Advanced luminescence based characterisation of silicon wafer solar cells

213 603 0
Advanced luminescence based characterisation of silicon wafer solar cells

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ADVANCED LUMINESCENCE-BASED CHARACTERIZATION OF SILICON WAFER SOLAR CELLS Matthew P. Peloso (B.Sc.(hon), Physics, University of Waterloo) (GCMOT, Engineering, National University of Singapore) (M.Sc., Physics, National University of Singapore) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 0.1 Acknowledgments I began my PhD program in the quantum optics group at the Physics Department, National University of Singapore (NUS). During this period of time I was able to achieve a long term goal: to work with entangled systems of light, and observe first-hand the Bell violation. Thanks to Christian Kurtsiefer and Antia Lamas-Linares for making this possible, and their help in advancing the research. Thanks particularly to Ilja Gerhardt for his dedicated work, and to Alexander Ling. Having completed my doctoral coursework and projects in quantum cryptography, I became interested in working on a project in the applied sciences. Armin Aberle offered a project at the Solar Energy Research Institute of Singapore in NUS. This project involved optical characterization of semiconductors using luminescence. This portion of my doctoral research is presented in this Thesis, whereas the work completed at the beginning of my doctoral program in the Department of Physics and the Center for Quantum Technologies is summarized in Section 0.2. Funding for this project was received from the Singapore International Graduate Award through the Agency for Science, Technology & Research and NUS, as well as the Economic Development Board of Singapore. Kind thanks to the funding agencies. The Renewable Energy Corporation (REC) at Tuas, Singapore supplied the author with multiple sample devices and material for investigation. Thanks to REC, to their scientists and engineers, including Roland Utama for sample preparation and operating the Semilab tool. ¨ rfel who provided derivations of photoluminescence A special thanks to Peter Wu spectra, and for valuable discussions on the generalized Planck law. Thanks to Pooja Chaturvedi for her effort in the characterization lab. A very special thanks to Jen Sern Lew for developing algorithms and processing data sets for interpretation of luminescence hyperspectral images, and polarization images. Other thanks go to Marius Peters for algebraic manipulations, to Thorsten Trupke and others at BT Imaging Pty Ltd for their discussions. Thanks to Jonathan Hobley for collaboration on lock-in thermography. Thanks to Mark Breese and Reni qin Min from the Physics Department at NUS for collaboration on x-ray fluorescence measurements. Thanks to Noritaka Usami for supplying silicon samples for studies on dislocations in multicrystals. Thanks to Otwin Breitenstein for discussions and measurements on defects in silicon wafer solar cells. Thanks also to Sven Riβland for lock-in thermography measurements on samples studied using inline photoluminescence characterization and defect luminescence imaging. Thanks to P&P Optica for completing the initial demonstration of hyperspectral imaging. Thanks to Photon Etc. for accepting samples for advanced studies using high resolution hyperspectral imaging, and accepting modifications to study the polarization interaction of the excitation in their system. Thanks as well to Masayuki Fukuzawa for accepting silicon wafers for comparative studies of luminescence images using transmission polarimetery. Thanks go to everyone who worked in the SERIS characterization lab. Specific thanks to Keith Punzalan who provided solar energy market data presented in this Thesis. Thomas Reindl discussed solar systems projects. Jiaji Lin compiled measurements using the photospectrometer for the home-built EL/PL tool. Thanks to Natalie Palina who performed detailed analyses of samples using the synchrotron light source. Thanks to Joachim Luther for discussions on the polarization of light emission. Thanks to Tim Walsh, Hidayat, and Martin Heinrich for collaborating on ideas, experiments, and discussing PV technology. Thanks to Wilfred Walsh for discussions on PV markets and equities. Thanks to my supervisor Armin Aberle and my co-supervisor Bram Hoex for guidance on the presentation of the scientific results. Best of luck to you all in your future endeavors. ii 0.2 Publication list The following journal articles were published by the author while at the Department of Electrical and Computer Engineering, National University of Singapore. • Matthew P. Peloso, Jen Sern Lew, Thorsten Trupke, Marius Peters, and Armin G. Aberle, Evaluating the electrical properties of multisilicon wafer solar cells using hyperspectral imaging of luminescence, Applied Physics Letters 99, 221915 (2011) • Matthew P. Peloso, Jen Sern Lew, Pooja Chaturvedi, Bram Hoex, and Armin G. Aberle, Polarization analysis for the characterization of defects in silicon wafer solar cells, Progress in Photovoltaics: Research and Applications, Paper presented at 26th EU PVSEC, Hamburg, Germany 2011, (in press, DOI: 10.1002/pip.1201) (2011) • Matthew P. Peloso, Bram Hoex, and Armin G. Aberle, Polarization analysis for the characterization of silicon wafer solar cells, Applied Physics Letters 98, 171914 (2011) The following conferences articles and conference presentations were completed/accepted while at the Department of Electrical and Computer Engineering, National University of Singapore. • Matthew P. Peloso, Jen Sern Lew, Bram Hoex, and Armin G. Aberle, Line-imaging spectroscopy for characterization of silicon wafer solar cells, Energy Procedia 15, pp. 171-178 (2012) • Matthew P. Peloso, Bram Hoex, and Armin G. Aberle, Polarization analysis for the characterization of defects in silicon wafer solar cells, Proceeding of the 26th European Photovoltaic Solar Energy Conference and Exhibition (PVSEC), Hamburg, Germany (2011) - plenary talk • Matthew P. Peloso, Detection of defect densities in raw silicon wafers using a transmission polarimeter, 38th IEEE Photovoltaic Specialists Conference (PVSC), Austin, Texas (2012) - conference proceedings and poster presentation (N.B. conference funding withdrawn by SERIS) • Natalie Palina, Matthew P Peloso, Krzysztof Banas, Bram Hoex, Study on defects in multicrystalline silicon wafer solar cells by electroluminescence imaging and synchrotron radiation induced x-ray emission, 1BO.9.5, Oral Presentation, 27th EU PVSEC (Sept. 2012) - oral presentation accepted • Matthew P. Peloso, Pooja Chaturvedi, Bram Hoex, and Armin G. Aberle, Effects of optical instrumentation on the electroluminescence based ratio method for diffusion length imaging of silicon wafer solar cells, Symposium O of ICMAT 2011, Singapore (2011) - conference poster presentation iii • Matthew P. Peloso, Jen Sern Lew, Bram Hoex, and Armin G. Aberle, Hyperspectral imaging for the spatially resolved characterization of the effective pathlength enhancement factor of a silicon wafer solar cell, Symposium O of ICMAT 2011, Singapore (2011) - conference talk • Matthew P Peloso, Dora Chen, Olga Pawluczyk, Bram Hoex, and Armin G. Aberle, Spatially resolved optical determination of the path-length enhancement factor of texturized silicon wafer solar cells, MRS-S Trilateral Conference on Advances in Nanoscience - Energy, Water & Healthcare, Singapore, (2010) - conference poster presentation • Matthew P. Peloso, Pooja Chaturvedi, Peter W¨ urfel, Bram Hoex, and Armin G. Aberle, Observations on the spectral characteristics of defect luminescence of silicon wafer solar cells, 35th IEEE Photovoltaic Specialists Conference (PVSC), Hawaii (2010) - conference proceedings and poster presentation The following work was published and/or completed by the author while at the Department of Physics and the Center for Quantum Technologies, National University of Singapore. • Matthew P Peloso, Ilja Gerhardt, Caleb Ho, Ant´ıa Lamas-Linares, and Christian Kurtsiefer, Daylight operation of a free space, entanglement-based quantum key distribution system, New Journal of Physics 11, 045007 (2009) - invited journal article • Alexander Ling, Matthew P. Peloso, Ivan Marcikic, Valerio Scarani, Ant´ıa LamasLinares, and Christian Kurtsiefer, Experimental Quantum Key Distribution Based on a Bell Test, Physical Review A - (Rapid Comm.) 78, 020301 (2008) - journal article • Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Ant´ıa Lamas-Linares, and Christian Kurtsiefer, Entanglement-based free space quantum cryptography in full daylight, Conference on Lasers and Electro-Optics (CLEO) / Conference on Quantum Electronics & Laser Science (QELS) no.4p.1 Jun (2009) - conference proceeding • Matthew P. Peloso, Ilja Gerhardt, Caleb Ho, Ant´ıa Lamas-Linares, and Christian Kurtsiefer, Daylight quantum key distribution, 4th Mathematical and Physical Sciences Graduate Congress, Singapore, 17-19 December, 2008 (conference talk and paper) - conference talk and proceeding • Alexander Ling, Matthew P. Peloso, Ivan Marcikic, Ant´ıa Lamas-Linares, and Christian Kurtsiefer, Experimental E91 quantum key distribution, Advanced Optical Concepts in Quantum Computing, Memory, and Communication, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 6903 art. no. 69030U p.U9030-U9030 January (2008) - conference proceeding • Ant´ıa Lamas-Linares, Ivan Marcikic, Caleb Ho, Matthew P. Peloso, and Christian Kurtsiefer, Free space distribution of entangled photons pairs in daylight conditions, 1-4 CT Pacific Rim Conference on Lasers and Electro-Optics (CLEO), Aug. 26-31, 2007 CL Seoul, South Korea (2007) - conference talk and proceeding iv 0.3 Overview Chapter includes an introduction to solar energy, the photovoltaic effect, and solar cells in Section 1.1, luminescence-based characterization in Section 1.2, and applications of luminescence characterization to silicon wafer solar cells in Section 1.3. Chapter gives an overview of optics required to model the silicon material in Section 2.2, develops the generalized Planck law of luminescence in Section 2.3, and the transition