Surface passivation for heterojunction silicon wafer solar cells

212 585 0
Surface passivation for heterojunction silicon wafer solar cells

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

SURFACE PASSIVATION FOR HETEROJUNCTION SILICON WAFER SOLAR CELLS GE JIA B. Eng. (Hons.), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2014 To see a World in a Grain of Sand And a Heaven in a Wild Flower, Hold Infinity in the palm of your hand And Eternity in an hour. Adapted from “Auguries of Innocence” by William Blake Declaration I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. __________________________________________ GE JIA November 2014 i ii Acknowledgements I would like to express my most sincere gratitude to my main supervisor, Prof Armin G. Aberle, for his kind and patient guidance through the past four years. As a famous scientist in this field, his comments and advices in each discussion proved to be insightful and critical, and greatly helped me plan experimental work and figure out the research direction. It was also my greatest honour working with, and being motivated by, such an established scientist. I would also like to give heartfelt thanks to Dr Thomas Mueller, who is my co-supervisor and scientific advisor. Being a Junior Einstein Award winner for developing novel passivation materials, his unparalleled knowledge in heterojunction silicon solar cells was an invaluable asset. He was always generous in sharing his knowledge and thoughts, giving scientific advice and providing experimental opportunities with external partner at the most difficult time in my PhD studies. As a friend, he was easily approachable and kind. I highly appreciate his effort and guidance through my PhD course. It was really a pleasure working with him in the last few years, and I am looking forward to such opportunity again in the future. I have to acknowledge Prof Andrew Tay for being the Chairman of my Thesis Advisory Committee and providing insightful comments during each meeting and discussion. I am deeply appreciative to all members of the silicon wafer solar cell groups in the Solar Energy Research Institute of Singapore (SERIS) at the National iii Acknowledgements University of Singapore (NUS) for their valuable suggestions and kind support. I would like to thank Dr Rolf Stangl for his expertise in simulation and contactless C-V measurements. His strong background in passivation mechanisms greatly enhanced my understanding in this topic. I must also thank Dr Johnson Wong for his support in analysing plasma processes and his acceptance to be a member of my Thesis Advisory Committee. I want to thank my fellow PhD students Zhi Peng Ling, Muzhi Tang and Ankit Khanna for their help in experiments and scientific discussions. My acknowledgement extends to our project partners in Singulus Technologies, Germany. I highly appreciate their efforts in assisting the R&D process with SINGULAR-HET. The on-site consultation with Mr Manfred Doerr made the understanding of the machine much easier. The scientific discussions with Dr Peter Wohlfart, Dr Torsten Dippell, Dr Oliver Hohn and Dr Zhenhao Zhang were always interesting and fruitful. The project and my PhD study would not have been successful without their support. I owe them a lot as my kind and caring German hosts. Last but not least, I will never forget the encouragement and understanding from my wife, Wang Peng, who is currently a PhD candidate in economics at NUS. She was always supportive towards my research and caring when I faced difficulties in experiments. She never complained when I worked overtime in the laboratory or travelled frequently overseas. My PhD would not have been smooth and successful without her. I am really grateful to my angel, Wang Peng. This research was undertaken with the support from SERIS. SERIS is sponsored by NUS and Singapore’s National Research Foundation (NRF) through iv Acknowledgements the Singapore Economic Development Board (EDB). This research was also supported by NRF, Prime Minister’s Office, Singapore under its Clean Energy Research Programme (CERP Award No. NRF2010EWT-CERP001-022). v Acknowledgements vi Bibliography [1] S. Hegedus and A. Luque, "Achievements and Challenges of Solar Electricity from Photovoltaics", in Handbook of Photovoltaic Science and Engineering: John Wiley & Sons, pp. 1-38 (2011). [2] Q. Schiermeier, J. Tollefson, T. Scully, A. Witze and O. Morton, Nature, vol. 454, p. 821 (2008). [3] C. Honsberg and S. Bowden. Photovoltaics CDROM [Online], Available: http://pveducation.org/pvcdrom [4] M. Kaku, Physics of the impossible - A scientific exploration into the world of phasers, force fields, teleportation and time travel, New York, U.S.A.: Doubleday (2008). [5] R.S. Ohl, "Radiating electromagnetic wave guide", U.S.A. patent 2402622 (1941). [6] R.S. Ohl, "Light-sensitive electric device including silicon", U.S.A. patent 2443542 (1941). [7] D.M. Chapin, C.S. Fuller and G.L. Pearson, J. Appl. Phys., vol. 25, pp. 676-677 (1954). [8] S. De Wolf, A. Descoeudres, Z.C. Holman and C. Ballif, Green, vol. 2, p. (2012). [9] S.W. Glunz, Advances in OptoElectronics, vol. 2007, pp. 1-15 (2007). [10] W. Shockley and H.J. Queisser, J. Appl. Phys., vol. 32, pp. 510-519 (1961). [11] K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi and Y. Kuwano, Proc. 22nd IEEE Photovoltaic Specialists Conference, pp. 887-892 (1991). [12] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita and E. Maruyama, IEEE J. Photovolt., vol. 99, pp. 1-4 (2013). [13] T. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, H. Sakata, M. Taguchi and E. Maruyama, Proc. 26th European Photovoltaic Solar Energy Conference and Exhibition, p. 871 (2011). [14] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, Prog. Photovoltaics Res. Appl., vol. 8, pp. 503-513 (2000). [15] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, Jpn. J. Appl. Phys., vol. 31, p. 3518 (1992). [16] Panasonic, Panasonic Headquarter News (2014), Available: http://panasonic.co.jp/corp/news/official.data/data.dir/2014/04/en1404104/en140410-4.html. 163 Bibliography [17] M. Green, Proc. 23rd International Photovoltaic Science and Engineering Conference (2013). [18] W. Fuhs and K.S. Niemann, J., Proc. AIP Conference, pp. 345-350 (1974). [19] K. Okuda, H. Okamoto and Y. Hamakawa, Jpn. J. Appl. Phys., vol. 22, p. L605 (1983). [20] Y. Hamakawa, K. Fujimoto, K. Okuda, Y. Kashima, S. Nonomura and H. Okamoto, Appl. Phys. Lett., vol. 43, pp. 644-646 (1983). [21] J.I. Pankove and M.L. Tarng, Appl. Phys. Lett., vol. 34, pp. 156-157 (1979). [22] I. Weitzel, R. Primig and K. Kempter, Thin Solid Films, vol. 75, pp. 143-150 (1981). [23] M.L. Tarng and J.I. Pankove, IEEE Trans. Electron Devices, vol. 26, pp. 1728-1734 (1979). [24] D. Ide, M. Taguchi, Y. Yukihiro, B. Toshiaki, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama and M. Tanaka, Proc. 33rd IEEE Photovoltaic Specialists Conference, pp. 1-5 (2008). [25] T. Sawada, N. Terada, S. Tsuge, B. Toshiaki, T. Takahama, K. Wakisaka, S. Tsuda and S. Nakano, Proc. 24th IEEE Photovoltaic Specialists Conference, pp. 1219-1226 (1994). [26] M. Taguchi, A. Terakawa, E. Maruyama and M. Tanaka, Prog. Photovoltaics Res. Appl., vol. 13, pp. 481-488 (2005). [27] J. Ge, Z.P. Ling, J. Wong, R. Stangl, A.G. Aberle and T. Mueller, J. Appl. Phys., vol. 113, pp. 234310-7 (2013). [28] H.P. Zhou, D.Y. Wei, S. Xu, S.Q. Xiao, L.X. Xu, S.Y. Huang, Y.N. Guo, S. Khan and M. Xu, J. Phys. D: Appl. Phys., vol. 45, p. 395401 (2012). [29] S.Q. Xiao, S. Xu, H.P. Zhou, D.Y. Wei, S.Y. Huang, L.X. Xu, C.C. Sern, Y.N. Guo and S. Khan, Appl. Phys. Lett., vol. 100, pp. 233902-4 (2012). [30] J.-W.A. Schuttauf, K.H.M. van der Werf, I.M. Kielen, W.G.J.H.M. van Sark, J.K. Rath and R.E.I. Schropp, Appl. Phys. Lett., vol. 99, pp. 203503-3 (2011). [31] A. Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Guerin, Z.C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky and C. Ballif, Appl. Phys. Lett., vol. 99, pp. 123506-3 (2011). [32] T.F. Schulze, H.N. Beushausen, C. Leendertz, A. Dobrich, B. Rech and L. Korte, Appl. Phys. Lett., vol. 96, pp. 252102-3 (2010). [33] D. Pysch, C. Meinhardt, K.U. Ritzau, M. Bivour, K. Zimmermann, C. Schetter, M. Hermle and S.W. Glunz, Proc. 35th IEEE Photovoltaic Specialists Conference, pp. 003570-6 (2010). [34] T. Mueller, S. Schwertheim and W.R. Fahrner, J. Appl. Phys., vol. 107, pp. 014504-11 (2010). [35] M. Jeon, S. Yoshiba and K. Kamisako, Curr. Appl Phys., vol. 10, pp. S237-S240 (2010). 164 Bibliography [36] J. Guang-Zhi, H.-G. Liu and C. Hu-Dong, Proc. 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, pp. 2013-2015 (2010). [37] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama and M. Tanaka, Sol. Energ. Mat. Sol. Cells, vol. 93, pp. 670-673 (2009). [38] D. Pysch, M. Bivour, K. Zimmermann, C. Schetter, M. Hermle and S.W. Glunz, Proc. 24th European Photovoltaic Solar Energy Conference, pp. 1580-1585 (2009). [39] T. Mueller, S. Schwertheim, M. Scherff and W.R. Fahrner, Appl. Phys. Lett., vol. 92, pp. 033504-3 (2008). [40] H. Fujiwara and M. Kondo, Appl. Phys. Lett., vol. 90, pp. 013503-3 (2007). [41] H. Fujiwara, T. Kaneko and M. Kondo, Appl. Phys. Lett., vol. 91, pp. 133508-3 (2007). [42] R. Stangl, A. Froitzheim, M. Schmidt and W. Fuhs, Proc. 3rd World Conference on Photovoltaic Energy Conversion, pp. 1005-1008 (2003). [43] S. Olibet, E. Vallat-Sauvain and C. Ballif, Phys. Rev. B, vol. 76, p. 035326 (2007). [44] Q. Wang, M.R. Page, E. Iwancizko, Y. Xu, L. Roybal, R. Bauer, D. Levi, Y. Yan, T. Wang and H.M. Branz, MRS Online Proceedings Library, vol. 989 (2007). [45] M. Tucci, L. Serenelli, S.D. Luliis, D. Caputo, A. Nascetti and G.D. Cesare, Proc. 21st European Photovoltaic Solar Energy Conference and Exhibition (2006). [46] P.J. Rostan, U. Rau and J.H. Werner, Proc. 21st European Photovoltaic Solar Energy Conference and Exhibition (2006). [47] S. De Wolf, S. Olibet and C. Ballif, Appl. Phys. Lett., vol. 93, p. 032101 (2008). [48] M. Taguchi, Y. Tsunomura, H. Inoue, S. Taira, T. Nakashima, T. Baba, H. Sakata and E. Maruyama, Proc. 24th European Photovoltaic Solar Energy Conference, pp. 1690-1693 (2009). [49] T.T. Tan, Panasonic Asia Pacific Pte. Ltd. (2013), Available: http://www.eco-business.com/press-releases/panasonic-reaches-fullscale-production-of-hit-solar-modules-in-malaysia/. [50] A.G. Aberle and R. Hezel, Prog. Photovoltaics Res. Appl., vol. 5, pp. 29-50 (1997). [51] B.E. Deal and A.S. Grove, J. Appl. Phys., vol. 36, pp. 3770-3778 (1965). [52] O. Schultz, S.W. Glunz and G.P. Willeke, Prog. Photovoltaics Res. Appl., vol. 12, pp. 553-558 (2004). [53] J. Benick, K. Zimmermann, J. Spiegelmann, M. Hermle and S.W. Glunz, Prog. Photovoltaics Res. Appl., vol. 19, pp. 361-365 (2011). [54] M.J. Kerr and A. Cuevas, Semicond. Sci. Technol., vol. 17, p. 35 (2002). 