Park, D.; Oh, S.-H.; Bhak, J.; Shi, L.; Park, Y.-D.; Zou, F. Alpha-Glucosidase Folding During Urea Denaturation: Enzyme Kinetics and Computational Prediction. Appl. Biochem. Biotech. 2010, 160, 1341. 198 178. Zee-Chen, K.-Y.; Cheng, C. C. Pyrimidines. XX. A convenient preparation of orotaldehyde and thymine-6-carboxaldehyde. J. Heterocycl. Chem. 1967, 4, 163. 179. Kalman, T. I.; Lai, L. 6-Substituted 5-fluorouracil derivatives as transition state analog inhibitors of thymidine phosphorylase. Nucleos. Nucleot. Nucl. 2005, 24, 367. 180. Klein, R. S.; Fox, J. J. Nucleosides. LXXVIII. Synthesis of some 6-substituted uracils and uridines by the Wittig reaction. J. Org. Chem. 1972, 37, 4381. 181. West, R. A.; Barrett, H. W. Synthesis of Chloropyrimidines by Reaction with N-Chlorosuccinimide, and by Condensation Methods. J. Am. Chem. Soc. 1954, 76, 3146. 182. Shingo Yano; Yukio Tada; Hideki Kazuno; Tsutomu Sato; Junichi Yamashita; Norihiko Suzuki; Tomohiro Emura; Masakazu Fukushima; Asao, T. Uracil derivatives, and antitumor effect potentiator and antitumor agent containing the same. US005744475A, 1998. 183. Bushby, S. R. M.; Krenitsky, T. A. Preparation and method for investigating the sensitivity of microbes to antifolate-antimicrobial preparations. DE2602996A1, 1976. 184. Grierson, J. R.; Brockenbrough, J. S.; Rasey, J. S.; Wiens, L.; Vesselle, H. Synthesis and in Vitro Evaluation of 5-Fluoro-6-[(2-Iminopyrrolidin-1-YL)Methyl]Uracil, TPI(F): An Inhibitor of Human Thymidine Phosphorylase (TP). Nucleos. Nucleot. Nucl. 2009, 29, 49. 185. Coenen, M.; Faust, J.; Ringel, C.; Mayer, R. Synthesen mit Trichloracetonitril. J. Prakt. Chem. 1965, 27, 239. 186. Johnson, T. B.; Chernoff, L. H. Researches on Pyrimidines: LXXI. Synthesis of the pyrimidine nucleoside, 4-hydroxymethyluracil. J. Am. Chem. Soc. 1914, 36, 1742. 187. Liotta, L. A.; Stetler-Stevenson, W. G. Metalloproteinases and cancer invasion. Semin. Cancer Biol. 1990, 1, 99. 199 APPENDICES Publications 1. Lingyi Sun, Hriday Bera, and Wai Keung Chui*, “Synthesis of pyrazolo[1,5-a][1,3,5]triazine derivatives as inhibitors of thymidine phosphorylase”, European Journal of Medicinal Chemistry, 2013, in press. 2. Lingyi Sun, Jiarong Li, Hriday Bera, Anton V. Dolzhenko and Wai Keung Chui*, “Fragment-based Approach to the Design of 5Chlorouracil-linked-pyrazolo[1,5-a][1,3,5]triazines as Thymidine Phosphorylase Inhibitors”, submitted to European Journal of Medicinal Chemistry. 3. Lingyi Sun and Wai Keung Chui, “Synthesis and Thymidine Phosphorylase Inhibition Evaluation of Pyrazolo[1,5-a][1,3,5] triazines”, 14th International Electronic Conference on Synthetic Organic Chemistry, 2010. Posters 1. Lingyi Sun, Hriday Bera, and Wai Keung Chui, “Derivatives of pyrazolo[1,5-a][1,3,5]triazines phosphorylase”, 22nd as International inhibitors Symposium of on thymidine Medicinal Chemistry, 2012, Berlin, German. 2. Lingyi Sun, Hriday Bera, and Wai Keung Chui, “Developing the 1,3dihydro-pyrazolo[1,5-a][1,3,5]triazin-2-thioxo-4-one Novel Thymidine Phosphorylase Inhibitors”, scaffold 2011 into American Association of Pharmaceutical Scientists Annual Meeting and Exposition, 2011, Washington, USA. [...]... formation of focal adhesions as well as the phosphorylation of tyrosine397 of focal adhesion kinase (FAK), which was a nonreceptor protein-tyrosine kinase and played an important role in the attachment and migration of endothelial cells.64 Thymidine phosphorylase promotes tumor metastasis It has been found that high TP expression was associated with metastasis, and TP was able to increase the metastatic potential. .. Hydrolase (EC 3) as targets for developing enzyme inhibitors as drugs Hydrolases are a type of enzymes which catalyze the hydrolysis of their corresponding substrates A few examples of drugs which are enzyme inhibitors of hydrolases are provided below Acetylcholinesterase which hydrolyzes the neurotransmitter acetylcholine is an established target in the treatment of a range of central nervous diseases 8 For... considered as an efficient strategy for the drug development in some cases Many different types of enzymes involved in the regulation of metabolism have been targeted for the development of inhibitors to be used as drugs Some representatives, sorted by enzyme categories, are described below 1.1.1 Oxidoreductases (EC 1) as targets for developing enzyme inhibitors as drugs Oxidoreductase is an enzyme which... independent of its enzymatic activity.39, 49, 57 Finally, the antiapoptotic effect of TP was supported by numerous clinical studies It was found that expression of TP was associated with the decrease in apoptotic cells in colon,77 gastric,78 esophageal,79, 80 ovarian81 as well as oral squamous cell82 carcinomas 1.2.2.2 Thymidine phosphorylase in other diseases Many studies had suggested that TP was involved... recognized by the enzymes, leading to either blockage of the enzymes or the generation of non-functional products One such example is theantifolate-methotrexate It is structurally similar to dihydrofolate, and hence it can inhibit the enzyme dihydrofolate reductase Since many disease processes are found to be associated with the metabolite imbalance, designing enzyme inhibitors as antimetabolites has been considered... increase the structure diversity of its inhibitors 11 1.2 Thymidine phosphorylase as a target for developing enzyme inhibitors possessing therapeutic values Thymidine phosphorylase (TP) occurs widely in many normal tissues and cells Within the cell, TP is found in both the cytoplasm and the nucleus.19 TP catalyses the reverse phosphorolysis of pyrimidine nucleosides (Figure 1) The active site of TP... Triapine 1.1.2 Transferases (EC 2) as targets for developing enzyme inhibitors as drugs The function of transferase is to catalyze the transfer of a functional group from one donor molecule to an acceptor molecule Several examples of using transferases as targets for the drug design are listed below Catechol-O-methyl transferase is an enzyme that degrades dopamine, and it serves as a target for drugs... Synthesis of 2-(5-chloro-1,3-dihydropyrimidin-2,4dioxo-6-ylmethylthio)pyrazolo[1,5-a][1,3,5]triazin-4 (3H)-ones 100 xv 1 Introduction 1 1.1 A brief overview of enzyme inhibitors as drugs Enzyme inhibitors refer to a group of molecules which block the catalytic activity of enzymes According to interacting mechanisms with their targets, enzyme inhibitors can be categorized into either reversible inhibitors. .. several major challenges in the design of enzyme inhibitors as drugs Selectivity is one challenge that refers to how specific inhibitors are able to act against different isoforms of the enzyme which share the same substrates Low selectivity may lead to unwanted interactions with other isoforms, causing some potential side effects In particular, these isoenzymes are often distributed unequally in different... advantage over competitive inhibitors from this aspect The approach to design an enzyme inhibitor is to mimic the structure of the substrate, therefore most enzyme inhibitors are competitive inhibitors 2 Many enzyme inhibitors are antimetabolites, and they act by interfering with the essential metabolic pathways which may lead to disruption of normal cellular functions As antimetabolites often appear structurally . 2) as targets for developing enzyme inhibitors as drugs 6 1.1.3 Hydrolase (EC 3) as targets for developing enzyme inhibitors as drugs 8 1.1.4 Lyases (EC 4) as targets for developing enzyme inhibitors. potential therapeutic values 22 1.2.3.1 Pyrimidine derivatives as inhibitors of thymidine phosphorylase 23 iii 1.2.3.2 Purine derivatives as inhibitors of thymidine phosphorylase 29 1.2.3.3. xii LIST OF SCHEMES xiv 1. Introduction 1 1.1 A brief overview of enzyme inhibitors as drugs 2 1.1.1 Oxidoreductases (EC 1) as targets for developing enzyme inhibitors as drugs 3 1.1.2 Transferases