moment model of luminescence in Section 2.4. These models are used to interpret luminescence characterization methods for silicon wafer solar cells. Chapter gives an overview of the instrumentation built to enable electroluminescence and photoluminescence experiments of silicon wafer solar cells. The instrumentation for applications of spatially-resolved luminescence spectroscopy is discussed in Section 3.5.2, and the instrumentation for applications of spatially-resolved luminescence polarimetry is discussed in Section 3.5.1. Chapter presents experiments performed for characterization of silicon wafer solar cells. Diffusion length imaging experiments are presented in Section 4.1. Defect topology experiments are presented in Section 4.2, and x-ray fluorescence experiments are presented in Section 4.3. The later results may be found in articles written by the author of this Thesis [1, 2]. Chapter presents the results of the spatially-resolved luminescence spectroscopy experiments, with discussion and outlook. This includes applications for studying textured silicon in Section 5.1, and carrier transport properties in Section 5.2. The results may be found in articles written by the author of this Thesis [3, 4]. Chapter presents the results of the spatially-resolved luminescence polarization experiments, with discussion and outlook. This includes application to study the partial polarization of luminescence emission from silicon in Section 6.2, and the orientation of the polarization of luminescence to silicon defects in Section 6.3. The results may be found in articles written by the author of this Thesis [5, 6]. Chapter gives a theoretical calculation of the transmission of polarized light at an edge dislocation in silicon through a crossed polarizer instrument to present an alternative methodology for characterization motivated from chapter 6. This provides an alternative form of optical characterization to photoluminescence, and presents an instrument with potential application for raw silicon wafer sorting. Chapter gives a discussion and outlook based on the experiments and results presented in the Thesis. v Contents 0.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 0.2 Publication list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 0.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 0.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Introduction 1.1 1.2 Solar power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Sunlight as a source of renewable energy . . . . . . . . . . . . . . . 1.1.2 The solar spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3 The photovoltaic effect for direct conversion of sunlight into electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.4 Generation of electrons and holes . . . . . . . . . . . . . . . . . . . 1.1.5 Silicon-wafer photovoltaic devices . . . . . . . . . . . . . . . . . . . 10 1.1.6 Defects in silicon wafer solar cells . . . . . . . . . . . . . . . . . . . 13 1.1.7 Characterization of photovoltaic materials and devices . . . . . . . 15 Luminescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.1 Introduction to luminescence . . . . . . . . . . . . . . . . . . . . . 17 1.2.2 Generation and detection of luminescence . . . . . . . . . . . . . . 18 1.2.3 A method for developing luminescence-based characterization . . . 20 1.2.4 History of luminescence imaging for gallium arsenide characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3 History of luminescence imaging for silicon wafer material and photovoltaic device characterization . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 1.3.1 The spatial homogeneity of a silicon wafer solar cell . . . . . . . . 23 1.3.2 Measuring the electrical properties of a silicon wafer solar cell . . . 25 1.3.3 Identification of defects in solar cells . . . . . . . . . . . . . . . . . 27 Advancing luminescence-based characterization of silicon wafer materials and devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Modeling light emission from silicon 31 2.1 Light and optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 Optical properties of silicon . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 2.2.1 Refractive index of silicon . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 Reflectivity of silicon . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.3 Absorptivity of silicon . . . . . . . . . . . . . . . . . . . . . . . . . 36 The generalized Planck law of luminescence . . . . . . . . . . . . . . . . . 37 2.3.1 The classical spectrum of luminescence emission . . . . . . . . . . 38 vi 2.4 2.3.2 Effect of instrumentation on the measured luminescence . . . . . . 39 2.3.3 Excess carrier concentration . . . . . . . . . . . . . . . . . . . . . . 39 2.3.4 Solving electroluminescence boundary conditions . . . . . . . . . . 41 2.3.5 Solving photoluminescence boundary conditions . . . . . . . . . . . 45 2.3.6 Solving reabsorption of luminescence of a planar cell . . . . . . . . 48 2.3.7 Reabsorption of luminescence in textured wafers . . . . . . . . . . 51 The transition moment model of light emission . . . . . . . . . . . . . . . 53 2.4.1 The transition moment of light emission . . . . . . . . . . . . . . . 54 2.4.2 Emission processes in the quantum theory . . . . . . . . . . . . . . 55 2.4.3 Luminescence emission from silicon as an oscillation . . . . . . . . 57 2.4.4 Light-matter interactions . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.5 Electrodynamics for light-matter interactions . . . . . . . . . . . . 58 2.4.6 The Hamiltonian of a charge in an electromagnetic field . . . . . . 59 2.4.7 The electric dipole approximation and the transition moment . . . 61 2.4.8 Dependence of the spatial orientation of the charges on the emission 62 2.4.9 The orientation of fields in the light-matter interaction . . . . . . . 62 Instrumentation for photoluminescence and electroluminescence applied to silicon wafer solar materials and devices 3.1 3.2 Luminescence imaging instrumentation . . . . . . . . . . . . . . . . . . . . 64 3.1.1 Electroluminescence instruments . . . . . . . . . . . . . . . . . . . 64 3.1.2 Photoluminescence instruments . . . . . . . . . . . . . . . . . . . . 67 Electrical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.1 3.3 64 Temperature controller, electrical contacts, and power supply . . . 67 Optical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 Sources of optical excitation . . . . . . . . . . . . . . . . . . . . . . 69 3.3.2 Homogenization of laser light . . . . . . . . . . . . . . . . . . . . . 70 3.3.3 Camera selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.4 Optical filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.5 Imaging optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Mechanical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.5 Modifications to the luminescence-imaging instruments for advanced characterization of silicon wafer solar cells . . . . . . . . . . . . . . . . . . . . 76 3.5.1 Luminescence polarimetry instrument . . . . . . . . . . . . . . . . 77 3.5.2 Luminescence spectroscopy instrument . . . . . . . . . . . . . . . . 78 Applications of luminescence imaging of silicon wafer solar cells 4.1 82 Measuring the diffusion length of solar cells using electroluminescence imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 vii 4.1.1 The ratio method for imaging diffusion lengths of silicon wafer solar cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.1.2 Application of diffusion length imaging using different cameras and interference filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.1.3 Ratio images of multicrystalline silicon wafer solar cells . . . . . . 87 4.1.4 On the practical application of diffusion length imaging based on the ratio method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 Luminescence emission related to defects in silicon wafer solar cells . . . . 90 4.2.1 Reverse-bias luminescence and sub-bandgap luminescence . . . . . 90 4.2.2 Using voltage control and spectral analysis to enhance electroluminescence imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2.3 Results from the luminescence investigations and their association with defects in silicon wafer solar cells . . . . . . . . . . . . . . . . 95 4.2.4 Summary of the investigations of defect luminescence from silicon wafer solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3 Elemental analysis of defects in silicon wafer solar cells correlated to their luminescence characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.1 4.4 Luminescence from defects in silicon wafer solar cells . . . . . . . . 97 Analysis using synchrotron light source for x-ray fluorescence measurements 99 4.4.1 Experimental results from SRIXE analysis . . . . . . . . . . . . . . 99 4.4.2 Summary and discussion on defect luminescence and x-ray fluorescence studies on multicrystalline silicon wafer solar cells . . . . 101 Luminescence spectroscopy for characterization of silicon wafer solar cells 5.1 103 Evaluation of the textured silicon wafer solar cell using luminescence spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.1.1 Dependence of the luminescence spectrum on the pathlength enhancement factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Measuring pathlength enhancement of textured solar cells with a hyperspectral imaging instrument . . . . . . . . . . . . . . . . . . . 105 5.1.3 Fitting procedures on the measured spectra . . . . . . . . . . . . . 108 5.1.4 Resulting measured spectra of the textured samples . . . . . . . . 109 5.1.5 Discussion on the evaluation of the pathlength enhancement factor using luminescence spectroscopy . . . . . . . . . . . . . . . . . . . 112 5.2 Determining the electrical properties of a multicrystalline silicon wafer solar cell with a hyperspectral imaging instrument . . . . . . . . . . . . . 112 5.2.1 Quantifying the luminescence spectrum . . . . . . . . . . . . . . . 114 viii 5.2.2 Developing characterization of diffusion length of minority charge carriers from the luminescence spectrum . . . . . . . . . . . . . . . 