165 Bibliography [55] S. Duttagupta, F. Lin, M. Wilson, M.B. Boreland, B. Hoex and A.G. Aberle, Prog. Photovoltaics Res. Appl., vol. 22, pp. 641-647 (2014). [56] M.J. Kerr and A. Cuevas, Semicond. Sci. Technol., vol. 17, p. 166 (2002). [57] J. Schmidt and A.G. Aberle, J. Appl. Phys., vol. 85, pp. 3626-3633 (1999). [58] T. Lauinger, J. Schmidt, A.G. Aberle and R. Hezel, Appl. Phys. Lett., vol. 68, pp. 1232-1234 (1996). [59] W.A. Lanford and M.J. Rand, J. Appl. Phys., vol. 49, pp. 2473-2477 (1978). [60] C. Koch, M. Ito and M. Schubert, Sol. Energ. Mat. Sol. Cells, vol. 68, pp. 227-236 (2001). [61] S. De Wolf and M. Kondo, Appl. Phys. Lett., vol. 90, p. 042111 (2007). [62] T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz and Q. Wang, Thin Solid Films, vol. 501, pp. 284-287 (2006). [63] Y. Yan, M. Page, T.H. Wang, M.M. Al-Jassim, H.M. Branz and Q. Wang, Appl. Phys. Lett., vol. 88, p. 121925 (2006). [64] A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. De Wolf, F. Zicarelli and C. Ballif, Appl. Phys. Lett., vol. 97, pp. 183505-3 (2010). [65] S. Rattanapan, T. Watahiki, S. Miyajima and M. Konagai, Jpn. J. Appl. Phys., vol. 50, p. 082301 (2011). [66] B.F.P. Roos, O. Hohn, T. Dippell, B. Cord, M.R. Huber and P. Binkowska, Proc. 24th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1665-1668 (2009). [67] J. Li, J. Wang, M. Yin, P. Gao, D. He, Q. Chen, Y. Li and H. Shirai, J. Appl. Phys., vol. 103, pp. 043505-7 (2008). [68] J. Nelson, The Physics of Solar Cells: Imperial College Press (2003). [69] M. Green, Solar Cells: Operating Principles, Technology and System Applications: Centre for Photovoltaic Devices and Systems, University of New South Wales (1982). [70] M. Green, Silicon Solar Cells - Advanced Principles and Practice: Centre for Photovoltaic Devices and Systems, University of New South Wales (1995). [71] A. Goetzberger, J. Knobloch and B. Voss, Crystalline Silicon Solar Cells: John Wiley & Sons (1998). [72] W.R. Fahrner, Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells: Springer Verlag (2013). [73] W.G.J.H.M. v. Sark, L. Korte and F. Roca, Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells: Springer Verlag (2012). [74] R. Häcker and A. Hangleiter, J. Appl. Phys., vol. 75, pp. 7570-7572 (1994). [75] P.T. Landsberg, Recombination in Semiconductors: Cambridge University Press (2003). 166 Bibliography [76] M. Shur, Physics of Semiconductor Devices: Prentice-Hall (1990). [77] S.M. Sze and K.K. Ng, Physics of semiconductor devices: John Wiley & Sons (2006). [78] M.S. Tyagi, Introduction to Semiconductor Materials and Devices: John Wiley & Sons India (2008). [79] W. van Roosbroeck and W. Shockley, Phys. Rev., vol. 94, pp. 1558-1560 (1954). [80] M.J. Kerr and A. Cuevas, J. Appl. Phys., vol. 91, pp. 2473-2480 (2002). [81] J. Dziewior and W. Schmid, Appl. Phys. Lett., vol. 31, pp. 346-348 (1977). [82] A. Richter, F. Werner, A. Cuevas, J. Schmidt and S.W. Glunz, Energy Procedia, vol. 27, pp. 88-94 (2012). [83] W. Shockley and W.T. Read, Jr., Phys. Rev., vol. 87, pp. 835-842 (1952). [84] R.N. Hall, Phys. Rev., vol. 87, pp. 387-387 (1952). [85] A.G. Aberle, Crystalline Silicon Solar Cells - Advanced Surface Passivation and Analysis, Sydney: Centre for Photovoltaic Devices and Systems, University of New South Wales (1999). [86] K.L. Luke and L.J. Cheng, J. Appl. Phys., vol. 61, pp. 2282-2293 (1987). [87] R.A. Sinton and A. Cuevas, Appl. Phys. Lett., vol. 69, pp. 2510-2512 (1996). [88] W.D. Eades, "Characterization of Silicon-Silicon Dioxide Interface Traps using Deep Level Transient Spectroscopy", in Electrical Engineering: Stanford (1985). [89] A.G. Aberle, S. Glunz and W. Warta, J. Appl. Phys., vol. 71, pp. 4422-4431 (1992). [90] B. Hoex, "Functional Thin Films for High-Efficiency Solar Cells", PhD thesis, Technische Universiteit Eindhoven (2008). [91] A.G. Aberle, S. Glunz and W. Warta, Sol. Energ. Mat. Sol. Cells, vol. 29, pp. 175-182 (1993). [92] R.A. Street, Hydrogenated Amorphous Silicon: Cambridge University Press (1991). [93] K. Tanaka, E. Maruyama, T. Shimada and H. Okamoto, Amorphous Silicon, Chichester: John Wiley & Sons (1999). [94] T. Searle, Properties of Amorphous Silicon and its Alloys. Emmis Data reviews. INSPEC, vol. 19, London: The Institution of Electrical Engineers (1998). [95] D. Weaire and M.F. Thorpe, Phys. Rev. B, vol. 4, pp. 2508-2520 (1971). [96] L. Korte, "Electronic Properties of Ultrathin a-Si:H Layers and the a Si:H/c-Si Interface", in Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, W.G.J.H.M. v. Sark, L. Korte and F. Roca, Eds.: Springer Verlag, p. 165 (2012). [97] A.H.M. Smets, W.M.M. Kessels and M.C.M. van de Sanden, Appl. Phys. Lett., vol. 82, pp. 865-867 (2003). 167 Bibliography [98] G. Müller and G. Krötz, MRS Online Proceedings Library, vol. 297 (1993). [99] M. Stutzmann, Philosophical Magazine Part B, vol. 60, pp. 531-546 (1989). [100] M. Stutzmann, D.K. Biegelsen and R.A. Street, Phys. Rev. B, vol. 35, pp. 5666-5701 (1987). [101] R.M. Martin, Phys. Rev. B, vol. 1, pp. 4005-4011 (1970). [102] F. Urbach, Phys. Rev., vol. 92, pp. 1324-1324 (1953). [103] T. Mueller, "Heterojunction Solar Cells (a-Si/c-Si) - Investigations on PECV Deposited Hydrogenated Silicon Alloys for use as High-Quality Surface Passivation and Emitter/BSF", PhD thesis, University of Hagen (2009). [104] M.J. Powell and S.C. Deane, Phys. Rev. B, vol. 53, pp. 10121-10132 (1996). [105] M.J. Powell and S.C. Deane, Phys. Rev. B, vol. 48, pp. 10815-10827 (1993). [106] Z.E. Smith and S. Wagner, Phys. Rev. Lett., vol. 59, pp. 688-691 (1987). [107] J.P. Kleider, C. Longeaud and P. Roca i Cabarrocas, J. Appl. Phys., vol. 72, pp. 4727-4731 (1992). [108] L. Chahed, M.L. Thèye, D. Fournier, J.P. Roger, A.C. Boccara, Y.M. Li, W.A. Turner and W. Paul, Phys. Rev. B, vol. 43, pp. 14488-14497 (1991). [109] N. Hata, S. Wagner, P. Roca i Cabarrocas and M. Favre, Appl. Phys. Lett., vol. 56, pp. 2448-2450 (1990). [110] F. Vaillant and D. Jousse, Phys. Rev. B, vol. 34, pp. 4088-4098 (1986). [111] W.B. Jackson, Solid State Commun., vol. 44, pp. 477-480 (1982). [112] R.B.M. Girisch, R.P. Mertens and R.F. De Keersmaecker, IEEE Trans. Electron Devices, vol. 35, pp. 203-222 (1988). [113] D.K. Biegelsen, R.A. Street, C.C. Tsai and J.C. Knights, Phys. Rev. B, vol. 20, pp. 4839-4846 (1979). [114] R.A. Street, J.C. Knights and D.K. Biegelsen, Phys. Rev. B, vol. 18, pp. 1880-1891 (1978). [115] W. Gotze and L. Sjogren, Rep. Prog. Phys., vol. 55, p. 241 (1992). [116] J.C. Phillips, Rep. Prog. Phys., vol. 59, p. 1133 (1996). [117] J. Kakalios, R.A. Street and W.B. Jackson, Phys. Rev. Lett., vol. 59, pp. 1037-1040 (1987). [118] C.G. Van de Walle, Phys. Rev. B, vol. 53, pp. 11292-11295 (1996). [119] S. De Wolf, C. Ballif and M. Kondo, Phys. Rev. B, vol. 85, p. 113302 (2012). [120] H. Fujiwara and M. Kondo, Appl. Phys. Lett., vol. 86, p. 032112 (2005). [121] M.Z. Burrows, U.K. Das, R.L. Opila, S. De Wolf and R.W. Birkmire, J. Vac. Sci. Technol. A, vol. 26, pp. 683-687 (2008). 168 Bibliography [122] A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford and N. Maley, Phys. Rev. B, vol. 45, pp. 13367-13377 (1992). [123] G. Lucovsky, R.J. Nemanich and J.C. Knights, Phys. Rev. B, vol. 19, pp. 2064-2073 (1979). [124] M.H. Brodsky, M. Cardona and J.J. Cuomo, Phys. Rev. B, vol. 16, pp. 3556-3571 (1977). [125] N.M. Johnson, F.A. Ponce, R.A. Street and R.J. Nemanich, Phys. Rev. B, vol. 35, pp. 4166-4169 (1987). [126] C.W. Teplin, E. Iwaniczko, B. To, H. Moutinho, P. Stradins and H.M. Branz, Phys. Rev. B, vol. 74, p. 235428 (2006). [127] J. Schwarzkopf, B. Selle, W. Bohne, J. Röhrich, I. Sieber and W. Fuhs, J. Appl. Phys., vol. 93, pp. 5215-5221 (2003). [128] C.C. Tsai, G.B. Anderson and R. Thompson, J. Non-Cryst. Solids, vol. 137-138, Part 2, pp. 673-676 (1991). [129] R.J. Hamers, U.K. Köhler and J.E. Demuth, J. Vac. Sci. Technol. A, vol. 8, pp. 195-200 (1990). [130] S. De Wolf, "Intrinsic and Doped a-Si:H/c-Si Interface Passivation", in Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, W.G.J.H.M. v. Sark, L. Korte and F. Roca, Eds.: Springer Verlag, p. 243 (2012). [131] L. Sansonnens, A.A. Howling and C. Hollenstein, Plasma Sources Sci. Technol., vol. 7, p. 114 (1998). [132] D. Macdonald and L.J. Geerligs, Appl. Phys. Lett., vol. 85, pp. 4061-4063 (2004). [133] J. Schmidt and A. Cuevas, J. Appl. Phys., vol. 86, pp. 3175-3180 (1999). [134] J. Lagowski, P. Edelman, A.M. Kontkiewicz, O. Milic, W. Henley, M. Dexter, L. Jastrzebski and A.M. Hoff, Appl. Phys. Lett., vol. 63, pp. 3043-3045 (1993). [135] Y. Bai, J.E. Phillips and A.M. Barnett, IEEE Trans. Electron Devices, vol. 45, pp. 1784-1790 (1998). [136] H. Mimura and Y. Hatanaka, Appl. Phys. Lett., vol. 50, pp. 326-328 (1987). [137] M. Cuniot and Y. Marfaing, J. Non-Cryst. Solids, vol. 77-78, Part 2, pp. 987-990 (1985). [138] I. Sakata, M. Yamanaka and R. Shimokawa, Jpn. J. Appl. Phys., vol. 43, p. L954 (2004). [139] H. Eschrich, J. Bruns, L. Elstner and C. Swiatkowski, J. Non-Cryst. Solids, vol. 164-166, Part 2, pp. 717-720 (1993). [140] M. Schmidt, L. Korte, A. Laades, R. Stangl, C. Schubert, H. Angermann, E. Conrad and K. v. Maydell, Thin Solid Films, vol. 515, pp. 7475-7480 (2007). [141] J.P. Kleider, A.S. Gudovskikh and P. Roca i Cabarrocas, Appl. Phys. Lett., vol. 92, p. 162101 (2008). 169 Bibliography [142] J.P. Kleider, "Band Lineup Theories and the Determination of Band Offsets from Electrical Measurements", in Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, W.G.J.H.M. v. Sark, L. Korte and F. Roca, Eds.: Springer Verlag, p. 405 (2012). [143] R.L. Anderson, Solid-State Electron., vol. 5, pp. 341-351 (1962). [144] F. Capasso, Heterojunction Band Discontinuities: Physics and Device Applications, Amsterdam: North-Holland (1987). [145] A.G. Milnes and D.L. Feucht, Heterojunctions and Metal Semiconductor Junctions, New York: Academic Press (1972). [146] B.L. Sharma and P.K. Purohit, Semiconductor Heterojunctions, Oxford: Pergamon (1974). [147] W.R. Frensley and H. Kroemer, Phys. Rev. B, vol. 16, pp. 2642-2652 (1977). [148] M.J. Adams and A. Nussbaum, Solid-State Electron., vol. 22, pp. 783-791 (1979). [149] O. von Ross, Solid-State Electron., vol. 23, pp. 1069-1075 (1980). [150] W.A. Harrison, J. Vac. Sci. Technol. A, vol. 14, pp. 1016-1021 (1977). [151] J. Tersoff, Phys. Rev. B, vol. 30, pp. 4874-4877 (1984). [152] T. Tiedje, E. Yablonovitch, G.D. Cody and B.G. Brooks, IEEE Trans. Electron Devices, vol. 31, pp. 711-716 (1984). [153] J. Zhao, A. Wang, M.A. Green and F. Ferrazza, Appl. Phys. Lett., vol. 73, pp. 1991-1993 (1998). [154] J. Nakamura, K. Kimoto, N. Asano, T. Hieda, N. Koide, H. Katayama, Y. Fukuoka and K. Nakamura, Proc. 23rd International Photovoltaic Science and Engineering Conference (2013). [155] K. Yamamoto, Proc. 23rd International Photovoltaic Science and Engineering Conference (2013). [156] E. Kobayashi, N. Nakamura and Y. Watabe, Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition, p. 1619 (2012). [157] J. Chang, Y.-J. Chien, M.-Y. Chen, Y.-L. Chang, F.-S. Chen, M.-Y. Huang and P.-C. Yang, Proc. 23rd International Photovoltaic Science and Engineering Conference (2013). [158] D. Muñoz, T. Desrues, A.S. Ozanne, S. de Vecchi, S. Martín de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, C. Arnal, G. d'Alonzo, J. Coignus, W. Favre, T. Blevin, A. Valla, F. Ozanne, T. Salvetat and P.J. Ribeyron, Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition, p. 576 (2012). [159] A. Descoeudres, N. Badel, L. Barraud, B. Demaurex, J. Geissbühler, Z.C. Holman, J. Holovsky, S. Martin de Nicolas, B. Paviet-Salomon, J. Seif, A. Tomasi, S. De Wolf and C. Ballif, Proc. 23rd International Photovoltaic Science and Engineering Conference (2013). [160] W. Kern and D.A. Puotinen, RCA review, vol. 31, p. 187 (1970). 170 Bibliography [161] M.A. Lieberman and A.J. Lichtenberg, Principles of plasma discharges and materials processing, 2nd ed.: John Wiley & Sons (2005). [162] S.Q. Xiao, S. Xu, D.Y. Wei, S.Y. Huang, H.P. Zhou and Y. Xu, J. Appl. Phys., vol. 108, pp. 113520-6 (2010). [163] J.H. Shin and H. Huh, J. Vac. Sci. Technol. A, vol. 18, pp. 51-57 (2000). [164] S. Bae, A.K. Kalkan, S. Cheng and S.J. Fonash, J. Vac. Sci. Technol. A, vol. 16, pp. 1912-1916 (1998). [165] R. Houchin and N. Suzuki, "Microwave plasma processor", U.S.A. patent 5202095 A (1993). [166] H. Nagel, C. Berge and A.G. Aberle, J. Appl. Phys., vol. 86, pp. 6218-6221 (1999). [167] R.A. Sinton, A. Cuevas and M. Stuckings, Proc. 25th IEEE Photovoltaic Specialists Conference, pp. 457-460 (1996). [168] A. Cuevas, R.A. Sinton and M. Stuckings, Proc. Conference on Optoelectronic and Microelectronic Materials and Devices Proceedings, pp. 16-19 (1996). [169] D.E. Kane and R.M. Swanson, Proc. 14th IEEE Photovoltaic Specialists Conference (1985). [170] D.A. Clugston and P.A. Basore, Proc. 26th IEEE Photovoltaic Specialists Conference, pp. 207-210 (1997). [171] H.G. Tompkins and W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry: John Wiley & Sons (1999). [172] A. Roedeler, Infrared Spectroscopic Ellipsometry, Berlin: Akademie Verlag (1990). [173] H.G. Tompkins, A Users' Guide to Ellipsometry, London: Academic Press Inc. (1993). [174] H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications: John Wiley & Sons (2007). [175] G.E. Jellison Jr, Opt. Mater., vol. 1, pp. 151-160 (1992). [176] F. Wooton, Optical Properties of Solids, New York: Academic (1972). [177] J. Tauc, R. Grigorovici and A. Vancu, Phys. Status. Solidi B, vol. 15, pp. 627-637 (1966). [178] J.G.E. Jellison and F.A. Modine, Appl. Phys. Lett., vol. 69, pp. 371-373 (1996). [179] D.A.G. Bruggeman, Ann. Phys., vol. 416, pp. 636-664 (1935). [180] J. Tauc, Mater. Res. Bull., vol. 3, pp. 37-46 (1968). [181] D.J. Gardiner, Practical Raman spectroscopy: Springer Verlag (1989). [182] J.R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy: Academic Press (1994). [183] W. Suetaka, Surface Infrared and Raman Spectroscopy, New York: Plenum Press (1995). 171 Bibliography [184] G. Turrell and J. Corset, Raman Microscopy - Developments and Applications: Academic Press (1996). [185] B. Schrader, Infrared and Raman Spectroscopy: VCH (1995). [186] J.J. Laserna, Modern Techniques in Raman Spectroscopy: John Wiley & Sons (1996). [187] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Chichester: John Wiley & Sons (2004). [188] P. Griffiths and J.A. De Haseth, Fourier transform infrared spectrometry, Hoboken, New Jersey: Wiley Interscience (2005). [189] B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, Boca Raton, Florida: CRC Press (1995). [190] B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, Chichester: John Wiley & Sons (2004). [191] H. Okamura, "Methods for Obtaining the Optical Constants of a Material", in Optical Techniques for Solid-State Materials Characterization, R.P. Prasankumar and A.J. Taylor, Eds., Boca Raton, Florida: CRC Press, pp. 121-123 (2010). [192] U. Kroll, J. Meier, P. Torres, J. Pohl and A. Shah, J. Non-Cryst. Solids, vol. 227-230, Part 1, pp. 68-72 (1998). [193] C.T. Kirk, Phys. Rev. B, vol. 38, pp. 1255-1273 (1988). [194] L. He, Y. Kurata, T. Inokuma and S. Hasegawa, Appl. Phys. Lett., vol. 63, pp. 162-164 (1993). [195] T. Jana, S. Mukhopadhyay and S. Ray, Sol. Energ. Mat. Sol. Cells, vol. 71, pp. 197-211 (2002). [196] G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler and W. Czubatyj, Phys. Rev. B, vol. 28, pp. 3225-3233 (1983). [197] B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden and W.M.M. Kessels, Appl. Phys. Lett., vol. 89, p. 042112 (2006). [198] J.J.H. Gielis, B. Hoex, P.J. van den Oever, M.C.M. van de Sanden and W.M.M. Kessels, Thin Solid Films, vol. 517, pp. 3456-3460 (2009). [199] S. Honda, T. Mates, M. Ledinsky, J. Oswald, A. Fejfar, J. Kočka, T. Yamazaki, Y. Uraoka and T. Fuyuki, Thin Solid Films, vol. 487, pp. 152-156 (2005). [200] G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens and B. Brooks, Sol. Cells, vol. 2, pp. 227-243 (1980). [201] S.-K. Kim, J.C. Lee, S.-J. Park, Y.-J. Kim and K.H. Yoon, Sol. Energ. Mat. Sol. Cells, vol. 92, pp. 298-301 (2008). [202] H. Hao, X. Liao, X. Zeng, H. Diao, Y. Xu and G. Kong, J. Cryst. Growth, vol. 281, pp. 344-348 (2005). [203] U. Fantz, Plasma Phys. Controlled Fusion, vol. 40, p. 1035 (1998). [204] A.A. Howling, B. Strahm, P. Colsters, L. Sansonnens and C. Hollenstein, Plasma Sources Sci. Technol., vol. 16, p. 679 (2007). 172 Bibliography [205] M. Kondo, M. Fukawa, L. Guo and A. Matsuda, J. Non-Cryst. Solids, vol. 266-269, Part 1, pp. 84-89 (2000). [206] M. Mews, T.F. Schulze, N. Mingirulli and L. Korte, Appl. Phys. Lett., vol. 102, pp. 122106-4 (2013). [207] T.F. Schulze, H.N. Beushausen, T. Hansmann, L. Korte and B. Rech, Appl. Phys. Lett., vol. 95, pp. 182108-3 (2009). [208] J. Mitchell, D. Macdonald and A. Cuevas, Appl. Phys. Lett., vol. 94, pp. 162102-3 (2009). [209] N. Mingirulli, J. Haschke, R. Gogolin, R. Ferré, T.F. Schulze, J. Düsterhöft, N.-P. Harder, L. Korte, R. Brendel and B. Rech, physica status solidi (RRL) – Rapid Research Letters, vol. 5, pp. 159-161 (2011). [210] E. Katsia, E. Amanatides, D. Mataras and D.E. Rapakoulias, Thin Solid Films, vol. 511-512, pp. 285-289 (2006). [211] E. Amanatides, E. Katsia, D. Mataras, A. Soto and G.A. Voyiatzis, Thin Solid Films, vol. 511-512, pp. 603-607 (2006). [212] U.K. Das, M. Burrows, M. Lu, S. Bowden and R.W. Birkmire, Proc. 22th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1290-1293 (2007). [213] R. Gogolin, R. Ferré, M. Turcu and N.P. Harder, Sol. Energ. Mat. Sol. Cells, vol. 106, pp. 47-50 (2012). [214] J. Ge, Z.P. Ling, J. Wong, T. Mueller and A.G. Aberle, Energy Procedia, vol. 15, pp. 107-117 (2012). [215] S. Kim, V.A. Dao, C. Shin, J. Cho, Y. Lee, N. Balaji, S. Ahn, Y. Kim and J. Yi, Thin Solid Films, vol. 521, pp. 45-49 (2012). [216] G.D. Cody, J. Non-Cryst. Solids, vol. 141, pp. 3-15 (1992). [217] T.F. Schulze, L. Korte, F. Ruske and B. Rech, Phys. Rev. B, vol. 83, p. 165314 (2011). [218] O.S. Panwar, C. Mukherjee and R. Bhattacharyya, Sol. Energ. Mat. Sol. Cells, vol. 57, pp. 373-391 (1999). [219] G.-F. Hou, X.-H. Geng, X.-D. Zhang, J. Sun, J.-J. Zhang and Y. Zhao, Chin. Phys. B, vol. 20, p. 077802 (2011). [220] P. Chaudhuri, D. Das, P. Pratim Ray, N. Dutta Gupta, D. Roy and C. Longeaud, J. Non-Cryst. Solids, vol. 338-340, pp. 236-239 (2004). [221] L. Feitknecht, J. Meier, P. Torres, J. Zürcher and A. Shah, Sol. Energ. Mat. Sol. Cells, vol. 74, pp. 539-545 (2002). [222] Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azuma and H. Shirai, Thin Solid Films, vol. 386, pp. 256-260 (2001). [223] A. Matsuda, J. Non-Cryst. Solids, vol. 338-340, pp. 1-12 (2004). [224] R. Terasa, M. Albert, J.W. Bartha, H. Brechtel and A. Kottwitz, J. Non-Cryst. Solids, vol. 299-302, Part 1, pp. 58-62 (2002). [225] J.P.M. Schmitt, Thin Solid Films, vol. 174, Part 1, pp. 193-202 (1989). 173 Bibliography [226] E. Katsia, E. Amanatides, D. Mataras, Α. Soto and G.A. Voyiatzis, Sol. Energ. Mat. Sol. Cells, vol. 87, pp. 157-167 (2005). [227] E.V. Johnson, S. Pouliquen, P.A. Delattre and J.P. Booth, J. Non-Cryst. Solids, vol. 358, pp. 1974-1977 (2012). [228] W.M.M. Kessels, A.H.M. Smets, D.C. Marra, E.S. Aydil, D.C. Schram and M.C.M. van de Sanden, Thin Solid Films, vol. 383, pp. 154-160 (2001). [229] R. Terasa, M. Albert, H. Grüger, A. Haiduk and A. Kottwitz, J. Non-Cryst. Solids, vol. 266-269, Part 1, pp. 95-99 (2000). [230] P.R.i. Cabarrocas, "Deposition Techniques and Processes Involved in the Growth of Amorphous and Microcrystalline Silicon Thin Films", in Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, W.G.J.H.M. v. Sark, L. Korte and F. Roca, Eds.: Springer Verlag, p. 149 (2012). [231] W. Yimao, K.R. McIntosh, A.F. Thomson and A. Cuevas, IEEE J. Photovolt., vol. 3, pp. 554-559 (2013). [232] B. Hoex, F.J.J. Peeters, M. Creatore, M.A. Blauw, W.M.M. Kessels and M.C.M. van de Sanden, J. Vac. Sci. Technol. A, vol. 24, pp. 1823-1830 (2006). [233] T. Mueller, S. Schwertheim and W.R. Fahrner, Proc. 33rd IEEE Photovoltaic Specialists Conference, pp. 1-6 (2008). [234] T. Mueller, W. Duengen, R. Job, M. Scherff and W. Fahrner, MRS Online Proceedings Library, vol. 989 (2007). [235] Z. Remeš, M. Vaněček, P. Torres, U. Kroll, A.H. Mahan and R.S. Crandall, J. Non-Cryst. Solids, vol. 227–230, Part 2, pp. 876-879 (1998). [236] Z. Remes̆, M. Vanĕc̆ek, A.H. Mahan and R.S. Crandall, Phys. Rev. B, vol. 56, pp. R12710-R12713 (1997). [237] A. Janotta, R. Janssen, M. Schmidt, T. Graf, M. Stutzmann, L. Görgens, A. Bergmaier, G. Dollinger, C. Hammerl, S. Schreiber and B. Stritzker, Phys. Rev. B, vol. 69, p. 115206 (2004). [238] A. Grill and D.A. Neumayer, J. Appl. Phys., vol. 94, pp. 6697-6707 (2003). [239] D.M. Wolfe, B.J. Hinds, F. Wang, G. Lucovsky, B.L. Ward, M. Xu, R.J. Nemanich and D.M. Maher, J. Vac. Sci. Technol. A, vol. 17, pp. 2170-2177 (1999). [240] F. Yun, B.J. Hinds, S. Hatatani, S. Oda, Q.X. Zhao and M. Willander, Thin Solid Films, vol. 375, pp. 137-141 (2000). [241] H.R. Philipp, J. Non-Cryst. Solids, vol. 8-10, pp. 627-632 (1972). [242] D.V. Tsu, G. Lucovsky and B.N. Davidson, Phys. Rev. B, vol. 40, pp. 1795-1805 (1989). [243] P.G. Pai, S.S. Chao, Y. Takagi and G. Lucovsky, J. Vac. Sci. Technol. A, vol. 4, pp. 689-694 (1986). 174 Bibliography [244] F. Einsele, W. Beyer and U. Rau, J. Appl. Phys., vol. 112, pp. 054905-8 (2012). [245] W. Beyer, J. Non-Cryst. Solids, vol. 266-269, Part 2, pp. 845-849 (2000). [246] R. Janssen, A. Janotta, D. Dimova-Malinovska and M. Stutzmann, Phys. Rev. B, vol. 60, pp. 13561-13572 (1999). [247] M. Park, C.W. Teng, V. Sakhrani, M.B. McLaurin, R.M. Kolbas, R.C. Sanwald, R.J. Nemanich, J.J. Hren and J.J. Cuomo, J. Appl. Phys., vol. 89, pp. 1130-1137 (2001). [248] G.M. Ferreira, C. Chen, R.J. Koval, J.M. Pearce, C.R. Wronski and R.W. Collins, J. Non-Cryst. Solids, vol. 338-340, pp. 694-697 (2004). [249] H. Piller, Handbook of Optical Constants of Solids, vol. (1985). [250] Y. Larionova, V. Mertens, N.-P. Harder and R. Brendel, Appl. Phys. Lett., vol. 96, pp. 032105-3 (2010). [251] C. Leendertz, N. Mingirulli, T.F. Schulze, J.P. Kleider, B. Rech and L. Korte, Appl. Phys. Lett., vol. 98, p. 202108 (2011). [252] T. Daimaru, A. Tabata and T. Mizutani, Thin Solid Films, vol. 501, pp. 102-106 (2006). [253] J.B. Rem, J. Holleman and J.F. Verweij, J. Electrochem. Soc., vol. 144, pp. 2101-2106 (1997). [254] J.K. Rath, R.E.I. Schropp and W. Beyer, J. Non-Cryst. Solids, vol. 266-269, pp. 190-194 (2000). 175 Bibliography 176 List of Publications The following papers were generated in the course of the research activities described in this thesis. Journal papers: [1] J. Ge, M. Tang, J. Wong, Z. Zhang, T. Dippell, M. Doerr, O. Hohn, M. Huber, P. Wohlfart, A. G. Aberle and T. Mueller, Int. J. Photoenergy, vol. 2014, pp. 1-12 (2014). [2] J. Ge, M. Tang, J. Wong, R. Stangl, Z. Zhang, T. Dippell, M. Doerr, O. Hohn, M. Huber, P. Wohlfart, A.G. Aberle and T. Mueller, Manuscript submitted to IEEE J. Photovolt. (2014). [3] Z.P. Ling, J. Ge, R. Stangl, A.G. Aberle and T. Mueller, Trans. Mater. Res. Soc. Jpn (2014, in press). [4] M. Tang, J. Ge, J. Wong, Z.P. Ling, T. Dippell, Z. Zhang, M. Huber, M. Doerr, O. Hohn, P. Wohlfart, A.G. Aberle and T. Mueller, Manuscript in preparation (2014). [5] J. Ge, Z.P. Ling, J. Wong, R. Stangl, A.G. Aberle and T. Mueller, J. Appl. Phys., vol. 113, pp. 234310-7 (2013). [6] Z.P. Ling, J. Ge, R. Stangl, A.G. Aberle and T. Mueller, Journal of Materials Science and Chemical Engineering, vol. 1, pp. 1-14 (2013). Conference papers: [1] J. Ge, M. Tang, J. Wong, Z. Zhang, T. Dippell, M. Dörr, O. Hohn, M.R. Huber, P. Wohlfart, A.G. Aberle and T. Mueller, Proc. 29th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1032-1035 (2014). [2] J. Ge, Z.P. Ling, M. Tang, J. Wong, M. Huber, T. Dippell, P. Wohlfart, A.G. Aberle and T. Mueller, Proc. 23rd International Photovoltaic Science and Engineering Conference, pp. 79 (1-P-60) (2013). [3] J. Ge, M. Tang, J. Wong, Z. Zhang, M. Doerr, T. Dippell, O. Hohn, M. Huber, P. Wohlfart, A.G. Aberle and T. Mueller, Proc. 4th Trilateral Conference on "Nanoscience: energy, water and healthcare" (2013). [4] Z.P. Ling, F. Ma, S. Duttagupta, M. Tang, J. Ge, A. Khanna, T. Mueller, A.G. Aberle and R. Stangl, Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition, pp. 800-805 (2013). [5] J. Ge, Z.P. Ling, J. Wong, T. Mueller and A.G. Aberle, Energy Procedia, vol. 15, pp. 107-117 (2012). 177 List of Publications [6] J. Ge, Z.P. Ling, R. Stangl, A.G. Aberle and T. Mueller, Proc. 22nd International Photovoltaic Science and Engineering Conference, pp. 85 (1-P-13) (2012). [7] Z.P. Ling, J. Ge, J. Wong, T. Mueller and A. G. Aberle, Energy Procedia, vol. 15, pp. 118-128 (2012). 178 [...]... improved surface passivation scheme using inductively coupled plasma deposited amorphous silicon suboxide thin films for heterojunction silicon wafer solar cells is successfully developed in this work Comparing with standard capacitively coupled plasma deposited amorphous silicon, this new process demonstrates a suppressed epitaxial growth that improves the robustness of production, and a superior passivation. .. defects 27 2.1.3.4 Surface recombination 30 2.1.3.5 Reduction of recombination 32 2.2 Heterojunction Si wafer solar cells 35 2.2.1 Hydrogenated amorphous Si alloys 36 2.2.1.1 Structure and defect states 36 2.2.1.2 Characteristics of amphoteric dangling bonds 38 vii 2.2.1.3 Surface passivation 42 2.2.1.4 Conditions for good surface passivation material ... .xvii List of Symbols and Abbreviations xxv Chapter 1 1.1 Introduction 1 Heterojunction silicon wafer solar cells: a promising candidate for high-efficiency PV 4 1.2 Thesis motivation 6 1.3 Thesis structure 11 Chapter 2 2.1 Basic Physics of Heterojunction Solar Cells 15 Charge generation, transport and recombination 15 2.1.1 Generation ... alternative surface passivation scheme to replace amorphous silicon using an industrial plasma reactor with reduced ion bombardment By applying the new process - which xiii Summary consists of remote inductively coupled plasma deposited amorphous silicon suboxide thin films from a high-throughput pilot line tool - to solar- grade n-type Czochralski-grown silicon wafers, a state-of-the-art passivation. .. platform SINGULAR-HET 158 x 8.2 Future research work 159 8.2.1 General proposal 159 8.2.2 Proposal for ICP-deposited a-SiOx:H(i) 159 8.2.3 Proposal for HET solar cell fabrication 160 Bibliography 163 List of Publications 177 xi xii Summary This thesis focuses on the development and analysis of surface passivating amorphous silicon alloys for heterojunction. .. and the electron orbits formed the basic physics of solar cells [4] The first modern solar cell concept was born in the Bell laboratories in 1941, which was based on crystalline silicon (c-Si) [5, 6] By 1954, these solar cells had reached energy conversion efficiencies (η) of 6% based on a diffused p-n junction structure [7] The first major boost of research and development in solar cell devices was... not included in this table will be discussed in relevant chapters 12 Table 2.1: Highest efficiency HET solar cells reported in the literature All these cells used n-type c-Si wafers 53 Table 3.1: Recipes for solutions used in the wafer cleaning process The quantities for chemicals and water are shown in ratios instead of absolute amount 57 Table 3.2: Bonding types/modes... diagram 46 2.2.3 Current research status on HET solar cells 52 Chapter 3 Equipment, Sample Preparation and Characterisation Methods 55 3.1 Flow chart for sample fabrication 55 3.2 Wafer cleaning 57 3.3 Passivation film deposition 57 3.3.1 Sample structure 58 3.3.2 Notes on the choice of silicon wafer substrates 58 3.3.3 Plasma reactors ... research and development in solar cell devices was seen in the 1960s when they were mainly intended for space applications The development of solar cells for terrestrial use started in the 1970s due to increasing oil prices and oil embargos, revealing the need for alternative fuel sources Since then, solar cells are recognised as a new generation of power generating technology that has the advantages of... of production, and a superior passivation quality which benefits from the low-damage deposition method Therefore, the high-throughput industrial inductively coupled plasma deposition approach is very promising as a robust, high-quality and productive process for heterojunction silicon wafer solar cell manufacturing xiv List of Tables Table 1.1: Summary of standard characterisation techniques used in . SURFACE PASSIVATION FOR HETEROJUNCTION SILICON WAFER SOLAR CELLS GE JIA B. Eng. (Hons.), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. summary, an improved surface passivation scheme using inductively cou- pled plasma deposited amorphous silicon suboxide thin films for heterojunction silicon wafer solar cells is successfully. analysis of surface passivating amorphous silicon alloys for heterojunction silicon wafer solar cell applications. As the narrow process window of conventional intrinsic amorphous silicon, as

Ngày đăng: 09/09/2015, 11:31

Từ khóa liên quan

Mục lục

  • Acknowledgements

  • Table of Contents

  • Summary

  • List of Tables

  • List of Figures

  • List of Symbols and Abbreviations

  • Chapter 1 Introduction

    • 1.1. Heterojunction silicon wafer solar cells: a promising candidate for high-efficiency PV

    • 1.2. Thesis motivation

    • 1.3. Thesis structure

    • Chapter 2 Basic Physics of Heterojunction Solar Cells

      • 2.1. Charge generation, transport and recombination

        • 2.1.1. Generation

        • 2.1.2. Transport

        • 2.1.3. Recombination

          • 2.1.3.1. Radiative recombination

          • 2.1.3.2. Auger recombination

          • 2.1.3.3. Recombination through localised defects

          • 2.1.3.4. Surface recombination

          • 2.1.3.5. Reduction of recombination

          • 2.2. Heterojunction Si wafer solar cells

            • 2.2.1. Hydrogenated amorphous Si alloys

              • 2.2.1.1. Structure and defect states

              • 2.2.1.2. Characteristics of amphoteric dangling bonds

              • 2.2.1.3. Surface passivation

              • 2.2.1.4. Conditions for good surface passivation material

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan