SỞ GD & ĐT QUẢNG NGÃI TRƯỜNG THPT NGUYỄN CƠNG PHƯƠNG KỲ THI KIỂM TRA HỌC KỲ II NĂM HỌC 2009-2010 Mơn thi: TỐN 11 Thời gian làm bài: 90 phút Họ, tên thí sinh: .SBD: . Bài (2 điểm): Tính giới hạn sau: x +1 − a. lim x→3 − x lim ( x + x − x + 1) b. x→−∞ Bài (2 điểm): a. Xét tính liên tục hàm số sau x = 3. x − 5x + x > f ( x ) = x − 2 x + x ≤ b. Chứng minh phương trình sau có nghiệm: x − 5x + x + = . Bài (2 điểm): a. Cho f ( x) = 3x +1 . Tính f ’’(1). x2 − b. Cho (C): y = x . Viết phương trình tiếp tuyến (C) biết tiếp tuyến có hệ số góc 3. Bài (3 điểm): Cho h×nh chãp S.ABCD có cạnh đáy a, cạnh bên a . Gäi I, J lÇn lỵt lµ trung ®iĨm cđa AD vµ BC. a. Chøng minh (SIJ) ⊥ (SBC). b. TÝnh cosin cđa gãc gi÷a AD vµ SB. c. TÝnh kho¶ng c¸ch gi÷a ®êng th¼ng AD vµ SB. Bài (1 điểm): Cho hàm số f ( x) = mx − (2m − 1) x + (m − 2) x − . Xác định m để f ' ( x) ≤ 0, ∀x ∈ R . ----------------- Hết ----------------- III. Đáp án TOAN 11: Bài 1: −1 x + − = lim =− a. xlim (1 điểm ) →3 − x x→3 ( x +1 + 2)( x +3) 24 lim ( x + x − x + 1) = −∞ b. x→ (1 điểm ) −∞ Bài (2 điểm): a. lim f ( x ) = lim(2 x + 1) = (0,5 đ ) x → 3− x → 3− + + lim f ( x ) = lim x − 5x + ÷ = lim( x − 2) = (0,25 đ ) x →3 x →3 x − x →3 ⇒ lim f ( x ) ≠ lim f ( x ) ⇒ f ( x ) không liên tục x = (0,25 đ ) x →3− + x →3+ b. Đặt f(x) = x − 5x + x + Vì f(x) hàm đa thức nên f(x) liên tục ¡ f(0) = ; f(1) = -1 ; f(-1) = -7 (0,25 đ) ⇒ f(0). f(-1) < ⇒ f(x) = có nghiệm thuộc (-1; 0) (0,25 đ) f(0). f( 1) < ⇒ f(x) = có nghiệm thuộc ( 0; 1) (0,25 đ) ⇒ f(x) = có nghiệm thuộc (-1; 1) (0,25 đ) Bài (2 điểm): −9 a. f’(x) = ; f’’(x)= 2. 3x+1 4. ( 3x +1) f’’(x) = 32 (0, đ) (0, đ) x2 − b. y = f ( x) = x ⇒ f '( x) = 1+ x (0,25 đ) x0 =1 ⇒ y0 =−1 ⇔ f '( x ) = ⇔ tiếp tuyến có hệ số góc x =−1 ⇒ y = (0,5 đ) 0 2Pttt tthỏa ycbt là: y = 3x – y = 3x + (0,25 đ) Bài 4: Gọi O tâm hình vuông ABCD. a. ta có: SO, IJ ⊥ BC (0,5 đ) suy : (SIJ) ⊥ BC ⊂ (SBC) ⇒ dfcm (0,5 đ) · b. AD // BC ⇒ (AD, SB) = (BC, SB)= JBS (0,5 đ) · = Xét VSBJ có : cos cos JBS c. SO = BJ = SB (0,5 đ) a . Gọi H hình chiếu O lên SJ. Khi đó, ta có : OH = a SB ⊂ (SBC) // AD ⇒ 14 (0,5 đ) d(AD, SB)= d(AD, (SBC))=d(I, (SBC))= 2.d(O, (SBC)) = 2.OH = a (0,5 đ) Bài 5: f ( x) = mx − (2m − 1) x + (m − 2) x − 2 f’(x) = 3mx − 2.(2m − 1) x + (m − 2) Trường hợp m = 0: không thỏa mãn ycbt. Trường hợp m ≠ 0: m < f ' ( x) ≤ 0, ∀x ∈ R ⇔ ⇔ m = −1 m + 2m + ≤ (0,25 đ) (0,25 đ) (0, đ) . SỞ GD & ĐT QUẢNG NGÃI TRƯỜNG THPT NGUYỄN CƠNG PHƯƠNG KỲ THI KIỂM TRA HỌC KỲ II NĂM HỌC 2009-2010 Mơn thi: TỐN 11 Thời gian làm bài: 90 phút Họ, tên thí. hàm số 3 2 ( ) (2 1) ( 2) 2f x mx m x m x= − − + − − . Xác định m để ' ( ) 0,f x x R≤ ∀ ∈ . Hết III. Đáp án TOAN 11: Bài 1: a. 2 1 2 lim lim 9 3 3 1 1 24 ( 1 2)( 3) x x x x x x + − − →. f(0) = 1 ; f(1) = -1 ; f(-1) = -7 (0,25 đ) ⇒ f(0). f(-1) < 0 ⇒ f(x) = 0 có ít nhất 1 nghiệm thuộc (-1; 0) (0,25 đ) và f(0). f( 1) < 0 ⇒ f(x) = 0 có ít nhất 1 nghiệm thuộc ( 0; 1) (0,25