117 5.2.3 Sample preparation and experimental procedures for luminescence spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.2.4 Data processing procedures for the spatially-resolved luminescence spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.2.5 Resulting diffusion length images based on the spatially resolved luminescence spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.3 Summary and conclusion on spatially-resolved luminescence spectroscopy of silicon wafer solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Polarization analysis of luminescence for characterization of silicon wafer solar cells 6.1 6.2 125 The nature of polarization anisotropy of emission . . . . . . . . . . . . . . 125 6.1.1 Spatial anisotropy of defects in silicon . . . . . . . . . . . . . . . . 127 6.1.2 Extended defects in multicrystalline silicon . . . . . . . . . . . . . 128 6.1.3 Polarized emission from a dipole oscillator . . . . . . . . . . . . . . 129 6.1.4 Dislocation emission from multicrystalline silicon . . . . . . . . . . 131 Partial polarization images of silicon wafer solar cells . . . . . . . . . . . . 134 6.2.1 Experimental procedure used to perform polarization analysis on defect luminescence . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.2.2 Resulting analysis of polarization analysis and electroluminescence images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3 Orientation of the polarization of luminescence from dislocations in multicrystalline silicon solar cells . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.3.1 On the anisotropy of the Bloch bands at extended defects in silicon wafers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.4 Conclusion and outlook of luminescence polarimetry of silicon wafer solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Theory of defect detection in raw silicon wafers using transmission polarimetry 7.1 148 Introduction and motivation for the use of transmission polarimetry for wafer sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 7.1.1 Comparing transmission polarimetery with photoluminescence imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.1.2 Calculation of the transmission of light through a cross polarizer arrangement including a raw silicon wafer . . . . . . . . . . . . . . 152 ix [273] S. Chan and P. M. Fauchet, “Tunable, narrow, and directional luminescence from porous silicon light emitting devices,” Applied Physics Letters, vol. 75, p. 274, 1999. [274] T. Trupke, R. A. Bardos, M. D. Abbott, and J. E. Cotter, “Suns-photoluminescence: Contactless determination of current-voltage characteristics of silicon wafers,” Applied Physics Letters, vol. 87, p. 093503, 2005. [275] R. A. Bardos, T. Trupke, M. C. Schubert, and T. Roth, “Trapping artifacts in quasi-steadystate photoluminescence and photoconductance lifetime measurements on silicon wafers,” Applied Physics Letters, vol. 88, p. 053504, 2006. [276] P. W¨ urfel, “The chemical potential of luminescent radiation,” Journal of Luminescence, vol. 24, no. 5, pp. 925–928, 1981. [277] P. W¨ urfel, “The chemical potential of radiation,” Journal of Physics C : Solid State Physics, vol. 15, pp. 3967–3985, 1982. [278] P. W¨ urfel, “Generation of entropy by the emission of light,” Journal of Physics and Chemistry of Solids, vol. 49, no. 6, pp. 721–723, 1988. [279] B. Feuerbacher and P. W¨ urfel, “Verification of a generalised Planck law by investigation of the emission from GaAs luminescent diodes,” Journal of Physics: Condensed Matter, vol. 2, pp. 3803– 3810, 1990. [280] K. Schick, E. Daub, S. Finkbeiner, and P. W¨ urfel, “Verification of a generalized planck law for luminescence radiation from silicon solar cells,” Applied Physics A: Solids and Surfaces, vol. 54, no. 2, pp. 109–114, 1992. [281] A. van der Heide, J. Bultman, J. Hoornstra, A. Schonecker, G. Wyers, and W. Sinke, “Optimizing the front side metallization process using the corescan,” in Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference 2002, 2002. [282] O. Breitenstein, A. Khanna, Y. Augarten, J. Bauer, J.-M. Wagner, and K. Iwig, “Quantitative evaluation of electroluminescence images of solar cells,” Physica Status Solidi RRL, vol. 4, no. 1-2, pp. 7–9, 2010. [283] M. Glatthaar, J. Haunschild, R. Zeidler, M. Demant, J. Greulich, B. Michl, W. Warta, S. Rein, and R. Preu, “Evaluating luminescence based voltage images of silicon solar cells,” Journal of Applied Physics, vol. 108, p. 014501, 2010. [284] J. A. Giesecke, M. Kasemann, and W. Warta, “Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images,” Journal of Applied Physics, vol. 106, p. 014907, 2009. [285] U. Rau, “Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells,” Physical Review B, vol. 76, p. 085303, 2007. [286] U. Rau and R. Brendel, “The detailed balance principle and the reciprocity theorem between photocarrier collection and dark carrier distribution in solar cells,” Journal of Applied Physics, vol. 84, no. 11, pp. 6412–6418, 1998. [287] T. Kirchartz, A. Helbig, W. Reetz, M. Reuter, J. H. Werner, and U. Rau, “Reciprocity between electroluminescence and quantum efficiency used for the characterization of silicon solar cells,” Progress in Photovoltaics: Research and Applications, vol. 17, p. 394402, 2009. [288] R. Br¨ uggemann and G. Bauer, “Limitations in the application of the ideal-diode model to the analysis of luminescence from silicon solar cells,” Materials Science and Engineering B, vol. 159160, pp. 278–281, 2009. [289] G. Stokkan, S. Riepe, O. Lohne, and W. Warta, “Spatially resolved modeling of the combined effect of dislocations and grain boundaries on minority carrier lifetime in multicrystalline silicon,” Journal of Applied Physics, vol. 101, p. 053515, 2007. 183 [290] M. K¨ as, S. Seren, T. Pernau, and G. Hahn, “Light-modulated lock-in thermography for photosensitive pn-structures and solar cells,” Progress in Photovoltaics: Research and Applications, vol. 12, p. 355, 2004. [291] J. C. White and J. G. Smith, “Observation of carrier densities in silicon devices by infrared emission,” Journal of Physics E, vol. 10, pp. 817–825, 1977. [292] O. Breitenstein and M. Langenkamp, Lock-in thermography - basics and use for functional diagnostics of electrical components. Springer Verlan, Berlin/Heidelberg, 2003. [293] F. Huster, S. Seren, G. Schubert, M. Kaes, G. Hahn, O. Breitenstein, and P. P. Altermatt, “Shunts in silicon solar cells below screen-printed silver contacts,” in Proceedings of the 19th European PVSEC, Paris, 2004, pp. 832–835, 2004. [294] O. Breitenstein, M. Langenkamp, O. Lang, and A. Schirrmacher, “Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography,” Solar Energy Materials & Solar Cells, vol. 65, p. 55, 2000. [295] M. Alonso-Garc´ıa and J. Ru´ız, “Analysis and modeling the reverse characteristic of photovoltaic cells,” Solar Energy Materials & Solar Cells, vol. 90, p. 11051120, 2006. [296] M. Alonso-Garc´ıa, J. Ru´ız, and F. Chenloa, “Experimental study of mismatch and shading effects in the IV characteristic of a photovoltaic module,” Solar Energy Materials & Solar Cells, vol. 90, p. 329340, 2006. [297] W. Herrmann, M. C. Alonso, W. Boehmer, and K. Wambach, “Effective hot-spot protection on PV modules - characteristics of crystalline silicon cells and consequences for cell production,” in Proceedings of the 17th European PVSEC, Munich 2001, 2001. [298] F. Dreckschmidt, T. Kaden, H. Fiedler, and H. M¨ oller in Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milano, Italy, (WIP, Munich, 2007), p. 238, 2007. first interest in Reverse Bias. [299] N. Usami, K. Kutsukake, K. Fujiwara, I. Yonenaga, and K. Nakajima, “Structural origin of a cluster of bright spots in reverse bias electroluminescence image of solar cells based on Si multicrystals,” Applied Physics Express, vol. 1, p. 075001, 2008. [300] O. Breitenstein, J. Bauer, M. Kittler, T. Arguirov, and W. Seifert, “EBIC and luminescence studies of defects in solar cells,” Scanning, vol. 30, no. 4, pp. 331–338, 2008. [301] M. Kasemann, W. Kwapil, M. Schubert, H. Habenicht, B. Walter, M. The, S. Kontermann, S. Rein, O. Breitenstein, J. Bauer, A. Lotnyk, B. Michl, H. Nagel, A. Sch¨ utt, J. Carstensen, H. F¨ oll, T. Trupke, Y. Augarten, H. Kampwerth, R. Bardos, S. Pingel, J. Berghold, W. Warta, and S.W.Glunz, “Spatially resolved silicon cell characterization using infrared imaging methods,” in IEEE Photovoltaic specialists conference, 2008. [302] A. Kitiyanan, A. Ogane, A. Tani, T. Hatayama, H. Yano, Y. Uraoka, and T. Fuyuki, “Comprehensive study of electroluminescence in multicrystalline silicon solar cells,” Journal of Applied Physics, vol. 106, p. 043717, 2009. [303] M. P. Peloso, N. Palina, K. Banas, A. Banada, M. Breese, and A. Aberle, “Comparing defect luminescence images from multicrystalline Si wafer solar cells using x-ray flourescence,” Physica Status Solidi RRL, vol. Submitted, 2012. [304] T. Fuyuki and A. Kitiyanan, “Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence,” Applied Physics A, vol. 96, p. 189196, 2009. [305] E. Hecht, Optics 4th edition. Addison Wesley, 2001. [306] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, New York, 1991. 184 [307] M. Born and E. Wolf, Principles of Optics. Pergamon Press, Oxford, 1980. [308] G. R. Fowles, Introduction to Modern Optics. Dover, Mineola, 1989. [309] F. Wooten, Optical Properties of Solids. North Holland, Amsterdam, 1972. [310] P. A. Schumann, W. A. Keenan, A. H. Tong, H. H. Gegenwarth, and C. P. Schneider, “Silicon optical constants in the infrared,” Journal of the Electrochemical Society, vol. 118, pp. 145–148, 1971. [311] A. Erdelyi, “Comments on the derivation of Snell’s law of refraction,” Zeitchrift Fur Physik, vol. 95, pp. 115–132, 1935. [312] K. Fuwa and B. L. Vallee, “Physical basis of analytical atomic absorption spectrometry - pertinence of Beer-Lambert law,” Analytical Chemistry, vol. 35, pp. 942–&, 1963. [313] H. J. Babrov and P. M. Henry, “Experiments on the applicability of the Beer-Lambert absorption law to the spectra of both CO2 and H2O,” Spectrochimica Acta, vol. 17, pp. 1117–1117, 1961. [314] A. A. Volfson and V. K. Subashie, “Fundamental absorption edge of silicon heavily doped with donor or acceptor impurities,” Societ Physics Semiconductors - USSR, vol. 1, pp. 327–&, 1967. [315] H. R. Philipp and E. A. Taft, “Optical constants of silicon in the region to 10 eV,” Physical Review, vol. 120, pp. 37–38, 1960. [316] J. Chelikowsky and M. Cohen, “Non-local pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Physical Review B, vol. 14, pp. 556–582, 1976. [317] G. E. Jellison and F. A. Modine, “Optical absorption coefficient of silicon at 1.152 at elevated temperatures,” Applied Physics Letters, vol. 41, pp. 80–182, 1982. [318] M. Green, J. Zhao, A. Wang, and T. Trupke, “High efficiency silicon light emitting diodes,” in Towards the first silicon laser (Pavesi, L and Gaponenko, S and DalNegro, L, ed.), vol. 93 of NATO science series, series II: mathematics, physics and chemistry, pp. 1–10, 2003. Conference of the NATO Advanced Research Workshop on Towards the First Silicon Laser, Trent, Italy, Sep. 21-26, 2002. [319] H. S. Nalwa, ed., Silicon-based Materials and Devices. Academic Press, London, 2001. [320] A. I. Efimova, E. Y. Krutkova, L. A. Golovan, M. A. Fomenko, P. K. Kashkarov, and V. Y. Timoshenko, “Birefringence and anisotropic optical absorption in porous silicon,” Journal of Experimental and Theoretical Physics: Order, Disorder, and Phase Transitions in Condensed Systems, vol. 105, pp. 599–609, 2007. [321] L. S. Hounsome, R. Jones, M. J. Shaw, and P. R. Briddon, “Photoelastic constants in diamond and silicon,” Physica Status Solidi A, vol. 203, pp. 3088–3096, 2006. [322] R. Bullough, “Birefringence caused by edge dislocations in silicon,” Physical Review, vol. 110, pp. 620–623, 1958. [323] W. L. Bond and J. Andrus, “Photographs of the stress field around edge dislocations,” Physical Review, vol. 101, p. 1211, 1956. [324] D. K. Biegelsen, “Photoelastic tensor of silicon and the volume dependence of the average gap,” Physical Review Letters, vol. 32, pp. 1196–1199, 1974. [325] C. Higginbotham, M. Cardona, and F. Pollak, “Intrinsic piezobirefringence of Ge, Si, and GaAs,” Physical Review, vol. 184, pp. 821–829, 1969. [326] S. Mendelson, “Birefringence due to dislocations in glide bands of rocksalt single crystal,” Journal of Applied Physics, vol. 32, pp. 199–2004, 1961. 185 [327] A. H. Cottrell, Dislocations and Plastic Flow in Crystals, 2nd Ed. Oxford University Press, London, 1956. [328] V. Ganapati, S. Schoenfelder, S. Castellanos, S. Oener, R. Koepge, A. Sampson, M. A. Marcus, B. Lai, H. Morhenn, G. Hahn, J. Bagdahn, and T. Buonassisi, “Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon,” Journal of Applied Physics, vol. 108, p. 063528, 2010. [329] W. Sellmeier, “Zur erkl arung der abnormen farbenfolge im spectrum einiger substanzen,” Annalen der Physik und Chemie, vol. 219, pp. 272–282, 1871. [330] C. D. Salzberg and J. J. Villa, “Infrared refractive indexes of silicon, germanium and modified selenium glass,” Journal of the Optical Society of America, vol. 47, pp. 244–246, 1957. [331] C. M. Randall and R. D. Rawcliff, “Refractive indices of germanium silicon and fused quartz in far infrared,” Applied Optics, vol. 6, pp. 1889–&, 1967. [332] J. J. Villa, “Additional data on refractive-index of silicon,” Applied Optics, vol. 11, pp. 2102–&, 1972. [333] F. Lukes, “The temperature-dependence of the refractive index of silicon,” Journal of Physics and Chemistry of Solids, vol. 11, pp. 342–344, 1959. [334] W. L. Wolfe and W. Icenogle, “Refractive indexes of silicon and germanium from 77 to 300 K,” Journal of the Optical Society of America, vol. 62, pp. 720–&, 1972. [335] H. W. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive-indices and temperature coefficients of germanium and silicon,” Applied Optics, vol. 15, pp. 2348–2351, 1976. [336] M. Bass, ed., Handbook of Optics, 3rd edition, Vol. 4. McGraw-Hill, 2009. [337] Z. T. Swimm and K. A. Dumas, “Optical-absorption coefficient and minority-carrier diffusion length measurements in low-cost silicon solar-cell material,” Journal of Applied Physics, vol. 53, pp. 7502–7504, 1982. [338] K. Rajkanan, R. Singh, and J. Shewchun, “Absorption-coefficient of silicon for solar-cell applications,” Solid-State Electronics, vol. 22, pp. 793–795, 1979. [339] O. L. Russo, “Effect of impurities on optical-absorption coefficient of silicon,” Bulletin of the American Physical Society, vol. 23, pp. 17–17, 1978. [340] M. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K,” Progress in Photovoltaics: Research and Applications, vol. 3, no. 3, pp. 189–92, 1995. [341] O. L. Russo, “Fermi level shifts in silicon as determined by optical-absorption coefficient,” Bulletin of the American Physical Society, vol. 23, pp. 548–548, 1978. [342] J. Geist, A. Migdall, and H. P. Baltes, “Analytical representation of the silicon absorptioncoeffieicnt in the indirect transition region,” Applied Optics, vol. 27, pp. 3777–3779, 1988. [343] G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, “Exciton and phonon effects in the absorption spectra of germanium and silicon,” Journal of Physics and Chemistry of Solids, vol. 8, pp. 388–392, 1959. [344] K. Bucher, J. Bruns, and H. G. Wagemann, “Absorption coefficient of silicon: An assessment of measurements and the simulation of temperature variation,” Journal of Applied Physics, vol. 75, pp. 1127 – 1132, 2009. [345] W. Spitzer and H. Y. Fan, “Infrared absorption in n-type silicon,” Physical Review, vol. 108, pp. 268–271, 1957. 186 [346] T. Trupke, E. Daub, and P. W¨ urfel, “Absorptivity of silicon solar cells obtained from luminescence,” Solar Energy Materials & Solar Cells, vol. 53, pp. 103–114, 1997. [347] J. A. Giesecke, M. Kasemann, M. C. Schubert, P.W¨ urfel, and W. Warta, “Separation of local bulk and surface recombination in crystalline silicon from luminescence reabsorption,” Progress in Photovoltaics: Research and Applications, vol. 18, pp. 10–19, 2010. [348] D. Hinken, K. Bothe, K. Ramspeck, S. Herlufsen, and R. Brendel, “Determination of the effective diffusion length of silicon solar cells from photoluminescence,” Journal of Applied Physics, vol. 105, p. 104516, MAY 15 2009. [349] P. W¨ urfel, “Limits on light emission from silicon,” Chinese Optics Letters, vol. 7, no. 4, pp. 268– 270, 1999. [350] D. G. Zill, Differential Equations with Modeling Applications. Brooks/Cole, 2001. [351] M. Spiegel, Schaum’s Mathematical Handbook of Formulas and Tables. McGraw Hill Companies, 1999. [352] Wolfram alpha - search online at URL http://www.wolframalpha.com/. [353] C. Hicks, M. Kalatsky, R. A. Metzler, and A. O. Goushcha, “Quantum efficiency of silicon photodiodes in the near-infrared spectral range,” Applied Optics, vol. 42, pp. 4415–4422, 2003. [354] A. Mandelis, J. Batista, and D. Shaughnessy, “Infrared photocarrier radiometry of semiconductors: Physical principles, quantitative depth profilometry, and scanning imaging of deep subsurface electronic defects,” Physical Review B, vol. 67, p. 205208, 2003. [355] P. W¨ urfel, “Private communication - derivation completed at the Solar Energy Research Institute of Singapore (unpublished),” tech. rep., Solar Energy Research Institute of Singapore (SERIS), 2010. [356] T. C. R¨ oder, S. J. Eisele, P. Grabitz, C. Wagner, G. Kulushich, J. R. K¨ ohler, and J. H. Werner, “Add-on laser tailored selective emitter solar cells,” Progress in Photovoltaics: Research and Applications, vol. 18, pp. 505–510, 2010. [357] C. V´ azquez, J. Alonso, M. A. V´ azquez, L. Caballeroa, R. Romerob, and J. Ramos-Barrado, “Efficiency of commercial Cz-Si solar cell with a shallow emitter,” Materials Science and Engineering B - Advanced Functional Solid State Materials, vol. 172, pp. 43–49, 2010. [358] J. E. Greivenkamp, “Field guide to geometrical optics,” tech. rep., SPIE Field Guides Vol. FG01, pp. 19-20, 2004. [359] B. Gonz´ alez-D´ıaz, R. Guerrero-Lemus, B. Diaz-Herrera, N. Marreroa, J. M´endez-Ramos, and D. Borchert, “Optimization of roughness, reflectance and photoluminescence for acid textured mcSi solar cells etched at different HF/HNO(3) concentrations,” in Symposium on Advanced Silicon Materials Research for Electronic and Photovoltaic Applications held at the 2008 E-MRS Spring Meeting, Strasbourg, France, May 26-30, 2008, 2008. [360] Y. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multicrystalline silicon wafers through different chemical approaches for solar cell fabrication,” Solar Energy Materials & Solar Cells, vol. 92, pp. 960–968, 2008. [361] S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Solar Energy, International Conference on Solar Renewable Energy News, Florence, Italy, April 02-08, 2005, vol. 80, pp. 701–706, 2006. [362] M. Peters, M. R¨ udiger, D. Pelzer, H. Hauser, M. Hermle, and B. Bl¨ asi, “Electro-optical modelling of solar cells with photonic structures,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6-10 September 2010, Valencia, Spain, 2010. 187 [363] M. Peters, “Private communication - work completed at the Solar Energy Research Institute of Singapore,” tech. rep., the Solar Energy Research Institute of Singapore, 2011. [364] M. A. Green, “Analytical expressions for spectral composition of band photoluminescence from silicon wafers and bricks,” Applied Physics Letters, vol. 99, p. 131112, 2011. [365] D. C. Giancoli, Physics, 5th Ed. Prentice Hall, Upper Saddle River, New Jersey, 1998. [366] A. H. Kitai, G. Blasse, U. Pohl, H. Gumlich, G. Burdick, M. Downer, G. Muller, S. Chadha, R. Mach, S. DenBaars, B. Sanders, T. Peters, R. Pappalardo, and R. Hunt, Solid State Luminescence: Theory, materials and devices. Chapman & Hall, 1993. [367] R. Ropp, Luminescence and the solid state. Elsevier, 2004. [368] J. Weiner and P. T. Ho, Light-matter interactions: Fundamentals and Applications (available online). Laboratoire de Collisions Agregats, et Reactivte, Universite Paul Sabatier, 31062 Toulouse, France, 2002. [369] W. Heitler, The Quantum Theory of Radiation. Oxford at the Clarendon Press, 1954. [370] D. G. Griffiths, Introduction to Quantum Mechanics (2nd Edition). Addison Wesley, 2004. [371] D. Walls and G. Milburn, Quantum Optics. Springer-Verlag, Berlin, 2008. [372] R. Loudon, The Quantum Theory of Light, 2nd Ed. Clarendon Press, Oxford, 1983. [373] Y. B. Band, Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers. John Wiley & Sons, West Sussex, 2006. [374] D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy. Academic Press, 1990. [375] P. W¨ urfel, S. Finkbeiner, and E. Daub, “Generalized Planck’s radiation law for luminescence via indirect transitions,” Applied Physics A Materials Science Processing, Springer, vol. 60, pp. 67–70, 1995. [376] A. Corney, Atomic and Laser Spectroscopy. Clarendon, Oxford, 1977. [377] R. Ditchburn, Light, 3rd ed. Academic, New York, 1976. [378] M. D. Galanin, Transition Probability, ch. 2, pp. 38–42. Cambridge International Science Publishing, 1996. [379] M. Spiegel, Schaum’s Outlines: Complex Variables (With an Introduction to Conformal Mapping and Its Applications). The McGraw Hill Companies, 1964. [380] R. Shankar, Principles of Quantum Mechanics, 2nd Ed. Springer Science and Business Media, Inc., 1994. [381] J. Audretsch, Entangled Systems: New Directions in Quantum Physics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007. [382] B. Deveaud, A. Quattropani, and P. Schwendimann, eds., Electron and Photon Confinement in Semiconductor Nanostructures, Proceedings of the International School of Physics ”Enrico Fermi”, Course by the International School of Physics Enrico Fermi, 2003. [383] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics (2 vol. set). Hermann and John Wiley and Sons., Inc., Paris, 1977. [384] D. J. Griffiths, Introduction to Electrodynamics (third ed.). Prentice Hall, 1999. [385] J. D. Jackson, Classical Electrodynamics. John Wiley and Sons, New York, 1975. 188 [386] S. V. Sazonov and E. V. Trifonov, “Solutions for Maxwell-Bloch equations without using the approximation of a slowly varying envelope - circularily-polarized video pulses,” Journal of Physics B - atomic molecular and optical physics, vol. 27, pp. L7–L12, 1994. [387] A. Tokmakoff, “Notes: 4.1 interaction of light with matter, available at url http://www.mit.edu/ tokmakof/tdqms/notes,” tech. rep., MIT Department of Chemistry, 2008. [388] J. S. Townsend, A Modern Approach to Quantum Mechanics, 2nd ed. University Science Books, Sausalito, CA, 2000. [389] H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics (2nd ed.). Addison-Wesley Pub. Co., 1980. [390] A. L. Efros, “Luminescence polarization of CdSe microcrystals,” Physical Review B, vol. 46, pp. 7448–7458, 1992. [391] A. L. Efros, “Luminescence polarization of CdSe microscrystals with hexagonal lattice structure,” Physica B, vol. 185, pp. 575–579, 1993. [392] M. Chamarro, C. Gourdon, and P. Lavallard, “Photoluminescence polarization of semiconductor nanocrystals,” Journal of Luminescence, vol. 70, pp. 222–237, 1996. [393] M. H. Grimsditch, E. Kisela, and M. Cardona, “Real and imaginary elasto-optic constants in silicon,” Physica Status Solidi A, vol. 60, p. 135, 1980. [394] P. Y. Yu, M. Cardonna, and F. H. Pollak, “Intrinsic piezobirefringence in GaSb, InAs, and InSb,” Physical Review B, vol. 3, pp. 340–346, 1971. [395] M. Yamada, “Quantitative photoelastic measurement of residual strains in undoped semiinsulating gallium arsenide,” Applied Physics Letters, vol. 47, pp. 365–367, 1985. [396] M. Fukuzawa and M. Yamada, “Photoelastic characterization on multicrystalline silicon substrates for solar cell,” Materials Science in Semiconductor Processing, vol. 9, pp. 266–269, 2006. [397] L. N. Vzquez, “Experimental setup for carrier lifetime measurement based on photoluminescence response: Design, construction and calibration,” Master’s thesis, Grup de Recerca en Micro i Nanotecnologies, Departament dEnginyeria Electrnica, Universitat Politcnica de Catalunya, Edifici C4, Campus Nord, C/Jordi Girona 1-3, 08034 Barcelona, Spain, 2009. [398] “Light emission from silicon,” in Light Emission from Silicon Proceedings of Symposium E on light emission from silicon of the 1993 E-MRS spring conference Strasbourg, France (J. Vial, ed.), North-Holland, May 1993. [399] G. Smestad, Luminescence as a predictor of quantum solar energy conversion, Thesis No. 1263. PhD thesis, The Swiss Federal Institute of Technology (EPFL), Lausanne, Swizerland, 1994. [400] A. Garg, “Photoluminescence characterization of patterned quantum dots and inverse quantum dots,” Master’s thesis, University of Illinois at Urbana-Champaign, 2011. [401] M. Kasemann, What photons tell us about solar cells - Infrared imaging techniques for crystalline silicon solar cell characterization and production control. PhD thesis, University of Freiburg, 2010. [402] D. Kiliani, Aufbau eines Lumineszenz-Messplatzes zur Charakterisierung von Solarzellen. PhD thesis, Fachbereich Physik der Universitat Konstanz, 2009. [403] M. Schubert, Detektion von Infraroter Strahlung zur Beurteilung der Materialqualit¨t von SolarSilizium. PhD thesis, an der Universitt Konstanz Fakultt fr Physik, 2008. [404] J. Giesecke, Messung von Minorit¨ atsladungstr¨ ager-diffusionsl¨ angen in Silicium-solarzellen mit Lumineszenzmethoden. PhD thesis, Diplomarbeit, Universit¨ at Konstanz, 2008. 189 [405] E. Daub, Photolumineszenz von silizium. PhD thesis, Universit at Karlsruhe, 1995. [406] M. The, Messung von Minorit¨ atsladungstr¨ agerlebensdauern in Silizium mit Hilfe von Photoluminescence-Imaging. PhD thesis, Universit¨ at Freiberg, 2007. [407] M. R¨ udiger, Analyse von Defekten in Silizium mittels Photolumineszenz-spektroskopie. PhD thesis, Universitat Freiberg, 2007. [408] P. Yoder, D. Vukobratovich, and R. A. Paquin, Opto-mechanical Systems Design (Optical Science and Engineering). Marcel Decker, Inc., New York, 1993. [409] W. J. Smith, Modens Lens Design. McGraw-Hill, 2005. [410] P. Yoder, Mounting Optics in Optical Instruments, 2nd Edition (SPIE Press Monograph Vol. PM181). SPIE, 2008. [411] J. H. Moore, C. C. Davis, M. A. Coplan, and S. C. Greer, Building Scientific Apparatus. University Press, Cambridge, 2009. [412] S. Donati, Electro-Optical Instrumentation: Sensing and Measuring with Lasers. Prentice Hall, 2004. [413] T. Fuyuki, “Method and apparatus for evaluating solar cell and use thereof,” 2007. [414] H. Nagel, “Method and apparatus for localizing production errors in a semiconductor component part,” 2010. [415] P. Wurfel, “System and method for determining surface recombination velocity,” 2010. [416] T. Trupke, “Method and system for inspecting indirect bandgap semiconductor structure,” 2009. [417] T. Trupke, “Photovoltaic cell manufacturing,” 2011. [418] T. Trupke, “Wafer imaging and processing method and apparatus,” 2011. [419] T. Trupke, “Device characterization utilizing spatially resolved luminescence imaging,” 2009. [420] T. Trupke, “Improved illumination systems and methods for photoluminescence imaging of photovoltaic cells and wafers,” 2011. [421] T. Trupke, “Photoluminescence imaging systems for silicon photovoltaic cell manufacturing,” 2011. [422] K. A. Jones, Introduction to Optical Electronics. Harper & Row Publishers, Inc., 1987. [423] K. Bothe, P. Phohl, J. Schmidt, T. Weber, P. Altermatt, B. Fischer, and R. Brendel, “Electroluminescence imaging as an in-line characterization tool for solar cell production,” in Proceedings of the 21st European PVSEC, Dresden, 2006, pp. 597–600, 2006. [424] S. Rim, M. Baldrias, and M. Morse, “Temperature of solar cells in reverse bias: Theory and applications,” in IEEE Photovoltaic Specialists Conference, 2010. [425] M. Sargent, M. Scully, and W. E. Lamb, Laser Physics. Addison-Wesley Publishing Company, Tokyo, 1974. [426] T. Laurin, ed., The Photonics Handbook 2004, Book 3. Laurin Publishing, 2004. [427] N. Narendran, L. Deng, R. M. Pysar, Y. Gu, and H. Yu, “Performance characteristics of high-power light emitting diodes,” in Society of Photo-Optical Instrument Engineers: Thirs international conference on solid state lighting, 2004. [428] Jenoptik, “URL at http://www.jenoptik.com/en-diode-laser,” tech. rep., Jenoptik, 2012. 190 [429] Coherent, “URL at http://www.coherent.com/products/?1534/diode-lasers (2012),” tech. rep., Coherent, 2012. [430] F. C. Wippermann, U. D. Zeitner, and P. D. Peter, “Fly’s eye condenser based on chirped microlens arrays - art. no. 666309,” in Proceedings of the society of photo-optical instrumentation engineers (SPIE), Laser beam shaping VIII, Conference on Laser Beam Shaping VIII, San Diego, CA Aug. 28-29, 2007, vol. 6663, pp. 66309–66309, 2007. [431] N. Lindlein, A. Bich, and M. Eisner, “Flexible beam shaping system using fly’s eye condenser,” Applied Optics, vol. 49, pp. 2382–2390, 2010. [432] R. Voelkel and K. J. Weible, “Laser beam homogenizing: Limitations and constraints,” in Proceedings of SPIE: Conference on Optical Fabrication, Testing, and Metrology III Location, Glasgow, Scotland, September 02-04, 2008, vol. 7102, 2008. [433] B. G. Growther, D. G. Koch, and J. M. Kunick, “A fly’s eye condenser system for uniform illumination,” in Proceedings of the society of photo-optical instrumentation engineers (SPIE), International Optical Design Conference, Tucson, AZ, June 03-05, 2002, vol. 4832, pp. 302–310, 2002. [434] R. Bitterli, T. Scharf, and H.-P. Herzig, “Fabrication and characterization of linear diffusers based on concave micro lens arrays,” Optics Express, vol. 18, pp. 14251–14261, 2010. [435] H. Takino, T. Kawai, and Y. Takeuchi, “5-axis control ultra-precision machining of complexshaped mirrors for extreme ultraviolet lithography system,” Cirp Annals - manufacturing technology, vol. 56, pp. 123–126, 2007. [436] J. Janesick and T. Elliott, “History and advancement of large array scientific CCD imagers,” Astronomical CCD observing and reduction techniques, Astronomical Society of the Pacific, vol. 23, p. 1, 1992. [437] T. R. Hoelter, S. M. Petronio, R. J. Carralejo, J. D. Frank, and J. H. Graff, “Flexible high performance ir camera systems,” Infrared technology and applications XXV, Proceedings of the society of photo-optical instrumentation engineers (SPIE), Infrared Technology and Applications XXV Conference, Orlando, Florida, vol. 3698, pp. 837–846, 1999. [438] M. H. Ettenberg, M. J. Lange, M. T. O’Grady, J. S. Vermaak, M. J. Cohen, and G. H. Olsen, “A room temperature 640x512 pixel near-infrared InGaAs focal plane array,” Infrared detectors and focal plane arrays VI, Proceedings of the society of photo-optical instrumentation engineers (SPIE), 6th Conference on Infrared Detectors and Focal Plane Arrays, Orlando, Florida, vol. 4028, pp. 201–207, 2000. [439] Y. Lelikov, Y. Rebane, S. Ruvimov, A. Sitnikova, D. Tarhin, and Y. Shreter, “A classification of the dislocation-related photoluminescence in silicon,” Physica Status Solidi B, vol. 172, pp. 53–63, 1992. [440] A. Technology, “Andor product portfolio, available online at www.andor.hk/pdfs/literature/AndorP roductP ortf olio.pdf, tech.rep., AndorT echnologies, 2012. [441] W. J. Smith, Modern optical engineering: the design of optical systems. McGraw-Hill, 1998. [442] V. N. Mahajan, Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE Press Book). SPIE Press, 1998. [443] M. Peloso and B. Hoex, “A live demonstration of electroluminescence imaging performed at the solar energy research institute of singapore booth,” in Clean Energy Expo Asia, 18th - 20th November 2009. [444] G. Fang, J. E. Maclennan, and N. A. Clark, “High extinction polarimeter for the precision measurement of the in-plane optical anisotropy of molecular mono layers,” Langmuir, vol. 26, pp. 11686– 11689, 2010. 191 [445] C. E. Moeller and D. R. Grieser, “Observations of defects in crossed Glan-Thompson polarizers,” Applied Optics, vol. 8, pp. 206–&, 1969. [446] J. Kemp, X. Q. Jiang, and Y. N. Ning, “A displacement measurement system, utilizing a Wollaston interferometer,” Optics and Laser Technology, vol. 30, pp. 71–75, 1998. [447] P. Martinsen, P. Schaare, and M. Andrews, “A versatile near infrared imaging spectrometer,” Journal of Near Infrared Spectroscopy, vol. 7, pp. 17–25, 1999. [448] T. Pernau, P. Fath, and E. Bucher, “Phase sensitive LBIC analysis,” in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, pp. 442 – 445, Fachbereich Phys., Konstanz Univ., Germany, May 2002. [449] D. Macdonald, T. Roth, P. N. K. Deenapanray, T. Trupke, and R. A. Bardos, “Doping dependence of the carrier lifetime crossover point upon dissociation of iron-boron pairs in crystalline silicon,” Applied Physics Letters, vol. 89, p. 142107, 2006. [450] T. Trupke, R. A. Bardos, and M. D. Abbott, “Self-consistent calibration of photoluminescence and photoconductance lifetime measurements,” Applied Physics Letters, vol. 87, p. 184102, 2005. [451] T. Benbakhtia, D. Mehala, S. Krawczykb, and G. Bassoua, “Effect of lateral diffusion on the photoluminescence intensity of semiconductor compounds: study of theoretical three-dimensional photoluminescence,” Microelectronics Journal, vol. 30, p. 643649, 1999. [452] R. Newman, W. C. Dash, R. N. Hall, and W. E. Burch, “Visible light from a Si p-n junction,” Physical Review, vol. 98, pp. 1536–1537, 1955. [453] N. Drozdov, A. Patrin, and V. Tkachev, “Recombination radiation on dislocations in silicon,” JETP letters, vol. 23, p. 597, 1976. [454] S. Pizzini, M. Acciarri, E. Leoni, and A. L. Donne, “About the D1 and D2 dislocation luminescence and its correlation with oxygen segregation,” Physica Status Solidi B, vol. 222, pp. 141–149, 2000. [455] W. Kwapil, P. Gundel, M. C. Schubert, F. D. Heinz, W. Warta, E. R. Weber, A. Goetzberger, and G. Martinez-Criado, “Observation of metal precipitates at prebreakdown sites in multicrystalline silicon solar cells,” Applied Physics Letters, vol. 95, p. 232113, 2009. [456] M. P. Peloso, N. Palina, K. Banas, A. Banas, B. Hoex, M. B. H. Breese, and A. G. Aberle, “Investigating the origin of defect luminescence from multicrystalline si wafer solar cells using x-ray fluorescence,” Physica Status Solidi RRL, vol. submitted, 2012. [457] N. Palina, M. P. Peloso, K. Banas, B. Hoex, and A. G. Aberle, “Study on defects in multicrystalline silicon wafer solar cells by electroluminescence imaging and synchrootron radiation induced x-ray emission,” in 27th EU-PVSEC, Frankfurt, Germany, 24-28, September 2012, 2012. [458] K. H. A. Janssens, F. C. Adams, and A. Rindby, eds., Microscopic X-ray Fluorescence Analysis. John Wiley, New York/Singapore, 1999. [459] R. Levinson, More Modern Chemical Techniques. Royal Society of Chemistry, London, 2001. [460] B. Beckhoff, B. Kanngieber, N. Langhoff, R. Wedell, and H. Wolff, eds., Handbook of Practical X-Ray Fluorescence Analysis. Springer Science+Business Media, 2006. [461] S. A. McHugo, A. C. Thompson, C. Flink, E. R. Weber, G. Lamble, B. Gunion, A. MacDowell, R. Celestre, H. A. Padmore, and Z. Hussain, “Synchrotron-based impurity mapping,” Journal of Crystal Growth, vol. 210, pp. 395–400, 2000. [462] A. A. Istratov, H. Hieslmair, O. F. Vyvenko, E. R. Weber, and R. Schindler, “Defect recognition and impurity detection techniques in crystalline silicon for solar cells,” Solar Energy Material & Solar Cells, vol. 72, pp. 441–451, 2002. 192 [463] T. Buonassisi and A. A. Istratov, “Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells,” Journal of Applied Physics, vol. 97, p. 074901, 2005. [464] T. Buonassisi, M. A. Marcus, A. A. Istatrov, M. Heuer, T. F. Ciszek, B. Lai, Z. H. Cai, , and E. R. Weber, “Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material,” Journal of Applied Physics, vol. 97, p. 063503, 2005. [465] A. A. Istratov, T. Buonassisi, R. J. MacDopnald, A. R. Smith, R. Schindler, J. A. Rand, J. P. Kalejs, and E. R. Weber, “Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length,” Journal of Applied Physics, vol. 94, p. 6552, 2003. [466] T. Buonassisi, O. F. Vyvenko, A. A. Istratov, E. R. Weber, G. Hahn, D. Sontag, J. P. Rakotoniaina, O. Breitenstein, J. Isenberg, and R. Schindler, “Observation of transition metals at shunt locations in multicrystalline silicon solar cells,” Juournal of Applied Physics, vol. 95, p. 1556, 2004. [467] D. P. Fenning, J. Hofstetter, M. I. Bertoni, S. Hudelson, M. Rinio, J. F. Lelivre, B. Lai, C. del Caizo, and T. Buonassisi, “Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling,” Applied Physics Letters, vol. 98, p. 162103, 2011. [468] V. Kveder, T. Osipyan, W. Schr¨ otter, and G. Zoth, “On the energy spectrum of dislocations in silicon,” Physica Status Solidi A, vol. 72, pp. 701–713, 1982. [469] T. Kirchartz and U. Rau, “Detailed balance and reciprocity in solar cells,” Physica Status Solidi A, vol. 205, pp. 2737–2751, 2008. [470] R. Brunetti, C. Jacoboni, F. Nava, L. Reggiani, G. Bosman, and R. J. J. Zijlstra, “Diffusioncoefficient of electrons in silicon,” Journal of Applied Physics, vol. 52, p. 6713, 1981. [471] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters, vol. 73, pp. 1991– 1993, 1998. [472] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature Materials, vol. 9, pp. 239–244, 2010. [473] P. Campbell, “Enhancement of absorption in silicon films using a pressed glass substrate texture,” Glass Technology, vol. 43, pp. 107–111, 2002. [474] R. Campbell, “Light trapping and texture control in solar-cells using tilted crystallographic surface textures 31, 133-153 (1993),” Solar Energy Materials, vol. 31, pp. 133–153, 1993. [475] P. Campbell, “Light trapping in textured solar cells,” Solar Energy Mmaterials, vol. 21, pp. 165– 172, 1990. [476] S. S. Hegedus and R. Kaplan, “Analysis of quantum efficiency and optical enhancement in amorphous Si p-i-n solar cells,” Progress in Photovoltaics: Research and Applications, vol. 10, pp. 257– 269, 2002. [477] M. P. Peloso, D. Chen, O. Pawluczyk, B. Hoex, and A. Aberle, “Spatially resolved optical determination of the path-length enhancement factor of texturized silicon wafer solar cells,” in MRS-S Trilateral Conference on Advances in Nanoscience: Energy, Water and Healthcare, August 11 13, Singapore, 2010. [478] Q. Li, W. Wang, C. Ma, and Z. Zhu, “Detection of physical defects in solar cells by hyperspectral imaging technology,” Optics and Laser Technology, vol. 42, pp. 1010–1013, 2010. [479] W. Yang, Z. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Solar Energy, vol. 82, pp. 106–110, 2008. 193 [480] K. Yoh, H. Ohno, Y. Katano, K. Sueka, K. Mukasa, and M. E. Ramsteiner, “Spin polarization in photo- and electroluminescence of InAs and metal/InAs hybrid structures,” Semiconductor Science and Technology, vol. 19, pp. S386–S389, 2004. [481] J. P. Hirth, ed., Dislocations in Solids. Elsevier, Singapore, 2008. [482] S. Wurzner, T. Kaden, C. Funke, D. Kressner-Kiel, and H. J. Moller, “A new view on the origin of dislocations and their density distribution in multicrystalline silicon,” in 24th European Photovoltaic Solar Energy Conference; 2009 Sept 21-25: Hamburg, Germany, pp. 2133–2137, 2009. [483] P. Woditsch and W. Koch, “Solar grade silicon feedstock supply for PV industry,” Solar Energy Materials & Solar Cells, vol. 72, pp. 11–26, 2002. [484] N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, and F. Aratan, “Purification of metallurgical-grade silicon up to solar grade,” Progress in Photovoltaics: Research and Applications, vol. 9, pp. 203–209, 2001. [485] Z. Q. Wu, Y. M. Li, B. Duan, H. Zhang, and J. Yan, “Differential cross section and polarization of radiative recombination,” Chinese Physics Letters, vol. 26, p. 123202, 2009. [486] J. H. Scofield, “Angular and polarization correlations in photoionization and radiative recombination,” Physical Review A, vol. 40, pp. 3054–3060, 1989. [487] M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge University Press, Cambridge, 1997. [488] P. J. Pearah, E. M. Stellini, A. C. Chen, A. M. Moy, K. C. Hseih, and K. Y. Cheng, “Strained ga(x)in(1-x)p multiple quantum wire light-emitting diodes: a luminescence polarization study,” Applied Physics Letters, vol. 62, pp. 729–731, 1993. [489] A. Andrianov, D. Kovalev, N. Zinovev, and I. Yaroshetskii, “Anomalous photoluminescence polarization of porous silicon,” JETP Letters, vol. 58, pp. 427–430, 1993. [490] D. Sainova, A. Zen, H.-G. Nothofer, U. Asawapirom, U. Scherf, R. Hagen, T. Bieringer, S. Kostromine, and D. Neher, “Photoaddressable alignment layers for flourescent polymers in polarized electroluminescence devices,” Advanced Functional Materials, vol. 12, pp. 49–57, 2002. [491] G. L¨ ussem, F. Geffarth, A. Greiner, W. Heitz, M. Hopmeier, M. Oberski, C. Unterlechner, and J. H. Wendorff, “Polarized electroluminescence of light emitting liquid crystalline polymers,” Liquid Crystals, vol. 21, no. 6, pp. 903–907, 1996. [492] C. Weder, C. Sarwa, C. Bastiaansen, and P. Smith, “Highly polarized luminescence from oriented conjugated polymer/polyethylene blend films,” Advanced Materials, vol. 9, pp. 1035–1039, 1997. [493] D.-X. Zhu, W.-D. Shen, and H.-Y. Zhen, “Anisotropic optical constants of in-plane oriented polyfluorene thin films on rubbed substrate,” Journal of Applied Physics, vol. 106, p. 084504, 2009. [494] H. D. Jayathilake, M. H. Zhu, C. Rosenblatt, A. N. Bordenyuk, C. Weeraman, and A. V. Benderskii, “Rubbing-induced anisotropy of long alkyl side chains at polyimide surfaces,” Journal of Chemical Physics, vol. 125, p. 064706, 2006. [495] R. A. Arif, Y. K. Ee, and N. Tansu, “Polarization engineering via staggered ingan quantum wells for radiative efficiency enhancement of light emitting diodes,” Applied Physics Letters, vol. 91, p. 091110, 2007. [496] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature, vol. 415, pp. 617–620, 2002. [497] J. Wang, M. Gudiksen, X. Duan, Y. Cui, and C. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science, vol. 293, pp. 1455–1457, 2001. 194 [498] M. Grell and D. D. C. Bradley, “Polarized luminescence from oriented molecular materials,” Advanced Materials, vol. 11, no. 11, pp. 895–905, 1999. [499] M. Hamaguchi and K. Yoshino, “Polarized electroluminescence from rubbing-aligned poly(2,5dinonyloxy-1,4-phenylenevinylene) films,” Applied Physics Letters, vol. 67, pp. 3381–3383, 1995. [500] M. Era, T. Tsutsui, and S. Saito, “Polarized electroluminescence from oriented p-sexiphenyl vacuum-deposited film,” Applied Physics Letters, vol. 67, no. 17, pp. 2436–2439, 1995. [501] G. Allan, C. Delerue, and Y. M. Niquet, “Luminescence polarization of silicon nanocrystals,” Physical Review B, vol. 63, p. 205301, 2001. [502] M. Knaapila, O. Ikkala, M. Torkkeli, K. Jokela, R. Serimaa, I. P. Dolbnya, W. Bras, G. ten Brinke, L. E. Horsburgh, L.-O. P˚ alsson, and A. P. Monkman, “Polarized luminescence from self-assembled, aligned, and cleaved supramolecules of highly ordered rodlike polymers,” Applied Physics Letters, vol. 81, no. 8, pp. 1489–1491, 2002. [503] P. Lavallard and R. A. Suris, “Polarized photoluminescence of an assembly of non cubic microcrystals in a dielectric matrix,” Solid State Communications, vol. 95, pp. 267–269, 1995. [504] G. Franssen, S. Grzanka, R. Czernecki, T. Suski, L. Marona, T. Riemann, J. Christen, H. Teisseyre, P. Valvin, P. Lefebvre, P. Perlin, M. Leszczy´ nski, and I. Grzegory, “Efficient radiative recombination and potential profile fluctuations in low-dimension InGaN/GaN multiple quantum wells on bulk GaN substrates,” Journal of Applied Physics, vol. 97, p. 103507, 2005. [505] G. Lussem, F. Geffarth, A. Greiner, W. Heitz, M. Hopmeier, M. Oberski, C. Unterlechner, and J. Wendorff, “Polarized electroluminescence of liquid crystalline polymers with isolated arylenevinylene segments in the main chain,” Abstracts of Papers of the American Chemical Society, vol. 213, pp. 373–Poly, Apr 13 1997. [506] M. Oda, H. G. Nothofer, G. Lieser, U. Scherf, S. C. J. Meskers, and D. Neher, “Circularily polarized electroluminescence from liquid-crystal chiral polyflourenes,” Advanced Materials, vol. 12, pp. 362– 365, 2000. [507] H. Kalt and M. Hetterich, eds., Optics of Semiconductors and their Nanostructures. Springer, 2004. [508] K. Fujiwara, W. Pan, M. Usami, K. Sawada, A. Nomura, T. Ujihara, T. Shishido, and K. Nakajima, “Structural properties of directionally grown polycrystalline SiGe for solar cells,” Journal of Crystal Growth, vol. 275, pp. 467–473, 2005. [509] I. Takahashi, N. Usami, H. Mizuseki, Y. Kawazoe, G. S. G, and K. Nakajima, “Impact of type of crystal defects in multicrystalline Si on electrical properties and interaction with impurities,” Journal of Applied Physics, vol. 109, p. 033504, 2011. [510] R. J. D. Tilley, Defects in Solids (Special Topics in Inorganic Chemistry). John Wiley & Sons, Hoboken, 2008. [511] A. M. Kossevich, The Crystal Lattice. Wiley-VCH, 1999. [512] N. Usami, I. Takahashi, K. Kutsukake, K. Fujiwara, and K. Nakajima, “Suppression of generation of dislocations in Si multicrystals by controlling coherency of grain boundaries at the initial stage of crystal growth,” in 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain 2010 pp.1229-1231, 2010. [513] O. Schultz, S. Glunz, and G. Willeke, “Multicrystalline silicon solar cells exceeding 20% efficiency,” Progress in Photovoltaics: Research and Applications, vol. 12, pp. 553–558, 2004. [514] T. Kieliba, S. Riepe, and W. Warta, “Effect of dislocations on minority carrier diffusion length in practical silicon solar cells,” Journal of Applied Physics, vol. 100, p. 063706, 2006. 195 [515] K. Fujiwara, W. Pan, N. Usami, A. Tokairin, Y. Nose, A. Nomura, T. Shishido, and K. Nakajima, “Growth of high-quality polycrystalline Si ingot with same grain orientation by using dendritic casting method,” in Frontiers in Materials Research, International Workshop on Advanced Materials Inst Med Res, Sendai, Japan, Mar 01 (F. Y, N. K, and S. T, eds.), vol. 10 of Advances in materials research, Springer-Verlag, 2007. [516] A. V. Mudryi, A. I. Patuk, I. A. Shakin, A. G. Ulyashin, R. Job, and W. R. Fahrner, “Impurities and defects in multicrystalline silicon for solar cells: low-temperature photoluminescence investigations,” Solar Energy Materials & Solar Cells, vol. 72, pp. 503–508, 2002. [517] L. Chen, X. Yu, P. Chen, P. Wang, X. Gu, J. Lu, and D. Yang, “Effect of oxygen precipitation on the performance of Czochralski silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 95, pp. 3148–3151, 2011. [518] M. Rinio, A. Yodyungyong, S. Keipert-Colberg, D. Borchert, and A. Montesdeoca-Santana, “Recombination in ingot cast silicon solar cells,” Physica Status Solidi A, vol. 208, pp. 760–768, 2011. [519] K. Nakajima, K. Kutsukake, K. Fujiwara, N. Usami, S. Ono, and Y. Yamasaki, “High efficiency solar cells obtained from small size ingots with 30 cm by controlling the distribution and orientation of dendrite crystals grown along the bottom of the ingots,” in 35th IEEE Photovoltaic Specialists Conference (PVSC), Honolulu, Hawaii, 2010. [520] T. Mchedlidze, T. Arguirov, M. Kittler, T. Hoang, J. Holleman, and J. Schmitz, “Influence of electric field on spectral positions of dislocation-related luminescence peaks in silicon: Stark effect,” Applied Physics Letters, vol. 91, p. 211113, 2007. [521] S. R. Coriell and G. B. McFadden, Handbook of Crystal Growth, ch. Part B,, pp. 785–857. NorthHolland, Amsterdam, 1993. [522] D. R. Vij, ed., Luminescence of Solids. Plenum Press, 1998. [523] V. L. Colvin and A. P. Alivsatos, “CdSe nanocrystals with a dipole-moment in the 1st excited state,” Journal of Chemical Physics, vol. 97, pp. 730–733, 1992. [524] S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, “Photoluminescence from single semiconductor nanostructures,” Advanced Materials, vol. 11, pp. 1243–1256, 1999. [525] T. W. Hagler, K. Pakbaz, and A. J. Heeger, “Polarized-electroabsorption spectroscopy of a soluble derivative of poly(p-phenylenevinylene) oriented by gel processing in polyethylene - polarization anisotrophy, the off-axis dipole-moment, and excited-state delocalization,” Physical Review B, vol. 49, pp. 10968–10975, 1994. [526] C. J. Meining, K. A. Korolev, B. D. McCombe, P. Grabs, I. Chado, G. Schmidt, and L. Molenkamp, “Spin polarization measurements of InAs-based LEDs,” Journal of Superconductivity: Incorporating Novel Magnetism, vol. 18, pp. 391–397, 2005. [527] M. S. Skolnick, T. D. Harris, C. W. Tu, T. M. Brennan, and M. D. Sturge, “Strongly polarized bound exciton luminescence from GaAs grown by molecular beam epitaxy,” Applied Physics Letters, vol. 46, pp. 427–429, 1985. [528] Y. Nose, I. Takahashi, W. Pan, N. Usami, K. Fujiwara, and K. Nakajima, “Floating cast method to realize high-quality Si bulk multicrystals for solar cells,” Journal of Crystal Growth, vol. 311, p. 228231, 2009. [529] A. J. Kenyon, E. A. Steinman, C. W. Pitt, D. E. Hole, and V. I. Vdovin, “The origin of the 0.78 eV luminescence band in dislocated silicon,” Journal of Physics: Condensed Matter, vol. 15, pp. S2843–50, 2003. [530] I. Tarasov, S. Ostapenko, C. Haessler, and E. U. Reisner, “Spatially resolved defect diagnostics in multicrystalline silicon for solar cells,” Materials Science and Engineering B, vol. 71, p. 51, 2000. 196 [531] E. A. Steinman, “Oxygen-induced modification of dislocation luminescence centers in silicon,” Physics of the Solid State, vol. 47, pp. 5–8, 2005. [532] E. A. Steinman, “Influence of oxygen on the dislocation luminescence centers in silicon,” Physica Status Solidi, vol. 2, pp. 1837–1841, 2005. [533] T. Mchedlidze, T. Wilhelm, T. Arguirov, M. Trushin, M. Reiche, and M. Kittler, “Correlation of electrical properties of a dislocation network with its microscopic structure,” Physica Status Solidi C, vol. 6, pp. 1817–1822, 2009. [534] M. A. Drozdov, A. A. Patrin, and V. T. Tkachev, “On the nature of dislocation luminescence in silicon,” Physica Status Solidi B, vol. 83, pp. K137–139, 1977. [535] R. H. Uebbing, P. Wagner, H. Baumgart, and H. J. Queisser, “Luminescence in slipped and dislocation-free laser-annealed silicon,” Applied Physics Letters, vol. 37, pp. 1078–1079, 1980. [536] M. Suezawa, Y. Sasaki, Y. Nishina, and K. Sumino, “Radiative recombination on dislocations in silicon crystals,” Japanese Journal of Applied Physics, vol. 20, pp. pp. L537–L540, 1981. [537] M. Suezawa, Y. Sasaki, and K. Sumino, “Dependence of photoluminescence on temperature in dislocated silicon crystals,” Physica Status Solidi A, vol. 79, pp. 173–181, 1983. [538] M. Suezawa and K. Sumino, “The nature of photoluminescence from plastically deformed silicon,” Physica Status Solidi A, vol. 78, pp. 639–645, 1983. [539] Y. Lebedev, M. Zok, and M. Shagalov, “On the mechanism of polarized luminescence from lightemissing structures based on GaN,” Physica Status Solidi A, vol. 108, pp. 657–667, 1988. [540] S. Ostapenko and G. Hofmann, “Polarized selective excitation of donor-acceptor pair luminescence in AlSb,” Solid State Communications, vol. 74, pp. 447–450, 1990. [541] F. d’Aragona Secco, “Dislocation etch for (100) planes in silicon,” Journal of the Electrochemical Society, vol. 119, pp. 948–951, 1972. [542] K. H. Yang, “An etch for delineation of defects in silicon,” Journal of the Electrochemical Society, vol. 131, pp. 1140–1145, May 1984. [543] Y. Kashiwagi, R. Shimokawa, and M. Yamanaka, “Highly sensitive etchants for delineation of defects in single- and polycrystalline silicon materials,” Journal of the Electrochemical Society, vol. 143, no. 12, pp. 4079–4087, 1996. [544] K. Kutsukake, N. Usami, T. Ohtaniuchi, K. Fujiwara, and K. Nakajima, “Quantitative analysis of subgrain boundaries in Si multicrystals and their impact on electrical properties and solar cell performance,” Journal of Applies Physics, vol. 105, p. 044909, 2009. [545] F. W. Jordan, “The Thomson and Peltier effects,” Nature, vol. 86, pp. 380–381, 1911. [546] B. Ryningen, G. Stokkan, C. Modanese, and O. Lohne, “Growth of dislocation clusters in directionally solidified multicrystalline silicon,” in 23rd European Photovoltaic Solar Energy Conference; 2008 Sept 1-5: Valencia, Spain; 2008, pp. 1253– 1256, 2008. [547] M. Schubert, W. Kwapil, J. Schna, H. Habenichta, M. Kasemann, P. Gundel, M. Blazek, and W. Warta, “Analysis of performance limiting material properties of multicrystalline silicon,” Solar Energy Materials & Solar Cells, vol. 94, pp. 1451–1456, 2010. [548] R. Sauer, J. Weber, J. Stolz, E. R. Weber, K. H. Ksters, and H. Alexander, “Dislocation-related photoluminescence in silicon,” Applied Physics A: materials science and processing, vol. 36, pp. 1– 13, 1985. [549] K. Yeh, C. Hseih, W. Hsu, and C. Lan, “High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification,” Progress in Photovoltaics: Research and Applications, vol. 18, pp. 265–271, 2010. 197 [550] N. Usami, R. Yokoyama, I. Takahashi, K. Kutsukake, K. Fujiwara, and K. Nakajima, “Relationship between grain boundary structures in Si multicrystals and generation of dislocations during crystal growth,” Journal of Applied Physics, vol. 107, p. 013511, 2010. [551] A. Tereshchenko, E. Steinman, and A. Mazilkin, “Effect of copper on dislocation luminescence centers in silicon,” Physics of the Solid State, vol. 53, p. 369376, 2011. [552] J. J. V. Kooten, “Photoluminescence on oxygen-rich acceptor-doped silicon,” Journal of Physics C: Solid State Physics, vol. 20, pp. 2183–2191, 1987. [553] F. H. Pollak and M. Cardonna, “Piezo-electroreflectance in Ge, GaAs, and Si,” Physical Review, vol. 172, pp. 816–837, 1968. [554] H. Y. Wang, N. Usami, K. Fujiwara, K. Kutsukake, and K. Nakajima, “Microstructures of Si multicrystals and their impact on minority carrier diffusion length,” Acta Materialia, vol. 57, pp. 3268–3276, 2009. [555] L. Fedina, A. Gutakovskii, A. Aseev, J. V. Landuyt, and J. Vanhellemont, “Extended defects formation in Si by clustering of point defects studied by in-situ electron irradiation in an HREM,” Physica Status Solidi A, vol. 171, p. 147, 1999. [556] K. Colbow, “infrared absorption lines in boron-doped silicon,” Canadian Journal of Physics, vol. 41, pp. 1801–&, 1963. [557] G. B. Dubrovskii and V. K. Subashiev, “Effect of heavy doping on the intrinsic absorption edge of silicon,” Soviet Physics - Solid State, vol. 4, pp. 2212–2217, 1963. [558] A. Vesely, J. Vanek, J. J. Dolensky, and R. Barinka, “Defect detection in solar cells by transmission illumination,” in 25th European PVSEC, Valencia, Spain 2010, pp. 477-479, 2010. [559] T. Cheyney, “Blind faith: BT imaging hopes to bring solar-wafer inspection and sorting into the light,” PV-Tech, 04 May 2010. [560] BT Imaging Pty Ltd, “Electrical wafer quallity sorter, online at url http://btimaging.com/wpcontent/gallery/downloads/qs-w1-web.pdf,” tech. rep., BT imaging Pty Ltd, 2012. [561] Y.-C. Chiou, J.-Z. Liu, and Y.-T. Liang, “Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques,” Sensor Review, vol. 31, pp. 154 – 165, 2011. [562] A. Kuske and G. Robertson, Photoelastic stress analysis. Wiley, New York, 1974. [563] S. Wortman and R. A. Evans, “Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium,” Journal of Applied Physics, vol. 36, pp. 153–156, 1965. [564] P. Pirzadeh, E. N. Beaudoin, and P. G. Kusalik, “Interfacial free energy: An entropy portent to energy changes,” Crystal Growth Design, vol. 12, p. 124128, 2012. [565] T. Sinno, J. Dai, and S. S. Kapur, “Microscopic underpinnings of defect nucleation and growth in silicon crystal growth and wafer processing,” Materials Science and Engineering B, EMRS 2008 Spring Conference Symposium K: Advanced Silicon Materials Research for Electronic and Photovoltaic Applications, vol. 159160, p. 128133, 2009. [566] Z. Zhang, L. Wu, and Y. Zhang, “Detection performance improvement of chirped amplitude modulation ladar based on gieger-mode avalanche photoelectric detector,” Applied Optics, vol. 50, pp. 6522–6525, 2011. [567] F. Li, V. Garcia, S. Danyluk, S. Ostapenko, J. Kalejs, and D. Yates, “In-plane residual stress and its relationship to dislocation density in polycrystalline (EFG) silicon sheet,” in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vols and , pp. 1429-1432, 2006. [568] G. Sarau, A. Bochmann, S. Christiansen, and S. Sch¨ onfelder, “Stresses and their relation to defects in multicrystalline solar silicon,” in 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, June 20-25, 2010, 2010. 198 [...]... economical manner is the key aspect of silicon wafer -based photovoltaic research and engineering [75, 76] For example, selective emitters, back surface fields, and specific chemical processing procedures for passivation and texturing of silicon wafer solar cells have been developed [58] More details on the fabrication of silicon wafer solar cells may be found in the Handbook of Photovoltaic Science and Engineering... characterization of silicon wafer -based photovoltaic devices A silicon wafer solar cell is fabricated in a series of processing sequences whereby the raw silicon is grown, sliced into wafers, doped to create a junction, and finally optically coated and metalized [28, 80] A procedure for fabricating a silicon wafer solar cell is shown in Figure 1.1.6 The 10 first stage shows the growth of a silicon crystal... used to analyze luminescence 84 4.1.3 Quantum efficiencies of three cameras and the electroluminescence spectrum 86 4.1.4 LBIC measurements on two multicrystalline silicon wafer solar cells 86 4.1.5 Ratio of spectral electroluminescence images of multicrystalline silicon solar cells 88 4.2.1 Quantum efficiencies and filter transmissions for the defect luminescence. .. has been used to characterize silicon wafer -based photovoltaic materials and devices In this Thesis, the practical instrumentation of a luminescence imaging system was investigated to advance luminescence- based characterization of silicon wafer materials, and silicon wafer photovoltaic devices A photo/electroluminescence instrument was built to allow flexible modification of instrumentation parameters... multicrystalline silicon wafer and solar cell 12 1.1.8 Defects in solar cells 14 1.1.9 Two diode circuit model of a solar cell 16 1.2.1 Control-response layout for luminescence characterization 21 1.3.1 Electroluminescence image of a multicrystalline silicon wafer solar cell 24 1.3.2 Quantitative series resistance image of a multicrystalline... state In silicon, and thus silicon wafers and silicon wafer solar cells, luminescence is light emission due to radiative recombination of electrical charge in the semiconductor material [192–195] 1.2.2 Generation and detection of luminescence Luminescence may be categorized according to the mode of excitation, as summarized in Table 2 These excitation mechanisms summarize the control parameters for luminescence. .. non-destructive luminescence characterization of silicon wafers and silicon wafer solar cells, electroluminescence and photoluminescence are frequently used For characterization, features of the luminescence must be measured Luminescence is light emission, or an electromagnetic oscillating field [196], and such a field may be characterized by the properties [192, 194] summarized in Table 3 18 Table 3: A summary of. .. and test modifications and applications of the instrument for silicon wafer solar cell characterization Two major modifications to luminescence imaging instrumentation for characterization of silicon photovoltaic materials and devices includes the advancement of polarimetry for luminescence, as well as the application of hyperspectral imaging of luminescence to allow luminescence spectroscopy measurements... to quenching of luminescence proportional to the concentration of metals within the silicon [218–220] Generally for luminescence characterization of silicon wafer solar cells, the intensity or spectrum has been used for characterization [5, 162, 197] with the common control method being the application of a forward-bias voltage, the use of an infrared laser providing tens of Watts of optical power,... recombination velocity 166 8.2.7 Luminescence emission from thin film devices 166 References 168 x 0.4 Summary Luminescence- based characterization of silicon wafers and silicon solar cells used to create photovoltaic modules for solar energy conversion may reduce their production cost and performance variance, and allow improved understanding of their physical properties Luminescence measurements . 77 3.5.2 Luminescence spectroscopy instrument . . . . . . . . . . . . . . . . 78 4 Applications of luminescence imaging of silicon wafer solar cells 82 4.1 Measuring the diffusion length of solar cells. on defect luminescence and x-ray fluo- rescence studies on multicrystalline silicon wafer solar cells . . . . 101 5 Luminescence spectroscopy for characterization of silicon wafer solar cells 103 5.1. spatially-resolved luminescence spectroscopy of silicon wafer solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6 Polarization analysis of luminescence for characterization of silicon wafer

Ngày đăng: 09/09/2015, 17:58

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan