Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 190 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
190
Dung lượng
30,78 MB
Nội dung
COLLECTIVE DISPERSIVE INTERACTION OF ATOMS AND LIGHT IN A HIGH FINESSE CAVITY KYLE JOSEPH ARNOLD B.S. Eng. Physics, University of Illinois Urbana-Champaign B.S. Mathematics, University of Illinois Urbana-Champaign A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE 2012 ii Declaration I herewith declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. The thesis has also not been submitted for any degree in any university previously. Kyle Joseph Arnold December 2012 Acknowledgements First and foremost, I would like to thank my supervisor, Dr. Murray Barrett. We have worked closely over the years and without the wealth of atomic physics, optics, and electronics knowledge I have received from him, the work in the thesis would not have been possible. Next I would like to thank Markus Baden, my partner on the cavity experiments. In particular, for many fruitful physics discussions and taking the time to proof read my thesis. Also, for introducing me to python, my go-to tool for scientific computing and source of many quality plots in this thesis. Many thanks to my other fellow PhD students, Arpan Roy, Chuah BoonLeng, and Nick Lewty, who, though not directly involved in my experiments, have all contributed to our common efforts in developing the lab. Thanks also to the many RAs who have helped out in the lab, in particular Andrew Bah who produced the 3D-rendered experiment schematics for my thesis. I’m grateful for work of our CQT support staff, especially our procurement officer, Chin Pei Pei, our electronics support staff, Joven Kwek and Gan Eng Swee, and our machinists, Bob and Teo, who have made numerous parts for me on short order. Finally, I would like to thank my wife, Vicky, for her continuous love and support during these years, and my parents who having always been supportive of my chosen path even though it has taken me to distant lands far from home. Contents List of Tables ix List of Figures xi Introduction 1.1 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dipole Trapping and All-Optical Bose-Einstein Condensation 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Dipole traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Laser cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Evaporative cooling . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 Scaling laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.5 Atom losses due to inelastic collisions . . . . . . . . . . . . . . . 15 Discussion of crossed beam traps . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 General thermal distribution of a trapped gas . . . . . . . . . . . 17 2.3.2 Crossed beam distribution: numeric solution . . . . . . . . . . . 18 2.3.3 Crossed beam distribution: approximate analytic solution . . . . 18 2.3.4 Thermalization in crossed beam traps . . . . . . . . . . . . . . . 21 2.3.5 Analysis of a recent cross-beam result . . . . . . . . . . . . . . . 23 2.3.6 Elliptical beams . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.7 Basics of Bose-Einstein condensates . . . . . . . . . . . . . . . . 25 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 Cooling lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.2 Imaging diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 2.4 iii CONTENTS 2.5 2.6 2.4.3 MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.4 Dipole trap loading . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.5 Trap lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.6 Hyperfine changing collisions . . . . . . . . . . . . . . . . . . . . 35 2.4.7 Measuring trap frequencies . . . . . . . . . . . . . . . . . . . . . 36 2.4.8 Thermal lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Bose-Einstein condensation experiment . . . . . . . . . . . . . . . . . . . 38 2.5.1 Primary beam geometry . . . . . . . . . . . . . . . . . . . . . . . 38 2.5.2 Primary beam free evaporation . . . . . . . . . . . . . . . . . . . 39 2.5.3 Primary beam forced evaporation . . . . . . . . . . . . . . . . . . 39 2.5.4 Secondary beam geometry . . . . . . . . . . . . . . . . . . . . . . 41 2.5.5 Cross-beam compression . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.6 Observation of a condensate . . . . . . . . . . . . . . . . . . . . . 43 2.5.7 Comments of observing a bi-modal distribution . . . . . . . . . . 46 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Collective Cavity Quantum Electrodynamics with Multiple Atom Levels 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Cavity quantum electrodynamics . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Jaynes-Cummings model . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.2 Real systems: dissipation . . . . . . . . . . . . . . . . . . . . . . 55 3.2.3 Cavity QED for N multi-level atoms . . . . . . . . . . . . . . . . 58 3.2.4 Semi-classical model for multi-level atoms . . . . . . . . . . . . . 63 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 High finesse cavity . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Cavity laser system . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.4 Optical lattice transport . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.5 808 nm intra-cavity FORT . . . . . . . . . . . . . . . . . . . . . 72 3.3.6 Optical pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Experimental results: cavity transmission spectra . . . . . . . . . . . . . 74 3.4.1 75 3.3 3.4 Experiment procedure . . . . . . . . . . . . . . . . . . . . . . . . iv CONTENTS 3.5 3.4.2 Two-level atoms: the cycling transition . . . . . . . . . . . . . . 76 3.4.3 Multi-level atoms: π-probing . . . . . . . . . . . . . . . . . . . . 77 3.4.4 Driving both cavity modes . . . . . . . . . . . . . . . . . . . . . 78 3.4.5 Optical pumping by the cavity field . . . . . . . . . . . . . . . . 79 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Self-Organization of Thermal Atoms Coupled to a Cavity 83 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Derivation of the threshold equations . . . . . . . . . . . . . . . . . . . . 87 4.2.1 Lattice geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2.2 Traveling wave geometry . . . . . . . . . . . . . . . . . . . . . . . 94 Experimental set-up and methods . . . . . . . . . . . . . . . . . . . . . . 95 4.3.1 Dual-wavelength high finesse cavity . . . . . . . . . . . . . . . . . 95 4.3.2 Cavity laser system . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3.4 Atom transport: translation of the dipole trap . . . . . . . . . . 101 4.3.5 1560 nm intra-cavity FORT 4.3 4.4 4.5 4.6 . . . . . . . . . . . . . . . . . . . . 103 Experimental results: self-organization threshold scaling . . . . . . . . . 106 4.4.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . 107 4.4.2 Comparison to the threshold equations . . . . . . . . . . . . . . . 107 4.4.3 Lattice geometry threshold results . . . . . . . . . . . . . . . . . 109 4.4.4 Traveling wave geometry threshold results . . . . . . . . . . . . . 110 4.4.5 Discussion of threshold scaling . . . . . . . . . . . . . . . . . . . 111 Experimental results: dynamics of self-organization . . . . . . . . . . . . 113 4.5.1 Lattice geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5.2 Traveling wave geometry . . . . . . . . . . . . . . . . . . . . . . . 120 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Bragg Scattering, Cavity Cooling, and Future Directions 123 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Bragg scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.2.1 5.3 Future Bragg scattering related experiments . . . . . . . . . . . . 127 Cavity cooling of atomic ensembles . . . . . . . . . . . . . . . . . . . . . 128 5.3.1 Cavity cooling via the collective mode . . . . . . . . . . . . . . . 129 v CONTENTS 5.4 5.3.2 Cavity cooling via self-organization . . . . . . . . . . . . . . . . . 134 5.3.3 Conclusions and future experimental directions for cavity cooling 138 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 A High finesse cavities: technical details A.1 ATF mirrors 141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.1.1 Brief History of low-loss mirrors . . . . . . . . . . . . . . . . . . 141 A.1.2 Mirrors from ATF: 2008-2011 . . . . . . . . . . . . . . . . . . . . 142 A.1.3 Mirror handling and cleaning . . . . . . . . . . . . . . . . . . . . 144 A.2 Contamination of mirrors by Rb . . . . . . . . . . . . . . . . . . . . . . 145 A.3 Cavity construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 B Self-organization threshold equations 149 B.1 Lattice geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 B.2 Traveling wave geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 C Self-organization: temperature, entropy and phase space density 153 References 163 vi Summary This thesis details experimental investigations into the interaction of an ultracold atomic ensemble with a single mode high finesse optical cavity. To this end, simple and efficient experimental methods are developed to cool and transport atoms. These include the all-optical production of a Bose-Einstein condensate in a µm wavelength crossed beam dipole trap and direct mechanical translation of cold atoms into a high finesse cavity over ∼ cm. First, we study the cavity transmission spectra for weak driving of a single mode cavity coupled to a cold ensemble of rubidium atoms. The multi-level structure of the atoms together with the collective coupling to the cavity mode leads to complex spectra which depend on atom number and probe polarization. We model the linear response of the system as collective spin with multiple levels coupled to a single mode of the cavity. The observed spectra are in good agreement with this reduced model. Second, we study transverse pumping of a thermal ensemble of atoms coupled to a cavity which results in self-organization. The differences between probing with a traveling wave and a retro-reflected lattice are investigated. We derive threshold conditions for self-organization in both scenarios and verify a threshold scaling consistent with the mean field prediction over a range of atom numbers and cavity detunings. Most recently, a 2D lattice potential is used to organize the atoms into a Bragg crystal, and coherent scattering into the cavity is observed without threshold. This configuration is ideal for future investigations into either cavity sideband cooling of the collective motion or simulation of Dicke model via the collective spin. CONTENTS viii It can be shown that lim∗ µ→µ dβ lim∗ µ→µ dµ = dβ dµ = lim∗ µ→µ lim dβ dµ µ→µ∗ We note that 2µ b2 µLT b0 dC = −A, from which dµ lim µ→µ∗ lim∗ µ→µ 2A dβ dµ 3A B (C.48) 2µ b2 µLT b0 µ = (C.47) −A + B dβ dµ lim µ→µ∗ 3µ µLT − µLT 2µ 2µ b2 µLT b0 2µ b2 µLT b0 µ µLT −4 − 2µ b4 µLT b0 . (C.49) b4 b0 = is exactly the threshold condition from Eq. C.27, which together with the limit lim∗ µ→µ 1 2µ b4 , =1− ∗ + µLT b0 µ µLT (C.50) yields the result dβ lim∗ = µ→µ dµ 1+ 3µ∗ µLT −2 µ∗ µLT µLT − µLT 2µ∗ 1− µ∗ . + (C.51) µLT Plugging this result into Eq. C.36, we find the change in entropy at the phase transition, ∆S ∗ = kb −3 (µ∗ )2 µLT ∗ µµLT − ∗ + ( µµLT )2 − µ∗ µLT 1− µ∗ µ∗ + . (C.52) µLT Temperature and phase space density above threshold To find the final temperature above threshold, Tf , we again consider the initial and final entropy, ln kb T0 ω S0< + ∆S ∗ = S > ∆S ∗ kb Tf +1+ = ln kb ω Tf T0 exp = µb2 b0 b0 + ln b0 + − µ exp b2 − b0 2µ µ2 dβ β + µLT µLT dµ 2µ µ2 dβ ∆S ∗ β + + . µLT µLT dµ kb (C.53) Here the first exponential determines the temperature rise prior to organization, and the second exponential, what happens after self-organization. Thus by setting β = 0, ∆S ∗ = 0, and dβ dµ = 0, we recover Eq. C.24, the temperature below threshold. 159 C. SELF-ORGANIZATION: TEMPERATURE, ENTROPY AND PHASE SPACE DENSITY Figure C.1: Entropy and phase space density change across threshold. The blue line is entropy change calculated from Eq. C.52. The red line is phase space density gain calculated from Eq. C.59. The dotted red line is the contribution from of the entropy term only (Eq. C.60). Given the partition function above threshold, Z> = = kb Tf b0 ω kb T0 exp µ ω (C.54) b2 2β + b0 µLT + µ2 dβ ∆S ∗ + µLT dµ kb (C.55) we can determine the peak phase space density again from Eq. C.25, > ρ = = e µ 1+ µ2β LT (C.56) Z> ω b2 2β 2β exp µ − + − kb T0 b0 µLT µLT − µ2 dβ ∆S ∗ − . µLT dµ kb If we consider the phase density far above threshold (µ → ∞), there β → 1, and dβ dµ (C.57) b2 b0 → 1, → 0. We find this limit, verified numerically, to be ρ∞ = ω µLT ∆S ∗ exp − . kb T0 2(1 + µLT ) kb (C.58) Thus the gain in phase space density from just below threshold, ρ∗ , to far above threshold is ρ∞ µLT µLT ∆S ∗ ∗ − µ + − . = exp ρ∗ 2(1 + µLT ) kb In both limiting cases of µ∗ and µ∗ (C.59) 1, this reduces to simply ∗ ρ∞ − ∆S kb = e . ρ∗ 160 (C.60) Both Eq. C.59 and Eq. C.60 are plotted in Fig. C.1 for comparison, note the additional terms in Eq. C.59 contribute only a small correction in the intermediate regime. 161 C. SELF-ORGANIZATION: TEMPERATURE, ENTROPY AND PHASE SPACE DENSITY 162 References ¨ nsch and A.L. Schawlow. Cooling of gases by laser radiation. Optics [1] T.W. Ha Communications, 13(1):68 – 69, 1975. [2] D. J. Wineland and Wayne M. Itano. Laser cooling of atoms. Phys. Rev. A, 20:1521–1540, Oct 1979. [3] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B, 6(11):2023–2045, Nov 1989. [4] Steven Chu. Nobel Lecture: The manipulation of neutral particles. Rev. Mod. Phys., 70:685–706, Jul 1998. [5] William D. Phillips. Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70:721–741, Jul 1998. [6] William Happer. Optical Pumping. Rev. Mod. Phys., 44:169–249, Apr 1972. [7] N.V. Vitanov, M. Fleischhauer, B.W. Shore, and K. Bergmann. Coherent manipulation of atoms and molecules by sequential laser pulses. 46:55 – 190, 2001. [8] Rudolf Grimm, Matthias Weidemller, and Yurii B. Ovchinnikov. Optical Dipole Traps for Neutral Atoms. 42:95 – 170, 2000. [9] I. Bloch. Ultracold quantum gases in optical lattices. Nature Physics, 1(1):23–30, 2005. [10] C.S. Adams, H.J. Lee, N. Davidson, M. Kasevich, and S. Chu. Evaporative cooling in a crossed dipole trap. Physical review letters, 74(18):3577–3580, 1995. [11] M. D. Barrett, J. A. Sauer, and M. S. Chapman. All-Optical Formation of an Atomic Bose-Einstein Condensate. Phys. Rev. Lett., 87:010404, Jun 2001. [12] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn. Making, probing, and understanding bose-einstein condensates. 1998. 163 REFERENCES [13] E.T. Jaynes and F.W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 51(1):89–109, 1963. [14] K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, and H.J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature, 436(7047):87–90, 2005. [15] R. J. Thompson, G. Rempe, and H. J. Kimble. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett., 68:1132–1135, Feb 1992. [16] A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble. Observation of the Vacuum Rabi Spectrum for One Trapped Atom. Phys. Rev. Lett., 93:233603, Dec 2004. [17] PWH Pinkse, T. Fischer, P. Maunz, and G. Rempe. Trapping an atom with single photons. Nature, 404(6776):365–368, 2000. [18] C.J. Hood. Real-time measurement and trapping of single atoms by single photons. PhD thesis, California Institute of Technology, 2000. ´ and Steven Chu. Laser Cooling of Atoms, Ions, or Molecules [19] Vladan Vuletic by Coherent Scattering. Phys. Rev. Lett., 84:3787–3790, Apr 2000. [20] P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse, and G. Rempe. Cavity cooling of a single atom. Nature, 428(6978):50–52, 2004. [21] Weiping Lu, Yongkai Zhao, and P. F. Barker. Cooling molecules in optical cavities. Phys. Rev. A, 76:013417, Jul 2007. [22] Thomas Salzburger and Helmut Ritsch. Collective transverse cavity cooling of a dense molecular beam. New Journal of Physics, 11(5):055025, 2009. [23] A Vukics, J Janszky, and P Domokos. Cavity cooling of atoms: a quantum statistical treatment. Journal of Physics B: Atomic, Molecular and Optical Physics, 38(10):1453, 2005. [24] Almut Beige, Peter L Knight, and Giuseppe Vitiello. Cooling many particles at once. New J. Phys., 7(1):96, 2005. [25] Monika H. Schleier-Smith, Ian D. Leroux, Hao Zhang, Mackenzie A. ´. Optomechanical Cavity Cooling of an Atomic Van Camp, and Vladan Vuletic Ensemble. Phys. Rev. Lett., 107:143005, Sep 2011. [26] M. Wolke, J. Klinner, H. Keßler, and A. Hemmerich. Cavity Cooling Below the Recoil Limit. Science, 337(6090):75–78, 2012. 164 REFERENCES [27] Michael Tavis and Frederick W. Cummings. Exact Solution for an N Molecule¯Radiation-Field Hamiltonian. Phys. Rev., 170:379–384, Jun 1968. [28] A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich. Normal-mode splitting with large collective cooperativity. Phys. Rev. A, 74:053821, Nov 2006. ¨ hl, and T. Esslinger. [29] F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Ko Cavity QED with a Bose–Einstein condensate. Nature, 450(7167):268–271, 2007. ¨ nstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe. [30] P. Mu Observation of Cavity-Mediated Long-Range Light Forces between Strongly Coupled Atoms. Phys. Rev. Lett., 84:4068–4071, May 2000. [31] Markus Gangl and Helmut Ritsch. Collective dynamical cooling of neutral particles in a high-Q optical cavity. Phys. Rev. A, 61:011402, Dec 1999. [32] Peter Horak and Helmut Ritsch. Scaling properties of cavity-enhanced atom cooling. Phys. Rev. A, 64:033422, Aug 2001. [33] Peter Domokos and Helmut Ritsch. Mechanical effects of light in optical resonators. J. Opt. Soc. Am. B, 20(5):1098–1130, May 2003. ´ s Vukics, Eric R. Hudson, Brian C. Sawyer, Peter [34] Benjamin L. Lev, Andra Domokos, Helmut Ritsch, and Jun Ye. Prospects for the cavity-assisted laser cooling of molecules. Phys. Rev. A, 77:023402, Feb 2008. [35] T. Grieer, H. Ritsch, M. Hemmerling, and G. R.M. Robb. A Vlasov approach to bunching and selfordering of particles in optical resonators. The European Physical Journal D, 58:349–368, 2010. [36] Peter Domokos and Helmut Ritsch. Collective Cooling and Self-Organization of Atoms in a Cavity. Phys. Rev. Lett., 89:253003, Dec 2002. ´. Observation of [37] Hilton W. Chan, Adam T. Black, and Vladan Vuletic Collective-Emission-Induced Cooling of Atoms in an Optical Cavity. Phys. Rev. Lett., 90:063003, Feb 2003. ´. Observation of Collec[38] Adam T. Black, Hilton W. Chan, and Vladan Vuletic tive Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering. Phys. Rev. Lett., 91:203001, Nov 2003. [39] Kristian Baumann, Christine Guerlin, Ferdinand Brennecke, and Tilman Esslinger. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature, 464(7293):1301–1306, 04 2010. 165 REFERENCES [40] D. Nagy, G. Szirmai, and P. Domokos. Self-organization of a Bose-Einstein condensate in an optical cavity. Eur. Phys. J. D, 48:127–137, 2008. [41] R. H. Dicke. Coherence in Spontaneous Radiation Processes. Phys. Rev., 93:99– 110, Jan 1954. ´ nya, G. Szirmai, and P. Domokos. Dicke-Model Phase Tran[42] D. Nagy, G. Ko sition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity. Phys. Rev. Lett., 104:130401, Apr 2010. ´ th, P. Domokos, H. Ritsch, and A. Vukics. Self-organization of [43] J. K. Asbo atoms in a cavity field: Threshold, bistability, and scaling laws. Phys. Rev. A, 72:053417, Nov 2005. [44] W. Niedenzu, T. Grieer, and H. Ritsch. Kinetic theory of cavity cooling and self-organisation of a cold gas. EPL (Europhysics Letters), 96(4):43001, 2011. [45] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. science, 269(5221):198–201, 1995. [46] KB Davis, M.O. Mewes, M.R. Andrews, NJ Van Druten, DS Durfee, DM Kurn, and W. Ketterle. Bose-Einstein condensation in a gas of sodium atoms. Physical Review Letters, 75(22):3969–3973, 1995. [47] G. Cennini, G. Ritt, C. Geckeler, and M. Weitz. Bose–Einstein condensation in a CO2-laser optical dipole trap. Applied Physics B: Lasers and Optics, 77(8):773– 779, 2003. ¨ gerl, and R. Grimm. Bose-Einstein [48] T. Weber, J. Herbig, M. Mark, H.C. Na condensation of cesium. Science, 299(5604):232–235, 2003. [49] R. Dumke, M. Johanning, E. Gomez, JD Weinstein, KM Jones, and PD Lett. All-optical generation and photoassociative probing of sodium Bose–Einstein condensates. New Journal of Physics, 8(5):64, 2006. [50] T. Kinoshita, T. Wenger, and D.S. Weiss. All-optical Bose-Einstein condensation using a compressible crossed dipole trap. Physical Review A, 71(1):011602, 2005. [51] A. Couvert, M. Jeppesen, T. Kawalec, G. Reinaudi, R. Mathevet, and D. Gury-Odelin. A quasi-monomode guided atom laser from an all-optical Bose-Einstein condensate. EPL (Europhysics Letters), 83(5):50001, 2008. ´ment, J.P. Brantut, M. Robert-de Saint-Vincent, R.A. Nyman, [52] J.F. Cle A. Aspect, T. Bourdel, and P. Bouyer. All-optical runaway evaporation to Bose-Einstein condensation. Physical Review A, 79(6):061406, 2009. 166 REFERENCES [53] C.L. Hung, X. Zhang, N. Gemelke, and C. Chin. Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps. Physical Review A, 78(1):011604, 2008. ´chal, [54] Q. Beaufils, R. Chicireanu, T. Zanon, B. Laburthe-Tolra, E. Mare L. Vernac, J.-C. Keller, and O. Gorceix. All-optical production of chromium Bose-Einstein condensates. Phys. Rev. A, 77:061601, Jun 2008. [55] R. A. Cline, J. D. Miller, M. R. Matthews, and D. J. Heinzen. Spin relaxation of optically trapped atoms by light scattering. Opt. Lett., 19(3):207–209, Feb 1994. [56] H. J. Metcalf and P. Sraten. Laser Cooling and Trapping. Springer, 1999. [57] Y. Castin, H. Wallis, and J. Dalibard. Limit of Doppler cooling. J. Opt. Soc. Am. B, 6(11):2046–2057, Nov 1989. [58] Daniel A Steck. Rubidium 87 D Line Data, 2010. Ver. 2.1.4. [59] G. Nienhuis, P. van der Straten, and S-Q. Shang. Operator description of laser cooling below the Doppler limit. Phys. Rev. A, 44:462–474, Jul 1991. [60] C. D. Wallace, T. P. Dinneen, K. Y. N. Tan, A. Kumarakrishnan, P. L. Gould, and J. Javanainen. Measurements of temperature and spring constant in a magneto-optical trap. J. Opt. Soc. Am. B, 11(5):703–711, May 1994. [61] Wolfgang Petrich, Michael H. Anderson, Jason R. Ensher, and Eric A. Cornell. Behavior of atoms in a compressed magneto-optical trap. J. Opt. Soc. Am. B, 11(8):1332–1335, Aug 1994. [62] Wolfgang Ketterle, Kendall B. Davis, Michael A. Joffe, Alex Martin, and David E. Pritchard. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett., 70:2253–2256, Apr 1993. [63] M. Drewsen, Ph. Laurent, A. Nadir, G. Santarelli, A. Clairon, Y. Castin, D. Grison, and C. Salomon. Investigation of sub-Doppler cooling effects in a cesium magneto-optical trap. Applied Physics B, 59:283–298, 1994. [64] C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard. Phase-space density in the magneto-optical trap. Phys. Rev. A, 52:1423–1440, Aug 1995. [65] Wolfgang Ketterle and N.J. Van Druten. Evaporative Cooling of Trapped Atoms. 37:181 – 236, 1996. [66] K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas. Scaling laws for evaporative cooling in time-dependent optical traps. Phys. Rev. A, 64:051403, Oct 2001. 167 REFERENCES [67] O. J. Luiten, M. W. Reynolds, and J. T. M. Walraven. Kinetic theory of the evaporative cooling of a trapped gas. Phys. Rev. A, 53:381–389, Jan 1996. [68] T Mther, J Nes, A-L Gehrmann, M Volk, W Ertmer, G Birkl, M Gruber, and J Jahns. Atomic quantum systems in optical micro-structures. 19, page 97, 2005. [69] S. Bali, K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas. Quantum-diffractive background gas collisions in atom-trap heating and loss. Phys. Rev. A, 60:R29–R32, Jul 1999. [70] Michael A. Joffe, Wolfgang Ketterle, Alex Martin, and David E. Pritchard. Transverse cooling and deflection of an atomic beam inside a Zeeman slower. J. Opt. Soc. Am. B, 10(12):2257–2262, Dec 1993. ¨ ller, and J. T. M. Walraven. [71] K. Dieckmann, R. J. C. Spreeuw, M. Weidemu Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A, 58:3891–3895, Nov 1998. [72] D. Sesko, T. Walker, C. Monroe, A. Gallagher, and C. Wieman. Collisional losses from a light-force atom trap. Phys. Rev. Lett., 63:961–964, Aug 1989. [73] Alan Gallagher and David E. Pritchard. Exoergic collisions of cold Na∗ -Na. Phys. Rev. Lett., 63:957–960, Aug 1989. [74] A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, and A. Browaeys. Lightassisted collisions between a few cold atoms in a microscopic dipole trap. Phys. Rev. A, 85:062708, Jun 2012. [75] E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman. Coherence, Correlations, and Collisions: What One Learns about Bose-Einstein Condensates from Their Decay. Phys. Rev. Lett., 79:337– 340, Jul 1997. [76] J. Sding, D. Gury-Odelin, P. Desbiolles, F. Chevy, H. Inamori, and J. Dalibard. Three-body decay of a rubidium BoseEinstein condensate. Applied Physics B, 69:257–261, 1999. [77] M. D. Barrett. PhD thesis, Georgia Institute of Techology, 2002. ¨ ber, O. Wille, and G. Birkl. Optimized Bose-Einstein[78] T. Lauber, J. Ku condensate production in a dipole trap based on a 1070-nm multifrequency laser: Influence of enhanced two-body loss on the evaporation process. Phys. Rev. A, 84:043641, Oct 2011. 168 REFERENCES [79] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys., 71:463– 512, Apr 1999. [80] Anthony J. Leggett. Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys., 73:307–356, Apr 2001. [81] L. Pitaevskii and S. Stringari. Bose-Einstein Condensation. International Series of Monographs on Physics. Oxford University Press, USA, 2003. [82] C.J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, 2001. [83] Vanderlei Bagnato, David E. Pritchard, and Daniel Kleppner. Bose-Einstein condensation in an external potential. Phys. Rev. A, 35:4354–4358, May 1987. [84] Y. Castin and R. Dum. Bose-Einstein Condensates in Time Dependent Traps. Phys. Rev. Lett., 77:5315–5319, Dec 1996. [85] C.E. Wieman and L. Hollberg. Using diode lasers for atomic physics. Review of Scientific Instruments, 62(1):1–20, 1991. [86] KB MacAdam, A. Steinbach, and C. Wieman. A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb. American Journal of Physics, 60:1098, 1992. [87] R. A. Boyd, J. L. Bliss, and K. G. Libbrecht. Teaching physics with 670nm diode lasers—experiments with Fabry–Perot cavities. American Journal of Physics, 64(9):1109–1116, 1996. [88] G.C. Bjorklund, M.D. Levenson, W. Lenth, and C. Ortiz. Frequency modulation (FM) spectroscopy. Applied Physics B, 32:145–152, 1983. [89] G. Hadley. Injection locking of diode lasers. Quantum Electronics, IEEE Journal of, 22(3):419–426, 1986. [90] S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman. Loading an optical dipole trap. Phys. Rev. A, 62:013406, Jun 2000. [91] M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas. Dynamics of noise-induced heating in atom traps. Phys. Rev. A, 58:3914–3921, Nov 1998. [92] T. A. Savard, K. M. O’Hara, and J. E. Thomas. Laser-noise-induced heating in far-off resonance optical traps. Phys. Rev. A, 56:R1095–R1098, Aug 1997. 169 REFERENCES [93] S. D. Gensemer, P. L. Gould, P. J. Leo, E. Tiesinga, and C. J. Williams. Ultracold 87 Rb ground-state hyperfine-changing collisions in the presence and absence of laser light. Phys. Rev. A, 62:030702, Aug 2000. ¨ nsch. CO2 -laser [94] S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Ha optical lattice with cold rubidium atoms. Phys. Rev. A, 57:R20–R23, Jan 1998. [95] L.D. Landau and E.M. Lifshitz. Mechanics. Course of theoretical physics. Pergamon Press, 1976. ´ uregui, N. Poli, G. Roati, and G. Modugno. Anharmonic parametric [96] R. Ja excitation in optical lattices. Phys. Rev. A, 64:033403, Aug 2001. [97] J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman. Cavity QED with optically transported atoms. Phys. Rev. A, 69:051804, May 2004. [98] T. Wilk, S.C. Webster, A. Kuhn, and G. Rempe. Single-atom single-photon quantum interface. Science, 317(5837):488–490, 2007. [99] Almut Beige, Hugo Cable, and Peter L. Knight. Dissipation-assisted quantum computation in atom-cavity systems. pages 370–381, 2003. [100] K. M. Birnbaum, A. S. Parkins, and H. J. Kimble. Cavity QED with multiple hyperfine levels. Phys. Rev. A, 74:063802, Dec 2006. [101] Bruce W. Shore and Peter L. Knight. The Jaynes-Cummings Model. Journal of Modern Optics, 40(7):1195–1238, 1993. [102] D. Braak. Integrability of the Rabi Model. Phys. Rev. Lett., 107:100401, Aug 2011. [103] J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly. Theory of Spontaneous-Emission Line Shape in an Ideal Cavity. Phys. Rev. Lett., 51:550– 553, Aug 1983. [104] I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen. Algebraic approach to the Tavis-Cummings problem. Phys. Rev. A, 67:053808, May 2003. [105] Yifu Zhu, Daniel J. Gauthier, S. E. Morin, Qilin Wu, H. J. Carmichael, and T. W. Mossberg. Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations. Phys. Rev. Lett., 64:2499–2502, May 1990. [106] Haruka Tanji-Suzuki, Ian D. Leroux, Monika H. Schleier-Smith, Marko ´. Chapter Cetina, Andrew T. Grier, Jonathan Simon, and Vladan Vuletic 170 REFERENCES - Interaction between Atomic Ensembles and Optical Resonators: Classical Description. 60:201 – 237, 2011. [107] A. T. Rosenberger, L. A. Orozco, H. J. Kimble, and P. D. Drummond. Absorptive optical bistability in two-state atoms. Phys. Rev. A, 43:6284–6302, Jun 1991. [108] Hyatt M. Gibbs. Optical bistability : controlling light with light / Hyatt M. Gibbs. Academic Press, Orlando :, 1985. [109] Subhadeep Gupta, Kevin L. Moore, Kater W. Murch, and Dan M. StamperKurn. Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion. Phys. Rev. Lett., 99:213601, Nov 2007. [110] R. J. Thompson, Q. A. Turchette, O. Carnal, and H. J. Kimble. Nonlinear spectroscopy in the strong-coupling regime of cavity QED. Phys. Rev. A, 57:3084–3104, Apr 1998. [111] M. L. Terraciano, R. Olson Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice. Enhanced spontaneous emission into the mode of a cavity QED system. Opt. Lett., 32(8):982–984, Apr 2007. [112] James P. Clemens. Probe spectrum of multilevel atoms in a damped, weakly driven two-mode cavity. Phys. Rev. A, 81:063818, Jun 2010. [113] C.F. Brennecke. Collective interaction between a Bose-Einstein condensate and a coherent few-photon field. PhD thesis, ETH Zurich, 2009. [114] Stefan Kuhr, Wolfgang Alt, Dominik Schrader, Martin Mller, Victor Gomer, and Dieter Meschede. Deterministic Delivery of a Single Atom. 293(5528):278–280, 2001. [115] Stefan Schmid, Gregor Thalhammer, Klaus Winkler, Florian Lang, and Johannes Hecker Denschlag. Long distance transport of ultracold atoms using a 1D optical lattice. New Journal of Physics, 8(8):159, 2006. [116] H. Haken. Synergetics. Naturwissenschaften, 67(3):121–128, 1980. [117] H. Hermann. Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, 1978. [118] V. DeGiorgio and Marlan O. Scully. Analogy between the Laser Threshold Region and a Second-Order Phase Transition. Phys. Rev. A, 2:1170–1177, Oct 1970. 171 REFERENCES [119] R. Graham and H. Haken. Laserlight first example of a second-order phase transition far away from thermal equilibrium. Zeitschrift fr Physik, 237:31–46, 1970. [120] S. Ciliberto and P. Bigazzi. Spatiotemporal Intermittency in RayleighB´ enard Convection. Phys. Rev. Lett., 60:286–289, Jan 1988. [121] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger. Exploring Symmetry Breaking at the Dicke Quantum Phase Transition. Phys. Rev. Lett., 107:140402, Sep 2011. [122] M. G. Raizen, J. Koga, B. Sundaram, Y. Kishimoto, H. Takuma, and T. Tajima. Stochastic cooling of atoms using lasers. Phys. Rev. A, 58:4757–4760, Dec 1998. [123] R. Bonifacio, L. De Salvo, L. M. Narducci, and E. J. D’Angelo. Exponential gain and self-bunching in a collective atomic recoil laser. Phys. Rev. A, 50:1716– 1724, Aug 1994. [124] D. Kruse, C. von Cube, C. Zimmermann, and Ph. W. Courteille. Observation of Lasing Mediated by Collective Atomic Recoil. Phys. Rev. Lett., 91:183601, Oct 2003. ´ment, M. Robert de Saint Vincent, G. Varoquaux, [125] J. P. Brantut, J. F. Cle R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer. Light-shift tomography in an optical-dipole trap for neutral atoms. Phys. Rev. A, 78:031401, Sep 2008. ´, Hilton W. Chan, and Adam T. Black. Three-dimensional [126] Vladan Vuletic cavity Doppler cooling and cavity sideband cooling by coherent scattering. Phys. Rev. A, 64:033405, Aug 2001. [127] Stefano Zippilli and Giovanna Morigi. Cooling Trapped Atoms in Optical Resonators. Phys. Rev. Lett., 95:143001, Sep 2005. [128] Stefano Zippilli, Giovanna Morigi, and Helmut Ritsch. Suppression of Bragg Scattering by Collective Interference of Spatially Ordered Atoms with a HighQ Cavity Mode. Phys. Rev. Lett., 93:123002, Sep 2004. [129] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger. Cold atoms in cavity-generated dynamical optical potentials. arXiv preprint arXiv:1210.0013, 2012. [130] S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe. Vacuum-stimulated cooling of single atoms in three dimensions. Nature Physics, 1(2):122–125, 2005. 172 REFERENCES [131] Peter Domokos, Peter Horak, and Helmut Ritsch. Semiclassical theory of cavity-assisted atom cooling. Journal of Physics B: Atomic, Molecular and Optical Physics, 34(2):187, 2001. ´ nos K. Asbo ´ th, Peter Domokos, and Helmut Ritsch. Correlated motion of [132] Ja two atoms trapped in a single-mode cavity field. Phys. Rev. A, 70:013414, Jul 2004. [133] K.W. Murch, K.L. Moore, S. Gupta, and D.M. Stamper-Kurn. Observation of quantum-measurement backaction with an ultracold atomic gas. Nature Physics, 4(7):561–564, 2008. [134] Dvid Nagy, JnosK. Asbth, and Pter Domokos. Collective cooling of atoms in a ring cavity. Acta Physica Hungarica A) Heavy Ion Physics, 26:141–148, 2006. [135] Florian Marquardt, Joe P. Chen, A. A. Clerk, and S. M. Girvin. Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion. Phys. Rev. Lett., 99:093902, Aug 2007. [136] Adam T Black, James K Thompson, and Vladan Vuleti? Collective light forces on atoms in resonators. Journal of Physics B: Atomic, Molecular and Optical Physics, 38(9):S605, 2005. [137] Yongkai Zhao, Weiping Lu, P. F. Barker, and Guangjiong Dong. Selforganisation and cooling of a large ensemble of particles in optical cavities. Faraday Discuss., 142:311–318, 2009. [138] D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S. Inouye, J. Stenger, and W. Ketterle. Reversible Formation of a Bose-Einstein Condensate. Phys. Rev. Lett., 81:2194–2197, Sep 1998. [139] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael. Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system. Phys. Rev. A, 75:013804, Jan 2007. [140] S. Morrison and A. S. Parkins. Dynamical Quantum Phase Transitions in the Dissipative Lipkin-Meshkov-Glick Model with Proposed Realization in Optical Cavity QED. Phys. Rev. Lett., 100:040403, Jan 2008. [141] S. Morrison and A. S. Parkins. Collective spin systems in dispersive optical cavity QED: Quantum phase transitions and entanglement. Phys. Rev. A, 77:043810, Apr 2008. [142] Alexander Altland and Fritz Haake. Quantum Chaos and Effective Thermalization. Phys. Rev. Lett., 108:073601, Feb 2012. 173 REFERENCES [143] Neill Lambert, Clive Emary, and Tobias Brandes. Entanglement and the Phase Transition in Single-Mode Superradiance. Phys. Rev. Lett., 92:073602, Feb 2004. [144] G. Vacanti, S. Pugnetti, N. Didier, M. Paternostro, G. M. Palma, R. Fazio, and V. Vedral. Photon Production from the Vacuum Close to the Superradiant Transition: Linking the Dynamical Casimir Effect to the Kibble-Zurek Mechanism. Phys. Rev. Lett., 108:093603, Feb 2012. [145] Christine Guerlin, Etienne Brion, Tilman Esslinger, and Klaus Mølmer. Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble. Phys. Rev. A, 82:053832, Nov 2010. ˆ te ´, and M. D. Lukin. [146] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Co Fast Quantum Gates for Neutral Atoms. Phys. Rev. Lett., 85:2208–2211, Sep 2000. [147] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 82:2313–2363, Aug 2010. [148] G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari. Measurement of ultralow losses in an optical interferometer. Opt. Lett., 17(5):363–365, Mar 1992. [149] T.E. Northup. Coherent control in cavity QED. PhD thesis, California Institute of Technology, 2008. [150] B. Dahmani, L. Hollberg, and R. Drullinger. Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett., 12(11):876–878, Nov 1987. 174 [...]... practical and fundamental difficulties of cooling trapped atomic ensembles coupled to a single mode cavity 4 Chapter 2 Dipole Trapping and All-Optical Bose- Einstein Condensation This chapter covers the first generation experimental apparatus, pictured in Fig 2.1, and is largely based on ’All-optical Bose- Einstein condensation in a 1.06 µm dipole trap’ K J Arnold and M D Barrett Optics Communications 284, 3288... significantly different and interesting phenomena emerge Coherent scattering into the cavity mode is enhanced by constructive interference only if the atoms are spatially ordered to match the phase of the driving and cavity fields For uniformly distributed atoms, scattering is suppressed by destructive interference 2 1.1 Outline of the Thesis In a standing wave cavity, the backaction on the atoms from the scattered... the photon blockade effect [14] and the vacuum-Rabi splitting due to a single atom [15, 16] For a sufficiently good cavity, an atom can even be trapped by the dispersive backaction from the field of a single photon [17] Unlike a free-space FORT, the intra -cavity optical potential in a driven cavity depends on the position of the atom [18] and thus strongly couples to the atomic motion This coupling can... in the wings relative to the 19 2 DIPOLE TRAPPING AND ALL-OPTICAL BOSE- EINSTEIN CONDENSATION Figure 2.4: Comparison of the fraction of atoms in the wings outside the dimple (blue lines) and the peak density (red lines) as a function of η for 1.06 µm and 10.6 µm traps The red and blue dashed lines are the analytic approximations from equations (2.35) and (2.36) respectively The solid lines result from... cool a single atom [20] Cavity cooling via coherent scattering is of particular interest because it can, in principle, be applied to any polarizable particles [21, 22] Extending cavity cooling schemes to ensembles of particles in a cavity remains a tantalizing possibility and area of active theoretical [23, 24] and experimental research [25, 26] For an ensemble of atoms trapped inside a cavity driven... devoted to each The common thread throughout is the dispersive interaction between light and atomic ensembles First, in free space, where optical potentials are used for the trapping and manipulation of atoms Second, in a cavity, where the collective dispersive interaction with the cavity gives rise to the dispersive shift and dynamic optical potentials Chapter 2 In our first experiment, we all-optically produce... in either a magnetic trap or FORT 11 2 DIPOLE TRAPPING AND ALL-OPTICAL BOSE- EINSTEIN CONDENSATION 2.2.3 Evaporative cooling Evaporation is the natural process by which the highest energy atoms escape the confining potential, thereby lowering the average thermal energy of the remaining trapped atoms Collisions continually redistribute energy between atoms to bring the total distribution towards the Maxwell-Boltzmann... cold atom sources such a Zeeman slower [70] or 2D MOT [71] are able to reach a vacuum of ∼ 10−12 Torr and thus background limited lifetimes exceeding 10 minutes Two-body losses There are two principle mechanisms for two-body losses [72]: light assisted collisions and hyper-fine ground state changing collisions Light-assisted collisions occur when 15 2 DIPOLE TRAPPING AND ALL-OPTICAL BOSE- EINSTEIN CONDENSATION. .. organize the atom into a Bragg crystal by static FORT potentials alone We report our observation of threshold-free coherent scattering into the cavity and discuss potential future research directions with such a system Demonstrating cavity cooling of atomic ensembles has been one of our long standing research objectives, but has thus far produced null results We end on a discussion of the practical and fundamental... both internal and external atomic degrees of freedom has been an essential tool for atom physics research Near to an atomic resonance, scattering of laser light via spontaneous emission is the dominant process Laser cooling harnesses this scattering to cool the motion of atoms down to micro-Kelvin temperatures Additionally, optical pumping [6] methods utilize spontaneous emission to prepare atoms in a . high finesse optical cavity. To this end, simple and efficient experimental methods are developed to cool and transport atoms. These include the all-optical production of a Bose- Einstein condensate. over a range of atom numbers and cavity detunings. Most recently, a 2D lattice potential is used to organize the atoms into a Bragg crystal, and coherent scattering into the cavity is observed. driving and cavity fields. For uniformly distributed atoms, scattering is suppressed by destructive interference. 2 1.1 Outline of the Thesis In a standing wave cavity, the backaction on the atoms