Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 178 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
178
Dung lượng
7,61 MB
Nội dung
LI4TI5O12-BASED ANODE MATERIALS FOR HIGHPOWER LITHIUM-ION BATTERIES LIN CHUNFU NATIONAL UNIVERSITY OF SINGAPORE 2014 LI4TI5O12-BASED ANODE MATERIALS FOR HIGHPOWER LITHIUM-ION BATTERIES LIN CHUNFU (M Eng and B Eng., Tsinghua University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2014 Acknowledgements I extend my deep and sincere appreciation to my supervisors, Prof Lu Li and A/Prof Lai Man On, for their invaluable guidance and constant support Their unique perspectives, meticulous attitude and endless enthusiasm for research greatly inspired me to novel and meaningful work during my Ph.D program, and will definitely benefit my future professional career I express my sincere thanks to my seniors, Dr Xia Hui, Dr Feng Jinkui, Dr Ni Jiangfeng, Dr Wang Hailong, Dr Yan Feng, Dr Ye Shukai, Dr Xiao Pengfei, Dr Ding Yuanli, Dr Zhu Jing and Dr Song Bohang, for their helpful encouragement and valuable suggestions on my research I am grateful to our other group members of the research group, Dr Fan Xiaoyong, Dr Zhao Xuan, Dr Li Siheng, Dr Song Shufeng, Mr Ding Bo, Mr Khairul Helmy Kamalul Arifin, Mr Yan Binggong, Miss Li Liu, Miss Lv Jia, Miss Zhu Yaqi and Mr Zheng Feng, for their kind and finely support I acknowledge the technical staff in the Materials Laboratory, Mr Thomas Tan, Mr Ng Hongwei, Mr Abdul Khalim Bin Abdul, Mr Juraimi B Madon and Dr Maung Aye Thein, for their superior and professional technical support I convey my gratitude to National University of Singapore for its scholarship support (President’s Graduate Fellowship) I am greatly indebted to my beloved wife Fu Lijing, my parents, my two sons, and my other family members, for their endless love and wholehearted support Above all, I thank God for his love, mercy and guidance in my life I Table of Contents Acknowledgements I Table of Contents II Summary VI List of Tables .VIII List of Figures X List of Symbols XVI Chapter Background, motivation and orientation 1.1 Structure and working principle of LIBs 1.2 Recent development of LIBs 1.3 Overview of anode materials 1.4 Characteristics of LTO 1.5 Literature review 1.6 Research objectives and contents 14 Chapter Experimental approach 17 2.1 Material design 17 2.2 Material synthesis methods 19 2.3 Battery assembly 20 2.4 Crystal structure identification 21 2.5 Valence measurement 21 2.6 Particle morphology observation 22 2.7 Specific surface area and pore size measurement 22 2.8 Thermogravimetry analysis 22 2.9 Tap density measurement 22 2.10 Electrochemical impedance spectroscopy test 23 2.11 Li+ ion diffusion coefficient measurement 24 II 2.12 Electronic conductivity measurement 24 2.13 Discharge–charge measurment at low current density 25 2.14 Electrochemical reaction signal identification 25 2.15 Rate performance tests 25 2.16 Cyclability at various C 26 Chapter Ni2+ doped Li4Ti5O12 for anodes of lithium-ion batteries: structure and rate performance 27 3.1 Introduction 27 3.2 Experimental 28 3.2.1 3.2.2 Material characterizations 28 3.2.3 3.3 Material preparations 28 Electrochemical tests 29 Results and discussion 29 3.3.1 3.3.2 Particle Morphology 32 3.3.3 Li+ ion diffusion coefficient measurement 33 3.3.4 Electronic conductivity 35 3.3.5 Charge/discharge performance at 0.5 C 36 3.3.6 3.4 Crystal structure analysis 29 Rate performance 37 Conclusions 40 Chapter Improved electrochemical performance of Li4Ti5O12-based materials for lithium-ion batteries: complementary effect of doping and compositing 41 4.1 Introduction 42 4.2 Experimental 43 4.2.1 Material preparations 43 4.2.2 Material characterizations 44 4.2.3 Electrochemical tests 44 III 4.3 Results and discussion 44 4.3.1 4.3.2 Particle Morphology 48 4.3.3 Li+ ion diffusion coefficient measurement 49 4.3.4 Electronic conductivity 50 4.3.5 Charge–discharge performance at 0.5 C 53 4.3.6 Rate performance 53 4.3.7 4.4 Crystal structure analysis 44 Electrochemical performances of Li3.8Cu0.3Ti4.9O12/CNTs 55 Conclusions 57 Chapter Li4Ti5O12-based anode materials with low working potential, high rate performance and high cyclability: complementary effects of doping, compositing and nanostructuring 59 5.1 Introduction 60 5.2 Experimental 63 5.2.1 5.2.2 Material characterizations 65 5.2.3 5.3 Material preparations 63 Electrochemical tests 65 Results and discussion 65 5.3.1 5.3.2 Particle morphology and size 71 5.3.1 Li+ ion diffusion coefficient 72 5.3.2 Electronic conductivity 77 5.3.3 Charge/discharge performance at 0.5 C 79 5.3.4 Redox reaction analysis 79 5.3.5 Rate performance 80 5.3.6 5.4 Crystal structure analysis 65 Electrochemical properties of doped LTO/CNTs 83 Conclusions 86 IV Chapter Monodispersed mesoporous Li4Ti5O12 submicrospheres for lithiumion batteries: morphology and electrochemical performances 87 6.1 Introduction 88 6.2 Experimental 90 6.2.1 Material preparations 90 6.2.2 Material characterizations 91 6.2.3 Electrochemical tests 92 6.3 Results and discussion 92 6.3.1 Material characteristics 92 6.3.2 Electrochemical performances 101 6.4 Conclusions 109 Chapter Mesoporous Li4Ti5O12–x/C submicrospheres with improved electrochemical performances for high-power lithium-ion batteries: complementary effects of compositing, crystal structure modification, and hierarchical particle construction 110 7.1 Introduction 111 7.2 Experimental 114 7.2.1 Material preparations 114 7.2.2 Material characterizations 115 7.2.3 Electrochemical tests 115 7.3 Results and discussion 116 7.3.1 Material characteristics 116 7.3.2 Electrochemical performances 127 7.4 Chapter Conclusions 135 Conclusions and Recommendations 137 References 142 List of publications 158 V Summary In recent years, tremendous attention has been paid to the development of high-power lithium-ion batteries (LIBs) for electric vehicles (EVs) and hybrid electric vehicles (HEVs) to meet the energy and environmental concerns Unfortunately, the currently used carbonaceous materials cannot meet the high-power demand due to their poor rate performances and safety hazards although its low voltage potential benefits high energy Li4Ti5O12 (LTO), an intercalation type of anode material, has been regarded as an attractive alternative for the carbonaceous materials owing to its several inherent advantages in terms of high working potential, good safety and good cyclability However, this material suffers from two main drawbacks of poor conductivity and overly high working potential with associated poor power performance The objective of the present study is therefore to improve the power performance of LTO through crystal structure modification, compositing and/or hierarchical particle construction To achieve this objective, the material structures, material properties and electrochemical performances of the prepared LTO-based materials were systematically and intensively studied Firstly, Ni2+ ion was used to dope LTO Ni2+ doping significantly enhanced the electronic conductivity of LTO, leading to an improved rate performance At C, Li 3.9Ni0.15Ti4.95O12 has a capacity of 72 mAh g–1, which is 1.2 times larger than the pristine value Secondly, a Cu2+ doping-carbon nanotubes (CNTs) compositing complementary strategy was employed, resulting in increased electronic conductivity and Li + diffusion coefficient in particles as well as improved electrical conduction between particles At 10 C, Li3.8Cu0.3Ti4.9O12/CNTs composite has a large capacity of 114 mAh g –1, more than nine VI times larger than the pristine value Thirdly, based on a complementary effect of Fe2+/Ti3+ doping, CNTs compositing and carbon’s hinderer of particle growth, Li 3.8Fe0.3Ti4.9O12/CNTs and LiCrTiO4/CNTs composites respectively exhibit large capacities of 106 and 120 mAh g –1 at 10 C, which are about nine and ten times larger than the pristine value In addition, they show lower working potentials by 8.9 and 46.2 mV at 0.1 C Fourthly, hierarchical particle construction was used, and monodispersed mesoporous LTO submicrospheres were prepared Due to the small primary particles, the optimized sample displays superior rate performance At 10 C, it exhibits a large capacity of 109 mAh g–1 Finally, monodispersed/multidispersed mesoporous Li4Ti5O12–x/C submicrospheres were fabricated through a complementary method combining carbon compositing, crystal structure modification and hierarchical particle construction The optimized sample reveals not only high rate performance but also lower working potential by 4.5 mV It shows a high capacity of 119 mAh g–1 at 10 C and a lower working potential by 4.5 mV at 0.1 C These optimized samples also exhibit good cyclability and large tap densities, resulting in promising and potentially practical applications in EVs/HEVs In addition to these practical benefits, two additional benefits have also been achieved The doping law for LTO has been revealed Moreover, the relations among the material composition, material structure, material properties and LIB performances have become clear These two benefits can provide more insight for future material design in the field of LIBs VII [37] T.F Yi, Y Xie, J Shu, Z.H Wang, C.B Yue, R.S Zhu, H.B Qiao, J Electrochem Soc 158 (2011) A266–A274 [38] S.H Huang, Z.Y Wen, X.J Zhu, Z.X Lin, J.Power Sources 165 (2007) 408–412 [39] H.L Zhao, Y Li, Z.M Zhu, J Lin, Z.H Tian, R.L Wang, Electrochim Acta 53 (2008) 7079–7083 [40] Z.H Wang, G Chen, J Xu, Z.S Lv, W.Q Wang, J Phys Chem Solids 72 (2011) 773–778 [41] B Zhang, H.D Du, B.H Li, F.Y Kang, Electrochem Solid-State Lett 13 (2010) A36–A38 [42] Y.K Sun, D.J Jung, Y.S Lee, K.S Nahm, J Power Sources 125 (2004) 242–245 [43] K Mukai, K Ariyoshi, T Ohzuku, J Power Sources 146 (2005) 213–216 [44] Z.M Zhong, Electrochem Solid-State Lett 10 (2007) A267–269 [45] X.L Zhang, G.R Hu, Z.D Peng, J Inorg Mater 26 (2011) 443–448 [46] Q.Y Zhang, C.L Zhang, B Li, S.F Kang, X Li, Y.G Wang, Eletrochim Acta 98 (2013) 146–152 [47] C.X Qiu, Z.Z Yuan L Liu, N Ye, J.C Liu, J Solid State Electrochem 17 (2013) 841–847 [48] Y.J Bai, C Gong, N Lun, Y.X Qi, J Mater Chem A (2013) 89–96 [49] Y.L Qi, Y.D Huang, D.Z Jia, S.J Bao, Z.P Guo, Electrochim Acta 54 (2009) 4772–4776 145 [50] X Li, M.Z Qu, Z.L Yu, Chin J Inorg Chem 26 (2010) 233–239 [51] T.F Yi, H.P Liu, Y.R Zhu, L.J Jiang, Y Xie, R.S Zhu, J Power Sources 215 (2012) 258–265 [52] Q.Y Zhang, C.L Zhang, B Li, D.D Jiang, S.F Kang, X Li, Y.G Wang, Electrochim Acta 107 (2013) 139–146 [53] J Gao C.Y Jiang, C.R Wan, J Electrochem Soc 157 (2010) K39–K42 [54] A.Y Shenouda, K.R Murali, J Power Sources 176 (2008) 332–339 [55] H.B Wu, S Chang, X.L Liu, L.Q Yu, G.L Wang, D.X Cao, Y.M Zhang, B.F Yang, P.L She, Solid State Ionics 232 (2013) 13–18 [56] R Cai, T Yuan, R Ran, X.Q Liu, Z.P Shao, Int J Energy Res 35 (2011) 68–77 [57] Y.H Yin, S.Y Li, Z.J Fan, X.L Ding, S.T Yang, Mater Chem Phys 130 (2011) 186–190 [58] G.N Zhu, C.X Wang, Y.Y Xia, J Electrochem Soc 158 (2011) A102–A109 [59] L Cheng, X.L Li, H.J Liu, H.M Xiong, P.W Zhang, Y.Y Xia, J Electrochem Soc 154 (2007) A692–A697 [60] T Yuan, X Yu, R Cai, Y.K Zhou, Z.P Shao, J Power Sources 195 (2010) 4997– 5004 [61] G.J Wang, J Gao, L.J Fu, N.H Zhao, Y.P Wu, T Takamura, J Power Sources 174 (2007) 1109–1112 [62] S.W Zheng, Y.L Xu, C.J Zhao, H.K Liu, X.Z Qian, J.H Wang, Mater Lett 68 146 (2012) 32–35 [63] L Cheng, J Yan, G.N Zhu, J.Y Luo, C.X Wang, Y.Y Xia, J Mater Chem 20 (2010) 595–602 [64] H.S Li, L.F Shen, X.G Zhang, J Wang, P Nie, Q Che, B Ding, J Power Sources 221 (2013) 122–127 [65] H.Q Zhang, Q.J Deng, C.X Mou, Z.L Huang, Y Wang, A.J Zhou, J.Z Li, J Power Sources 239 (2013) 538–545 [66] C.T Hsieh, B.S Chang, J.Y Lin, R.S Juang, J Alloys Compd 513 (2012) 393–398 [67] D Yoshikawa, N Suzuki, Y Kadoma, K Ui, N Kumagai, Funct Mater Lett (2012) 125001 [68] X.B Hu, Z.J Lin, K.R Yang, Z.H Deng, J.S Suo, J Alloys Compd 506 (2010)160–166 [69] L.X Yang, L.J Gao, J Alloys Compd 485 (2009) 93–97 [70] G.X Wang, K.P Yan, Z.L Yu, M.Z Qu, J Appl Electrochem 40 (2010) 821–831 [71] J Gao, J.R Ying, C.Y Jiang, C.R Wan, J Power Sources 166 (2007) 255–259 [72] Z.J Lin, X.B Hu, Y.J Huai, L Liu, Z.H Deng, J.S Suo, Solid State Ionics 181 (2010) 412–415 [73] L Wang, Z.L Zhang, G.C Liang, X.Q Ou, Y.Q Xu, Power Technol 215–216 (2012) 79–84 [74] K Naoi, S Ishimoto, Y Isobe, S Aoyagi, J Power Sources 195 (2010) 6250–6254 147 [75] B.K Guo, Y Li, Y.F Yao, Z Lin, L.W Ji, G.J Xu, Y.Z Liang, Q Shi, X.W Zhang, Solid State Ionics 204–205 (2011) 61–65 [76] L.F Shen, C.Z Yuan, H.J Luo, X.G Zhang, K Xu, F Zhang, J Mater Chem 21 (2011) 761–767 [77] X Li, M.Z Qu, Y.J Huai, Z.L Yu, Electrochim Acta 55 (2010) 2978–2982 [78] X Li, M.Z Qu, Z.L Yu, Z.L., Solid State Ionics 181 (2010) 635–639 [79] J.J Huang, Z.Y Jiang, Electrochim Acta 53 (2008) 7756–7759 [80] Y.R Jhan, J.G Duh, J Power Sources 198 (2012) 294–297 [81] S Hao, X.L Xiao, Z.B Hu, L.M Sun, S.B Han, D.F Chen, X.F Liu, J Phys Chem C 117 (2013) 26889–26895 [82] H.F Xiang, B.B Tian, P.C Lian, Z Li, H.H Wang, J Alloys Compd 509 (2011) 7205–7209 [83] N Zhu, W Liu, M.Q Xue, Z Xie, D Zhao, M.N Zhang, J.T Chen, T.B Cao, Electrochim Acta 55 (2010) 5813–5818 [84] H.K Kim, S.M Bak, K.B Kim, Electrochem Commun 12 (2010) 1768–1771 [85] S.G Ri, L Zhan, Y Wang, L.H Zhou, J Hu, H.L Liu, Electrochim Acta 109 (2013) 389–394 [86] B Zhang, Y Yu, Y.S Liu, Z.D Huang, Y.B He, J.K Kim, Nanoscale (2013) 2100–2106 [87] D Wang, H.Y Xu, M Gu, C.H Chen, Electrochem Commun 11 (2009) 50–53 148 [88] S.H Huang, Z.Y Wen, B Lin, J.D Han, X.G Xu, J Alloys Compd 457 (2008) 400–403 [89] Z.J He, Z.X Wang, L Cheng, T Li, X.H Li, H.J Guo, F.X Wu, Mater Lett 107 (2013) 273–275 [90] S.H Huang, Z.Y Wen, X.J Zhu, X.L Yang, J Electrochem Soc 152 (2005) A1301–A1305 [91] Z.Y Wen, S.H Huang, X.L Yang, B Lin, Solid State Ionics 179 (2008) 1800–1805 [92] S.H Huang, Z.Y Wen, X.J Zhu, Z.H Gu, Electrochem Commun (2004) 1093– 1097 [93] S.H Huang, Z.Y Wen, J.C Zhang, Z.H Gu, X.H Xu, Solid State Ionics 177 (2006) 851–855 [94] S.H Huang, Z.Y Wen, J.C Zhang, X.L Yang, Electrochim Acta 52 (2007) 3704– 3708 [95] A Sivashanmugam, S Gopukumar, R Thirunakaran, C Nithya, S Prema, Mater Res Bull 46 (2011) 492–500 [96] R Cai, X Yu, X.Q Liu, Z.P Shao, J Power Sources 195 (2010) 8244–8250 [97] W Wang, Y.Y Guo, L.X Liu, S.X Wang, X.J Yang, H Guo, J Power Sources 245 (2014) 624–629 [98] H.Y Yu, X.F Zhang, A.F Jalbout, X.D Yan, X.M Pan, H.M Xie, R.S Wang, Electrochim Acta 53 (2008) 4200–4204 [99] K.S Park, A Benayad, D.J Kang, S.G Doo, J Am Chem Soc 130 (2008) 14930– 149 14931 [100] J Lim, E Choi, V Mathew, D Kim, D Ahn, J Gim, S.H Kang, J Kim, J Electrochem Soc.158 (2011) A275–A280 [101] A Nugroho, S.J Kim, K.Y Chung, B.W Cho, Y.W Lee, J Kim, Electrochem Commun 13 (2011) 650–653 [102] V Mathew, J Lim, J Gim, D Kim, J Moon, J Kang, J Kim, J Nanosci Nanotechnol 11 (2011) 7294–7298 [103] G.F Yan, H.S Fang, H.J Zhao, G.S Li, Y Yang, L.P Li, J Alloys Compd 470 (2009) 544–547 [104] G.Q Liu, L Wen, G.Y Liu, Q.Y Wu, H.Z Luo, B.Y Ma, Y.W Tian, J Alloys Compd 509 (2011) 6427–6432 [105] D Wang, N Ding, X.H Song, C.H Chen, J Mater Sci 44 (2009) 198–203 [106] C Lai, Y.Y Dou, X Li, X.P Gao, J Power Sources 195 (2010) 3676–3679 [107] M.M Rahman, J.Z Wang, M.F Hassan, S.L Chou, D Wexler, H.K Liu, J Power Sources 195 (2010) 4297–4303 [108] T Yuan, R Cai, K Wang, R Ran, S.M Liu, Z.P Shao, Ceram Int 35 (2009) 1757–1768 [109] M Kalbac, M Zukalova, L Kavan, J Solid State Electrochem (2003) 2–6 [110] L Cheng, H.J Liu, J.J Zhang, H.M Xiong, Y.Y Xia, J Electrochem Soc 153 (2006) A1472–A1477 150 [111] J Li, Y.L Jin, X.G Zhang, H Yang, Solid Stat Ionics 178 (2007) 1590–1594 [112] L Kavan, M Gratzel, Electrochem Solid-State Lett (2002) A39–A42 [113] T Doi, Y Iriyama, T Abe, Z Ogumi, Chem Mater 17 (2005) 1580–1582 [114] Y.J Hao, Q.Y Lai, J.Z Lu, H.L Wang, J Power Sources 158 (2006) 1358–1364 [115] M.W Raja, S Mahanty, M Kundu, R.N Basu, J Alloys Compd 468 (2009) 258– 262 [116] A Laumann, M Bremholm, P Hald, M Holzapfel, K.T Fehr, B.B Iversen, J Electrochem Soc 159 (2012) A166–A171 [117] H.L Wu, Y.D Huang, D.Z Jia, Z.P Guo, M Miao, J Nanopart Res 14 (2012) 713 [118] Y.H Jin, K.M Min, H.W Shim, S.D Seo, I.S Hwang, K.S Park, D.W Kim, Nanoscale Res Lett (2012) 10 [119] M Venkateswarlu, C.H Chen, J.S Do, C.W Lin, T.C Chou, B.J Hwang, J Power Sources 146 (2005) 204–208 [120] C.H Jiang, M Ichihara, I Honma, H.S Zhou, Electrochim Acta 52 (2007) 6470– 6475 [121] C.M Shen, X.G Zhang, Y.K Zhou, H.L Li, Mater Chem Phys 78 (2002) 437– 441 [122] S.Y Yin, L Song, X.Y Wang, M.F Zhang, K.L Zhang, Y.X Zhang, Electrochim Acta 54 (2009) 5629–5633 151 [123] S.S Lee, K.T Byun, J.P Park, S.K Kim, H.Y Kwak, I.W Shim, Dalton Trans 37 (2007) 4182–4184 [124] J Kim, J Cho, Electrochem Solid-State Lett 10 (2007) A81–A84 [125] Y Li, G.L Pan, J.W Liu, X.P Gao, J Electrochem Soc 156 (2009) A495–499 [126] L.J Xi, H.K Wang, S.L Yang, R.G Ma, Z.G Lu, C.W Cao, K.L Leung, J.Q Deng, A.L Rogach, C.Y Chung, J Power Sources 242 (2013) 222–229 [127] S.C Lee, S.M Lee, J.W Lee, J.B Lee, S.M Lee, S.S Han, H.C Lee, H.J Kim, J Phys Chem C 113 (2009) 18420–18423 [128] Z.S Hong, T.B Lan, F.Y Xiao, H.X Zhang, M.D Wei, Funct Mater Lett (2011) 389–393 [129] Y.F Tang, L Yang, Z Qiu, J.S Huang, Electrochem Commun 10 (2008) 1513– 1516 [130] J.Z Chen, L Yang, S.H Fang, Y.F Tang, Electrochim Acta 55 (2010) 6596–6600 [131] S.Y Han, I.Y Kim, S.J Hwang, J Phys Chem Solids 73 (2012) 1444–1447 [132] J Haetge, P Hartmann, K Brezesinski, J Janek, T Brezesinski, Chem Mater 23 (2011) 4384–4393 [133] S.L Chou, J.Z Wang, H.K Liu, S.X Dou, J Phys Chem C 115 (2011) 16220– 16227 [134] Y.S Lin, J.G Duh, J Power Sources 196 (2011) 10698–10703 [135] J.Z Chen, L Yang, S.H Fang, S.I Hirano, K Tachibana, J Power Sources 200 152 (2012) 59–66 [136] E Kang, Y.S Jung, G.H Kim, J Chun, U Wiesner, A.C Dillon, J.K Kim, J Lee, Adv Funct Mater 21 (2011) 4349–4357 [137] Y Lv, H Zhang, G.P Cao, B.Y Wang, X.D Wang, Mater Res Bull 46 (2011) 2312–2316 [138] L.F Shen, C.Z Yuan, H.J Luo, X.G Zhang, K Xu, Y.Y Xia, J Mater Chem 20 (2010) 6998–7004 [139] A.S Prakash, P Manikandan, K Ramesha, M Sathiya, J.M Tarascon, Chem Mater 22 (2010) 2857–2863 [140] S.W Woo, K Dokko, K Kanamura, Electrochim Acta 53 (2007) 79–82 [141] Y.F Tang, L Yang, Z Qiu, J.S Huang, J Mater Chem 19 (2009) 5980–5984 [142] S.H Yu, A Pucci, T Herntrich, M.G Willinger, S.H Baek, Y.E Sung, N Pinna, J Mater Chem 21 (2011) 806–810 [143] F.X Wu, X.H Li, Z.W Wang, H.J Guo, Z.J He, Q Zhang, X.H Xiong, P Yue, J Power Sources 202 (2012) 374–379 [144] G.N Zhu, H.J Liu, J.H Zhuang, C.X Wang, Y.G Wang, Y.Y Xia, Energy Environ Sci (2011) 4016–4022 [145] K.C Hsiao, S.C Liao, J.M Chen, Electrochim Acta 53 (2008) 7242–7247 [146] C.Y Lin, J.G Duh, J Alloys Compd 509 (2011) 3682–3685 [147] A Nugroho, S.J Kim, W Chang, K.Y Chung, J Kim, J Power Sources 244 (2013) 153 164–169 [148] Y Ma, B Ding, G Ji, J.Y Lee, ACS Nano (2013) 10870–10878 [149] G.Y Liu, H.Y Wang, G.Q Liu, Z.Z Yang, B Jin, Q.C Jiang, J Power Sources 220 (2012) 84–88 [150] X Li, S.H Tang, M.Z Qu, P.X Huang, W Li, Z.L Yu, J Alloys Compd 588 (2014) 17–24 [151] N.D He, B.S Wang, J.J Huang, J Solid State Electrochem 14 (2010) 1241–1246 [152] Y.F Tang, L Yang, S.H Fang, Z Qiu, Electrochim Acta 54 (2009) 6244–6249 [153] C.H Jiang, Y Zhou, I Honma, T Kudo, H.S Zhou, J Power Sources 166 (2007) 514–518 [154] J.J Huang, Z.Y Jiang, Z.Y., Electrochem Solid-State Lett 11 (2008) A116–A118 [155] L Yu, H.B Wu, X.W Lou, Adv Mater 25 (2013) 2296–2230 [156] R.G Burns, Mineralogical Applications of Crystal Field Theory, second ed., Cambridge University Press, Cambridge, 1993 [157] W Eerenstein, Spin-dependent Transport across Anti-phase Boundaries in Magnetite Films Ph.D thesis, University of Groningen 2003 [158] H Shiiba, M Nakayama, M Nogami, Solid State ionics 181 (2010) 994–1001 [159] S.E Dorris, T.O Mason, J Am Ceram Soc 71 (1988) 379–385 [160] D.C Carter, T.O Mason, J Am Ceram Soc 71 (1988) 213–218 [161] M.A Mousa, A.M Summan, M.A Ahmed, Thermochim Acta 158 (1990) 177–181 154 [162] D.T Liu, C.Y Ouyang, J Shu, J Jiang, Z.X Wang, L.Q Chen, Phys Stat Sol (b) 243 (2006) 1835–1841 [163] S.H Huang, Z.Y Wen, Z.H Gu, X.J Zhu, Electrochim Acta 50 (2005) 4057– 4062 [164] A.D Robertson, H Tukamoto, J.T.S Irvinek, J Electrochem Soc 146 (1999) 3958–3962 [165] D.H Chen, L Cao, F.Z Huang, P Imperia, Y.B Cheng, R.A Caruso, J Am Chem Soc 132 (2010) 4438–4444 [166] A.C Larson, R.B Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 1994 [167] B.H Toby, J Appl Cryst 34 (2001) 210–213 [168] R.D Shannon, Acta Cryst A32 (1976) 751–767 [169] D Young, A Ransil, R Amin, Z Li, Y.M Chiang, Adv Energy Mater (2013) 1125– 1129 [170] H Song, S.W Yun, H.H Chun, M.G Kim, K.Y Chung, H.S Kim, B.W Cho, Y.T Kim, Energy Environ Sci., (2012) 9903–9913 [171] C.F Lin, M.O Lai, L Lu, H.H Zhou, Y.L Xin, J Power Sources 244 (2013) 272– 279 [172] C.F Lin, B Ding, Y.L Xin, F.Q Cheng, M.O Lai, L Lu, H.H Zhou, J Power Sources 248 (2014) 1034–1041 [173] Y.D Huang, Y.L Qi, D.Z Jia, X.C Wang, Z.P Guo, W.I Cho, J Solid State 155 Electrochem 16 (2012) 2011–2016 [174] J Lu, C.Y Nan, Q Peng, Y.D Li, J Power Sources 202 (2012) 246–252 [175] Y.S Lin, M.C Tsai, J.G Duh, J Power Sources 214 (2012) 314–318 [176] C.K Chan, H.L Peng, G Liu, K McIlwrath, X.F Zhang, R.A Huggins, Y Cui, Nat Nanotechnol (2008) 31–35 [177] H.G Jung, S.T Myung, C.S Yoon, S.B Son, K.H Oh, K Amine, B Scrosati, Y.K Sun, Energy Environ Sci (2011) 1345–1351 [178] Y.S Lin, J.G Duh, M.C Tsai, C.Y Lee, Electrochim Acta 83 (2012) 47–52 [179] D Fattakhova, V Petrykin, J Brus, T Kostlanova, J Dedecek, P Krtil, Solid State Ionics 176 (2005) 1877–1885 [180] C.H Jiang, E Hosono, M Ichihara, I Honma, H.S Zhou, J Electrochem Soc 155 (2008) A553–A556 [181] K.S.W Sing, Pure Appl Chem 54 (1982) 2201–2218 [182] X Li, C Lai, C.W Xiao, X.P Gao, Electrochim Acta 56 (2011) 9152–9158 [183] Y.B He, M Liu, Z.D Huang, B Zhang, Y Yu, B.H Li, F.Y Kang, J.K Kim, J Power Sources 239 (2013) 269–276 [184] J Liu, A Manthiram, J Mater Chem 20 (2010) 3961–3967 [185] B.H Song, M.O Lai, Z.W Liu, H.W Liu, L Lu, J Mater Chem A (2013) 9954– 9965 [186] H.L Wang, T.A Tan, P Yang, M.O Lai, L Lu, J Phys Chem C 115 (2011) 6102– 156 6110 [187] X.M Chen, X.F Guan, L.P Li, G.S Li, J Power Sources 210 (2012) 279–302 [188] X Li, H Lin, J.B Li, N Wang, C.F Lin, L.Z Zhang, J Photochem Photobiol., A 195 (2008) 247–253 157 List of publications [1] Lin C.F., Lai M.O., Lu L., Zhou H.H and Xin Y.L., Structure and high rate performance of Ni2+ doped Li4Ti5O12 for lithium ion battery Journal of Power Sources, 2013 244: p 272–279 [2] Lin C.F., Ding B., Xin Y.L., Cheng F.Q., Lai M.O., Lu L and Zhou H.H., Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: synergistic effect of doping and compositing Journal of Power Sources, 2014 248: p 1034–1041 [3] Lin C.F., Fan X.Y., Xin Y.L., Cheng F.Q., Lai M.O., Zhou H.H and Lu L., Li4Ti5O12based anode materials with low working potentials, high rate capabilities and advanced cyclic stability for high-power lithium-ion batteries: synergistic effect of doping, incorporating a conductive phase and reducing particle size Journal of Materials Chemistry A, 2014 2: p 9982–9993 [4] Lin C.F., Fan X.Y., Xin Y.L., Cheng F.Q., Lai M.O., Zhou H.H and Lu L., Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances Nanoscale, 2014 6: p 6651– 6660 [5] Lin C.F., Lai M.O., Lu L and Zhou H.H., Spinel Li4–2xCo3xTi5–xO12 (0≤x≤0.5) for lithium-ion batteries: crystal structures, material properties and battery performances The Journal of Physical Chemistry C, DOI: 10.1021/jp504152s [6] Lin C.F., Lai M.O., Zhou H.H and Lu L., One-step fabricated Li3.33Cu1.005Ti4.665O12/CuO composite for lithium-ion batteries: high-performance spinel with P4332 space group and synergistic effect of doping and compositing RSC 158 Advances Minor revision [7] Lin C.F., Song S.F., Lai M.O., Zhou H.H and Lu L., Li3.9Cu0.1Ti5O12/CNTs composite for the anodes of high-power lithium-ion batteries: Intrinsic and extrinsic effects Electrochimica Acta, Revision [8] Lin C.F., Xin Y.L., Cheng F.Q., Lai M.O., Zhou H.H and Lu L., Recent development in the rate performance of Li4Ti5O12 Applied Science and Convergence Technology, 2014 23: p 72–78 [9] Lin C.F., Lai M.O., Lu L and Zhou H.H., Mesoporous Li4Ti5O12–x/C submicrospheres with comprehensively improved electrochemical performances for high-power lithium-ion batteries: complementary effect of compositing, crystal structure modifying and hierarchical particle structuring Submitted [10] Fan Z., Tng D.Z.Y., Nguyen, S.T., Feng J.D., Lin C.F., Xiao P.F., Lu L and Duong H.M., Morphology effects on electrical and thermal properties of binderless graphene aerogels Chemical Physics Letters, 2013 561: p 92–96 159 .. .LI4TI5O12- BASED ANODE MATERIALS FOR HIGHPOWER LITHIUM- ION BATTERIES LIN CHUNFU (M Eng and B Eng., Tsinghua University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF... corresponding anode materials are still limited [1] Among various anode materials, LTO is believed to be a promising anode material for highpower LIBs 1.3 Overview of anode materials An ideal anode material... indicators for high- power applications Power density is defined as operation current density times operation voltage For an anode material, low working potential implies high operation voltage