1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TUYỂN tập các bài HÌNH GIẢI TÍCH PHẲNG OXY TRONG đề THI THỬ đại học

20 1,2K 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 349,75 KB

Nội dung

boxtailieu.net boxtailieu.net TUYỂN TẬP CÁC BÀI HÌNH GIẢI TÍCH PHẲNG OXY TRONG ĐỀ THI THỬ ĐẠI HỌC K2PI.NET.VN PHẦN THỨ NHẤT : NĂM 2013 - 2014 Bài toán 1: Trong mặt phẳng với hệ tọa độ vuông góc Oxy, cho hình vuông ABCD có các đỉnh A(−1; 2) ; C(3; −2). Gọi E là trung điểm cạnh AD ; BM là đường thẳng vuông góc với CE tại M ; N là trung điểm cạnh BM và P là giao điểm của AN và DM . Biết phương trình đường thẳng BM : 2x −y − 4 = 0 .Tìm tọa độ đỉnh P . Lời giải: A B C D E M N P I - Phương trình EC đi qua C vuông góc với BM là: x + 2y + 1 = 0 - Tọa độ điểm M = EC ∩ BM là nghiệm của hệ  2x − y −4 = 0 x + 2y + 1 = 0 ⇐⇒      x = 7 5 y = − 6 5 =⇒ M  7 5 ; − 6 5  - Do N là trung điểm BM suy ra N  11 5 ; 2 5  - Phương trình AN qua hai điểm A và N là x + 2y −3 = 0 - Gọi I là tâm hình vuông suy ra I(1; 0). Phương trình BD qua I vuông góc với AC là x − y −1 = 0 - Tọa độ B là nghiệm của hệ  2x − y −4 = 0 x − y −1 = 0 ⇐⇒  x = 3 y = 2 =⇒ B (3; 2) - Do I là trung điểm BD suy ra tọa độ D (−1; −2) - Phương trình DM qua D và M là x −3y − 5 = 0 - Tọa độ P = DM ∩ AN là nghiệm của hệ  x − 3y −5 = 0 x + 2y −3 = 0 ⇐⇒      x = 19 5 y = − 2 5 =⇒ P  19 5 ; − 2 5  Kết luận: Tọa độ điểm P  19 5 ; − 2 5  thỏa mãn yêu cầu bài toán.  Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn 1 boxtailieu.net boxtailieu.net Bài toán 2: Trong mặt phẳng với hệ tọa độ vuông góc Oxy, tam giác ABC vuông tại A ngoại tiếp hình chữ nhật M NP Q. Biết các điểm M (−3; −1) và N(2; −1) thuộc cạnh BC; Q thuộc cạnh AB và P thuộc cạnh AC. Đường thẳng AB có phương trình x −y + 5 = 0. Tìm tọa độ các đỉnh của tam giác ABC Lời giải: A C B M N P Q - Phương trình đường thẳng BC qua M và N là y + 1 = 0 - Tọa độ điểm B = AB ∩ BC là nghiệm của hệ  x − y + 5 = 0 y + 1 = 0 ⇐⇒  x = −6 y = −1 =⇒ B (−6; −1) - Đường thẳng QM qua M vuông góc với BC có phương trình là x + 3 = 0 - Tọa độ Q = QM ∩ AB là nghiệm của hệ  x + 3 = 0 x − y + 5 = 0 ⇐⇒  x = −3 y = 2 =⇒ Q (−3; 2) - Ta có −−→ MN = (5; 0) ; −−→ QP = (x P + 3; y P − 2) =⇒ −−→ MN = −−→ QP ⇐⇒  x P = 2 y P = 2 =⇒ P (2; 2) - Đường thẳng AC qua P vuông góc với AB là x + y −4 = 0 - Tọa độ C = AC ∩BC là nghiệm của hệ  x + y −4 = 0 y + 1 = 0 ⇐⇒  x = 5 y = −1 =⇒ C (5; −1) - Tọa độ A = AB ∩ AC là nghiệm của hệ  x + y −4 = 0 x − y + 5 = 0 ⇐⇒      x = − 1 2 y = 9 2 =⇒ A  − 1 2 ; 9 2  Kết luận: Tọa độ các điểm A  − 1 2 ; 9 2  ; B(−6; −1) ; C(5; −1) . Bài toán 3: Trong mặt phẳng với hệ tọa độ vuông góc Oxy,cho đường tròn (C) : x 2 + y 2 − 4x + 2y −11 = 0 và đường thẳng (d) : 4x −3y + 9 = 0. Gọi A; B lần lượt là hai điểm thuộc (d) và C là điểm thuộc đường tròn (C). Biết điểm H  22 5 ; 11 5  là một giao điểm của AC và (C) ( C = H) và điểm K  − 6 5 ; 7 5  là trung điểm của AB. Tìm tọa độ các đỉnh A; B; C. Lời giải: 2 Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn boxtailieu.net boxtailieu.net S AKIH = 24 A d : 4x − 3y = −9 K B H I C - Đường tròn (C) có tâm I(2; −1); bán kính R = 4. - Tọa độ (d) ∩ (C) thỏa  x 2 + y 2 − 4x + 2y − 11 = 0 4x − 3y + 9 = 0 ⇐⇒      x = − 6 5 y = 7 5 =⇒ (d) ∩(C) = K  − 6 5 ; 7 5  - Ta có HK = 4 √ 2 =⇒ HK 2 = IH 2 + IK 2 = R 2 + R 2 =⇒ ∆IHK vuông tại I suy ra tứ giác AHIK là hình thang vuông tại I và K. =⇒ S AHIK = (AH + IK) IH 2 = 24 ⇐⇒ (AH + R) R 2 = 24 =⇒ AH = 8 - Gọi A  a; 3a + 9 3  ∈ (d) =⇒ B  − 12 5 − a; 14 5 − 3a + 9 3  .Ta có   a + 6 5  2 +  4a 3 + 3 − 7 5  2 = 8 ⇐⇒ 5a 2 +12a−180 = 0 ⇐⇒  a = 18 5 a = −6 =⇒     A  18 5 ; 39 5  → B (−6; −5) A (−6; −5) → B  18 5 ; 39 5  (Loại do A; B khác phía với IK) - Phương trình AC qua A và H là 7x + y − 33 = 0 - Tọa độ C = (C) ∩AC thỏa  x 2 + y 2 − 4x + 2y − 11 = 0 7x + y −33 = 0 ⇐⇒      x = 26 5 y = − 17 5 =⇒ C  26 5 ; − 17 5  Kết luận: Tọa độ các điểm A  18 5 ; 39 5  ; B (−6; −5) ; C  26 5 ; − 17 5  .  Bài toán 4: Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho điểm A (1; 0) và các đường tròn (C 1 ) : x 2 + y 2 = 2; (C 2 ) : x 2 + y 2 = 5 . Tìm tọa độ các điểm B và C lần lượt nằm trên (C 1 ) và (C 2 ) để tam giác ABC có diện tích lớn nhất. Lời giải: Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn 3 boxtailieu.net boxtailieu.net A B C H * Đầu tiên ta có nhận xét: để tam giác ABC có diện tích lớn nhất thì O phải là trực tâm của tam giác ABC. Chứng minh: Giả sử CO không ⊥ AB thì ta luôn tìm được điểm C  ∈ (C 2 ) sao cho d(C  , AB) lớn hơn d(C, AB), hay S ∆ABC  lớn hơn S ∆ABC → không thỏa mãn yêu cầu bài toán. Do đó CO ⊥ AB -Tương tự ta cũng có BO ⊥ AC Vậy O là trực tâm của tam giác ABC.Suy ra AO ⊥ BC ⇐⇒ x B = x C Và ta giả sử B(t; b) ∈ (C 1 ), C(t; c) ∈ (C 2 ) (t, b, c ∈ R) thì ta có  t 2 + b 2 = 2 t 2 + c 2 = 5 ⇐⇒  b 2 = 2 − t 2 c 2 = 5 − t 2 Mà CO ⊥ AB nên −−→ CO. −−→ AB = 0 hay t(t − 1) + bc = 0 suy ra b 2 c 2 = t 4 − 2t 3 + t 2 Do đó (2 − t 2 )(5 − t 2 ) = t 4 − 2t 3 + t 2 ⇐⇒ (t + 1)(2t 2 − 10t + 10) ⇐⇒ t = −1; t = 5 + √ 5 2 ; t = 5 − √ 5 2 Tới đây ta có: S ∆ABC = 1 2 BC.d(A, BC) = 1 2 |x A − x B ||y B − y C | = 1 2 |1 − t||b − c| Suy ra S 2 ∆ABC = 1 4 (1 − t) 2 (b 2 + c 2 − 2bc) = 1 4 (1 − t) 2 ((2 − t 2 ) + (5 − t 2 ) − 2(t − t 2 )) = 1 4 (1 − t) 2 (7 − 2t) * Nếu t = −1 thì ta suy ra S 2 ∆ABC = 9 hay S ∆ABC = 3 * Nếu t = 5 + √ 5 2 thì ta dễ thấy điều vô lí vì t 2 + b 2 = 2. * Nếu t = 5 − √ 5 2 thì ta có S 2 ∆ABC = √ 5 − 1 8 < 9 → Loại. Suy ra với t = −1 thì S ∆ABC lớn nhất. Và ta có    bc = −2 b 2 = 1 c 2 = 4 ⇐⇒  b = 1 c = −2 ∨  b = −1 c = 2 =⇒  B(−1; 1) C(−1; −2) ∨  B(−1; −2) C(−1; 2) Kết luận: Với  B(−1; 1) C(−1; −2) ∨  B(−1; −2) C(−1; 2) thì tam giác ABC có diện tích lớn nhất  Bài toán 5: Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho hình thoi ABCD có  A = 60 0 .Trên các cạnh AB, BC lấy các điểm M, N sao cho MB + N B = AB.Biết P ( √ 3; 1) thuộc đường thẳng DN và đường phân giác trong của góc  MDN có phương trình là d : x − y √ 3 + 6 = 0.Tìm toạ độ đỉnh D của hình thoi ABCD. Lời giải: Từ giả thiết  A = 60 0 =⇒ tam giác ABD, CBD là các tam giác đều.Theo đề bài ta có AM = BN, BM = CN. Xét hai tam giác ADM và BDN ta có:  DAM =  DBN = 60 0 ,AD = BD, AM = BN ⇐⇒ hai tam giác bằng nhau ⇐⇒  ADM =  BDN (1). Xét hai tam giác BM D và CN D ta có:  DBM =  DCN = 60 0 ,CD = BD,CN = BM ⇐⇒ hai tam giác bằng nhau ⇐⇒  NDC =  MDB (2). Từ (1) và (2) ⇐⇒  MDN = 60 0 . Gọi P  là điểm đối xứng của P qua đường phân giác d =⇒ P  thuộc đường thẳng DM =⇒ tam giác P DP  là tam giác đều. =⇒ DP = P P  = 2d (P/d) = 6. 4 Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn boxtailieu.net boxtailieu.net Gọi D có tọa độ D  a; a + 6 √ 3  . Ta có: P D 2 = (a − √ 3) 2 +  a + 6 − √ 3 √ 3  2 = 36 ⇐⇒ a = 3 + √ 3 ∨ a = −6 + √ 3 ⇐⇒ D(3 + √ 3; 1 + 3 √ 3) ∨ D(−6 + √ 3; 1). Kết luận: Tọa độ D(3 + √ 3; 1 + 3 √ 3) ∨ D(−6 + √ 3; 1) thỏa mãn bài toán.  Bài toán 6: Trong mặt phẳng với hệ tọa độ vuông góc Oxy, cho hình chữ nhật ABCD , đỉnh B thuộc đường thẳng d 1 : 2x − y + 2 = 0, đỉnh C thuộc đường thẳng d 2 : x − y − 5 = 0 .Gọi H là hình chiếu của B xuống đường chéo AC . BiếtM  9 5 ; 2 5  ; K (9; 2) lần lượt là trung điểm của AH và CD . Tìm toạ độ các đỉnh của hình chữ nhật ABCD biết hoành độ đỉnh C lớn hơn 4. Lời giải: A B C D H K M Gọi B(b; 2b + 2), C(c; c −5), (c > 4) và E là điểm đối xứng với B qua C. Suy ra E(2c − b; 2c − 2b −12). Dễ dàng chứng minh được K là trung điểm của AE. Do đó, −−→ HE = 2 −−→ MK =  72 5 ; 16 5  =⇒ H  2c − b − 72 5 ; 2c − 2b − 76 5  . Thiết lập tọa độ các vector −−→ CK = (9 −c; 7 + c), −−→ BC = (c − b; c −2b − 7), −−→ BH =  2c − 2b − 72 5 ; 2c − 4b − 86 5  , −−→ MC =  c − 9 5 ; c − 27 5  . Với giả thiết bài toán ta có hệ phương trình  −−→ CK. −−→ BC = 0 −−→ BH. −−→ MC = 0 ⇐⇒  −2c 2 + 3bc + 23c − 23b − 49 = 0 4c 2 − 6bc + 126 5 b − 46c + 594 5 = 0 ⇐⇒  b = 1 c = 9 hoặc c = 4(loại) Từ đó ta có B(1; 4), C(9; 4) . Vì K là trung điểm của CD nên suy ra D(9; 0) . Lại có C là trung điểm của BE nên suy ra E(17; 4), và K là trung điểm của AE nên suy ra A(1; 0) . Bài toán 7: Trong mặt phẳng với hệ trục tọa độ Đề-các vuông góc Oxy, cho đường tròn (C) :  x − 5 4  2 + (y − 1) 2 = 2 .Xác định tọa độ các đỉnh của hình vuông ABCD biết các đỉnh B và C thuộc đường tròn (C), các đỉnh A và D thuộc trục Ox. Lời giải: Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn 5 boxtailieu.net boxtailieu.net A B C D (x − 1.25) 2 + (y − 1) 2 = 2 Đường tròn (C) có tâm I  5 4 ; 1  =⇒ ABCD nhận đường thẳng x = 5 4 là một trục đối xứng. C ∈ Ox =⇒ C = (a; 0) =⇒ D = ( 5 2 − a; 0) ; AD ⊥ Ox =⇒ A = ( 5 2 − a; b) =⇒ B = (a; b) =⇒ CD = |2a − 5 2 |; AD = |b| =⇒ |2a − 5 2 | = |b| ⇐⇒ b 2 = 4(a − 5 4 ) 2 , (1) Lại có A, B thuộc (C) =⇒ (a − 5 4 ) 2 + (b −1) 2 = 2 , (2) Từ (1) và (2) =⇒ 5b 2 − 8b −4 = 0 ⇐⇒  b = 2 b = − 2 5 Với b = 2 =⇒ Bốn đỉnh của hình vuông ABCD có tọa độ lần lượt là:  1 4 ; 2  ;  9 4 ; 2  ;  9 4 ; 0  ;  1 4 ; 0  . Với b = − 2 5 =⇒ Bốn đỉnh của hình vuông ABCD có tọa độ lần lượt là:  21 20 ; − 2 5  ;  29 20 ; − 2 5  ;  29 20 ; 0  ;  21 20 ; 0  . Bài toán 8: Trong mặt phẳng với hệ trục tọa độ Đề-các vuông góc Oxy, cho hình thoi ABCD ngoại tiếp đường tròn (I) : (x − 5) 2 + (y − 6) 2 = 32 5 . Biết rằng các đường thẳng AC và AB lần lượt đi qua các điểm M(7; 8) và N (6; 9). Tìm tọa độ các đỉnh của hình thoi ABCD. Lời giải: A B C D I M N Do là đường tròn nội tiếp hình thoi suy ra tâm trung với giao của hai đường chéo. Dễ dàng suy raAC : 1 − y + 1 = 0. Gọi phương trình AB có hệ số góc k dạng y = k(x −6) + 9. Có d (I, AB) = |3 − k| √ k 2 + 1 = 4 √ 10 5 =⇒    k = 1 3 k = − 13 9 =⇒   AB : y = x 3 + 7 AB : y = − 13x 9 + 53 9 =⇒  A (9; 10) , C(1; 2) A (2; 3) , C(8; 9) 6 Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn boxtailieu.net boxtailieu.net Ta có BD : x + y −11 = 0 =⇒   B (3; 8) B  − 23 2 ; 45 2  =⇒   D (7; 4) D  43 2 ; − 21 2  Kết luận: Tọa độ các đỉnh cần tìm là   A (9; 10) ; B (3; 8) ; C (1; 2) ; D (7; 4) A (2; 3) ; B  − 23 2 ; 45 2  ; C (8; 9) ; D  43 2 ; − 21 2   Trong mặt phẳng với hệ trục tọa độ Đề-các vuông góc Oxy, cho hai đường tròn (O 1 ) và (O 2 ) có bán kính bằng nhau và cắt nhau tại A(4; 2) và B. Một đường thẳng đi qua A và N (7; 3) cắt các đường tròn (O 1 ) và (O 2 ) lần lượt tại D và C . Tìm tọa độ các đỉnh của tam giác BCD biết rằng đường thẳng nối tâm O 1 , O 2 có phương trình x − y −3 = 0 và diện tích tam giác BCD bằng 24 5 . Lời giải: Phương trình (AN) : x − 3y + 2 = 0. Có O 1 O 2 ⊥ AB =⇒ (AB) : x + y −6 = 0 =⇒ I  9 2 ; 3 2  =⇒ B(5; 1) ( với I là giao điểm của AB va O 1 O 2 ) Do 2 đường tròn bán kính bằng nhau nên  BDC =  BCA( cùng chắn 1 cung AB) Nên tam giác BDC cân.Kẻ BM vuông góc với DC suy ra (BM) : 3x + y −16 = 0 hay M  23 5 ; 11 5  Gọi D(3t − 2; t) =⇒ C  56 5 − 3t; 22 5 − t  Có S BCD = 1 2 .d(B; (CD)).DC suy ra t = 1 ∨ t = 17 5 Với t = 1 thì D(1; 1); C  41 5 ; 17 5  Với t = 17 5 thì C(1; 1); D  41 5 ; 17 5  Kết luận: Tọa độ các đỉnh cần tìm là     B (5; 1) ; C  41 5 ; 17 5  ; D (1; 1) B (5; 1) ; C (1; 1) ; D  41 5 ; 17 5   Bài toán 10: Trong mặt phẳng tọa độ Oxy cho Elip có phương trình: x 2 8 + y 2 4 = 1 và điểm I(1; −1). Một đường thẳng ∆ qua I cắt Elip tại hai điểm phân biệt A, B .Tìm tọa độ các điểm A, B sao cho độ lớn của tích IA.IB đạt giá trị nhỏ nhất. Lời giải: c I A B a b Gọi I  , A  , B  lần lượt là hình chiếu của I, A, B xuống trục hoành, khi đó theo tính chất của hình chiếu ta suy ra IA.IB ≥ I  A  .I  B  , dấu bằng xảy ra khi và chỉ khi AB song song với trục hoành. Tương tự hạ hình chiếu xuống trục tung, lập luận tương tự suy ra AB song song với trục tung. Nhưng trong hai trường hợp này chỉ có một trường hợp thỏa mãn bài toán. Nhưng để ý I (1; −1) nằm trong Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn 7 boxtailieu.net boxtailieu.net Elip do 1 2 8 + (−1) 2 4 − 1 < 0 nên các hình chiếu trên đều nằm trong trục lớn hoặc trục bé của Elip, để ý là trục lớn có độ dài lớn hơn nên đường thẳng AB cần tìm sẽ song song với trục bé, tức song song với trục tung. Do AB song song với trục tung và qua I (1; −1) nên có phương trình là: x = 1 =⇒ A  1; −  7 2  , B  1;  7 2  . Vậy hai điểm cần tìm là A  1; −  7 2  , B  1;  7 2  hoặc A  1;  7 2  , B  1; −  7 2  . Bài toán 11: Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC với A (3; 5), B (1; 2), C (6; 3). Gọi ∆ là đường thẳng đi qua A cắt BC sao cho tổng khoảng cách từ hai điểm B, C đến ∆ là lớn nhất. Hãy lập phương trình đường thẳng d đi qua điểm E (−1; 1) đồng thời cắt cả hai đường thẳng ∆ và d 1 : x −y + 14 = 0 lần lượt tại hai điểm H, K sao cho 3HK = IH √ 10 với I là giao điểm của ∆ và d 1 . Lời giải: −8. −6. −4. −2. 2. 4. 6. −2. 2. 4. 6. 8. 0 A B C E d f Delta : 5x + y = 20 H K K  H  Hướng 1: Bằng phương pháp dựng hình cộng hưởng với việc tham số hóa đưa về giải tích. Ta có : −−→ BA = (2; 3), −−→ BC = (5; 1) =⇒ −−→ BA · −−→ BC = 2 · 5 + 1 · 3 = 13 > 0 Do đó : cos B > 0 =⇒  B nhọn. Có : −→ CA = (−3; 2), −−→ CB = (−5; −1) =⇒ −−→ BA · −−→ BC = 15 − 2 = 13 > 0 Do đó : cos C > 0 =⇒  C nhọn. Kẻ BP ⊥∆, CQ⊥∆. Khi đó ta có : d (B,∆) = BP, d (C,∆) = CQ. Gọi D là giao điểm của ∆ và BC khi đó ta có : BP + CQ ≤ BD + DC = BC. Do đó : max(BP + CQ) = BC. Dấu đẳng thức xảy ra khi ∆⊥BC. Vậy ∆ là đường thẳng đi qua A và ⊥BC nên có −→ n ∆ = −−→ BC = (5; 1). Do đó phương trình đường thẳng ∆ là : 5(x − 3) + 1(y − 5) = 0 ⇐⇒ 5x + y − 20 = 0. Vì I = ∆ ∩ d 1 nên tọa độ điểm I thỏa :  5x + y −20 = 0 x − y + 14 = 0 ⇐⇒  x = 1 y = 15 Vậy I(1; 15). Xét điểm M(4; 0) ∈ ∆, N (a, a + 14) ∈ d 1 thỏa 3MN = IM √ 10. Ta có : −−→ MN = (4 − a, −a − 14), −−→ IM = (−3; 15). Nên từ :3M N = IM √ 10 ⇐⇒ 9 · 234 = 10 ·  (4 − a) 2 + (a + 14) 2  ⇐⇒ 18a 2 + 180a −432 = 0 ⇐⇒ a = 2 ∨ a = −12. Mặt khác từ giả thiết ta có : 3HK = IH √ 10 nên ta có : HK IH = MN IM =⇒ HK  M N. Do đó đường thẳng d cần tìm đi qua E và song song với MN. Nên : −→ a d = −−→ MN = (4 − a; −a − 14). Trường hợp 1 :a = 2 =⇒ −−→ MN = (2; −16). Lúc đó phương trình d : x + 1 2 = y − 1 −16 ⇐⇒ 8x + y + 7 = 0. Trường hợp 2 :a = −12 =⇒ −−→ MN = (16; −2). Lúc đó phương trình d : x + 1 16 = y − 1 −2 ⇐⇒ x + 8y − 7 = 0. Hướng 2 : Sử dụng dựng hình và đại số hóa bài toán dưới dạng tọa độ các giao điểm. Ta có : −−→ BA = (2; 3), −−→ BC = (5; 1) =⇒ −−→ BA · −−→ BC = 2 · 5 + 1 · 3 = 13 > 0 Do đó : cos B > 0 =⇒  B nhọn. Có : −→ CA = (−3; 2), −−→ CB = (−5; −1) =⇒ −−→ BA · −−→ BC = 15 − 2 = 13 > 0 Do 8 Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn boxtailieu.net boxtailieu.net đó : cos C > 0 =⇒  C nhọn. Kẻ BP ⊥∆, CQ⊥∆. Khi đó ta có : d (B,∆) = BP, d (C,∆) = CQ. Gọi D là giao điểm của ∆ và BC khi đó ta có : BP + CQ ≤ BD + DC = BC Do đó : max(BP + CQ) = BC. Dấu đẳng thức xảy ra khi ∆⊥BC. Vậy ∆ là đường thẳng đi qua A và ⊥BC nên có −→ n ∆ = −−→ BC = (5; 1). Do đó phương trình đường thẳng ∆ là : 5(x − 3) + 1(y − 5) = 0 ⇐⇒ 5x + y − 20 = 0 Vì I = ∆ ∩d 1 nên tọa độ điểm I là nghiệm của hệ phương trình :  5x + y −20 = 0 x − y + 14 = 0 ⇐⇒  x = 1 y = 15 Vậy I(1; 15). Gọi d là đường thẳng đi qua E và có véc tơ pháp tuyến là −→ n = (a, b). Khi đó phương trình đường thẳng :d : a(x −1) + b(y −15) = 0 (a 2 + b 2 = 0). Vì H = d ∩ ∆ nên tọa độ điểm H thỏa:  a(x − 1) + b(y − 15) = 0 5x + y −20 = 0 ⇐⇒      x = 19b + a 5b − a y = 5(5a − b) a − 5b (a = 5b). Lại có K = d ∩d 1 nên tọa độ điểm K thỏa :  a(x − 1) + b(y − 15) = 0 x − y + 14 = 0 ⇐⇒      x = −13b − a b + a y = 13b + a) a + b (a = −b) Vậy K  −13b − a b + a ; 13b + a) a + b  . ;H  19b + a 5b − a ; 5(5a − b) a − 5b  Từ điều kiện bài toán : 3HK = IH √ 10 ⇐⇒ 9HK 2 = 10IH ⇐⇒ 1296(a + 7b) 2 (a 2 + b 2 ) (a − 5b) 2 (a + b) 2 = 1040(a + 7b) 2 (a − 5b) 2 ⇐⇒ (a + 7b) 2 (8a − b)(a − 8b) = 0 ⇐⇒  a = −7b b = 8a a = 8b Trường hợp 1: a = −7b chọn a = 7, b = −1 =⇒ d : 7x −y − 8 = 0. Trường hợp này loại vì khi đó ba đường thẳng d, d 1 , ∆ đều đồng quy tại điểm I. Trường hợp 2 :a = 8b chọn a = 8, b = 1 =⇒ d : 8x + y + 7 = 0. Trường hợp 3 : b = 8a chọn a = 1, b = 8 =⇒ d : x + 8y −7 = 0. Tóm lại ta có hai đường thẳng thỏa mãn yêu cầu bài toán : 8x + y + 7 = 0 ; x + 8y − 7 = 0  Bài toán 12: Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) : x 2 + y 2 − 2x − 6y − 6 = 0 và hai điểm B(5; 3), C(1; −1). Tìm tọa đọ đỉnh A; D của hình bình hành ABCD biết A thuộc đường tròn (C) và trực tâm H của tam giác ABC thuộc đường thẳng d : x + 2y + 1 = 0 và x H < 2. Lời giải: A BI C d D Đường tròn (C) có tâm I(1; 3). Nhận thấy ngay B; C đều cùng thuộc đường tròn (C). Gọi E là giao điểm của AI và (C) suy ra tứ giác BHCE là hình bình hành. Gọi M là trung điểm của BC suy ra tọa độ điểm M (3; 1). Tham số hóa tọa độ điểm H(−1 −2a; a) với a > −3 2 . Do M là trung điểm của HE suy ra E(7 + 2a; 2 − a). Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn 9 boxtailieu.net boxtailieu.net Tọa độ điểm E lại thỏa mãn (C) nên ta có: (7 + 2a) 2 + (2 −a) 2 − 2 (7 + 2a) − 6 (2 − a) −6 = 0 ⇐⇒ 5a 2 + 26a + 21 = 0 =⇒ a = −1 =⇒ E (5; 3) Do điểm E và A đối xứng nhau qua tâm I nên suy ra A(−3; 3). Do tứ giác ABCD là hình bình hành nên −−→ AD = −−→ BC =⇒ D (−7; −1) Kết luận: Tọa độ các đỉnh cần tìm là A(−3; 3), D(−7; −1) . Bài toán 12: Trong mặt phẳng với hệ tọa độ Oxy cho tam giacs ABC vuông tại A. gọi H là hình chiếu của A lên BC. Tam giác ABH ngoại tiếp đường tròn (C) :  x − 16 5  2 +  y − 33 5  2 = 36 25 . Tâm đường tròn nội tiếp tam giác ACH là I  26 5 ; 23 5  . Tìm tọa độ trọng tâm G cua tam giác ABC. Lời giải: (C) có tâm K  16 5 ; 33 5  và bán kính R = 6 5 . Trung điểm của IK là M  21 5 ; 28 5  . Gọi D và L là hình chiếu của K lên BC và AH. Do AH⊥BC nên KDHL là hình vuông. Suy ra KH = R √ 2 = 6 √ 2 5 . Từ đó suy ra H thuộc đường tròn tâm K bán kính KH có phương trình:  x − 16 5  2 +  y − 33 5  2 = 72 25 . Mà  AHK =  AHI = 45 o =⇒  IHK = 90 o . Nên H thuộc đường tròn tâm M bán kính KM =   21 5 − 16 5  2 +  28 5 − 33 5  2 = √ 2 có phương trình (C  ) :  x − 21 5  2 +  y − 28 5  2 = 2 . Từ đó tìm được hai tọa độ điểm H thỏa mãn là H  74 25 ; 123 25  và H   122 25 ; 171 25  . +) Trường hợp 1: H  74 25 ; 123 25  . Phương trình tiếp tuyến của (C) qua điểm H là (d) : a  x − 74 25  + b  y − 123 25  = 0 với (a 2 + b 2 = 1). d (K, d) = R ⇐⇒     a  16 5 − 74 25  + b  33 5 − 123 25      = 6 5 ⇐⇒     6a 25 + 42b 25     = 6 5 ⇐⇒     a 5 + 7b 5     = 1 ⇐⇒  a + 7b = 5 a + 7b = −5 Kết hợp a 2 + b 2 = 1 ta được    b = 4 5 =⇒ a = − 3 5 b = 3 5 =⇒ a = 4 5 Vậy có hai tiếp tuyến là     d 1 : − 3 5  x − 74 25  + 4 5  y − 123 25  = 0 ⇐⇒ 15x −20y + 54 = 0 d 2 : 4 5  x − 74 25  + 3 5  y − 123 25  = 0 ⇐⇒ 20x + 15y + 133 = 0 Dễ thấy d 1 cắt đoạn IK nên phương trình AH chính là phương trình của d 1 ; phương trình BC là phương trình của d 2 . A thuộc d 1 : 15x + 30 = 20y −24 ⇐⇒ x + 2 4 = y − 6 5 3 nên A  −2 + 4t; 6 5 + 3t  . −−→ AK =  16 5 + 2 −4t; 33 5 − 6 5 − 3t  =  26 5 − 4t; 27 5 − 3t  , −→ AI =  26 5 + 2 −4t; 23 5 − 6 5 − 3t  =  36 5 − 4t; 17 5 − 3t  . Dễ thấy  IAK = 1 2  BAC = 45 o nên −−→ AK. −→ AI =    −−→ AK    .    −→ AI    cos 45 o ⇐⇒  26 5 − 4t  36 5 − 4t  +  27 5 − 3t  17 5 − 3t  =   26 5 − 4t  2 +  27 5 − 3t  2 .   36 5 − 4t  2 +  17 5 − 3t  2 . √ 2 2 10 Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn [...]... il t e Bài toán 30: Trong mặt phẳng với hệ tọa độ Oxy cho hình thang ABCD có đáy AB Biết hai đỉnh B(3; 3), C(5; −3) Giao điểm I của hai đường chéo thuộc 2x + y − 3 = 0 Gọi K là trung điểm của CD 8 Tìm tọa độ các đỉnh A, D biết rằng IC = 2BI, tam giác IDK có diện tích rằng và các điểm I, A 5 có hoành độ dương a t x o b A Lời giải: 2x + y = 3 B bo xta I D K SIKD = 1.6 C Gọi I (a; 3 − 2a) ∈ ∆ Theo bài ra... Tọa độ điểm cần tìm là M − ; 7 7 bo xta Bài toán 23: Trong mặt phẳng với hệ tọa độ Oxy cho tứ giác ABCD có A(1; 7), B(6; 2), C(2; −4), D(1; 1) Hãy viết phương trình đường thẳng đi qua C và chia tứ giác thành hai phần có diện tích bằng nhau ilie u Lời giải: A H SAHCD = 14 B D SHBC = 14 ne t C 16 Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn √ Từ giả thi t bài toán ta tính được SABCD = 28; SACD =... 11 ; Kết luận: Tọa độ điểm càn tìm là C 32 8 Nhận thấy ngay A, B đề thuộc đường tròn (C) và AB = R = Bài toán 16: Trong mặt phẳng với hệ tọa độ Oxy cho hình vuông ABCD có điểm M (3; 2) thuộc BD Từ M kẻ các đường thẳng M E; M F lần lượt vuông góc với AB tại E(3; 4) và AD tại F (−1; 2).Xác định tọa độ điểm C của hình vuông bo xta A F D Lời giải: E B ilie u K M C ne t Gọi K = F M ∩ BC Ta có M E = 2; M F... tâm đường tròn ngoại tiếp và nội tiếp tam giác ABC Đường tròn (T ) tiếp xúc với BC và các cạnh AB; AC kéo sài có tâm là F (2; −8) Tìm tọa độ các đỉnh của tam giác ABC biết yA < 0 Bài toán 27: Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có I ilie u Lời giải: A EI B C J ne t F 18 Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn Gọi J là giao của EF và đường tròn ngoại tiếp tam giác ABC Khi đó có... trung điểm của BC là F n u ie il t e Bài toán 21: Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có phương trình đường cao AH : 3x + 2y − 1 = 0, phân giác trong CK : 2x − y + 5 = 0 và trung điểm M (2; −1) của cạnh AC Gọi 2013 √ CABC , SABC lần lượt là chu vi và diện tích tam giác ABC Tính giá trị của 30CABC + SABC 3 a t x o b Lời giải: B 18.03 C Diện tích của ABC = 101.43 22.68 11.37 A bo xta 1 −... độ các điểm cần tìm là A(1; 8); M (10; −4); N (−3; −4) ⇐⇒ m − 1 = ±9; 1 − n = 4 m − 1 = 4; 1 − n = ±9 ne 9 25 = và 2 4 hai điểm A(2; 3), B(6; 6) Gọi M ; N là hai điểm khác nhau nằm trên đường tròn (C) sao cho các đường 5 thẳng AM và BN cắt nhau tại H, AN và BM cắt nhau tại C Tìm tọa độ điểm C biết H 4; 2 Bài toán 15: Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) : (x − 4)2 + y − t Lời giải: ... Kết luận Vậy tọa độ các đỉnh cần tìm là B − ; − ,C − ; ∨B ; ,C ; 5 5 5 5 5 5 5 5 ne t Bài toán 26: Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) : x2 + y 2 = 25 và √ 5 5 3 B − ; Điểm C có hoành độ dương thuộc (C) sao cho BOC = 120o Tìm M thuộc cung 2 2 1 1 nhỏ BC sao cho + đạt giá trị nhỏ nhất (M = B, C) MB MC Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn 17 π 4 Lời giải: B M c n u ie... tính BH Sau đó tìm các điểm B, C cuối cùng G 122 171 làm tương tự kết quả ra đẹp hơn A(2; 3), B(2; 9), C(10; 3), G ; +) Trường hợp 2: H 25 25 n u ie il BAH nên t e 14 ;5 3 Bài toán 14: Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD nội tiếp đường tròn (C) tâm I(1; 2) Tiếp tuyến của (C) tại B; C; D cắt nhau tại M, N Giả sử H(1; −1) là trực tâm tam √ giác AM N Tìm tọa độ các điểm A; M ; N... luận: Tọa độ các đỉnh của tam giác là A , 4 ; B (5, −2) , C (−2, −2) hoặc A , 4 ; C (5, −2) , B (−2, −2) 2 2 Bài toán 28: n u ie il t e Trong √ phẳng với hệ tọa độ Oxy cho elip (E) thỏa mãn khoảng cách giữa hai đường mặt 8 3 , điểm M có tọa độ dương thuộc (E) sao cho độ lớn hai bán kính qua tiêu là chuẩn của (E) bằng 3 √ 5 37 3 VÀ Tìm điểm N ∈ (E) sao cho M N = và xN > 0 2 2 6 a t x o b Lời giải: √ √... 33 √ ;− 9 3 3 Bài toán 29: Trong mặt phẳng với hệ tọa độ Oxy cho các đường thẳng ∆1 : x − y + 2 = 0; ∆2 : 2x − y − 2 = 0; ∆3 : 2x + y − 2 = 0 và điểm E(4; 3) Viết phương trình đường tròn có tâm I thuộc ∆1 , 16 cắt ∆2 tại A; B và ∆3 tại C; D sao cho AB + CD = √ và tâm I thỏa mãn IO = 2IE, xI ∈ Z 5 ilie u Lời giải: A Delta3 I C E D Delta1 B O ne t Delta2 Nguyễn Đình Huynh - Diễn đàn toán học K2pi.Net.Vn . boxtailieu.net boxtailieu.net TUYỂN TẬP CÁC BÀI HÌNH GIẢI TÍCH PHẲNG OXY TRONG ĐỀ THI THỬ ĐẠI HỌC K2PI.NET.VN PHẦN THỨ NHẤT : NĂM 2013 - 2014 Bài toán 1: Trong mặt phẳng với hệ tọa độ vuông góc Oxy, cho hình vuông. A(1; 0) . Bài toán 7: Trong mặt phẳng với hệ trục tọa độ Đề -các vuông góc Oxy, cho đường tròn (C) :  x − 5 4  2 + (y − 1) 2 = 2 .Xác định tọa độ các đỉnh của hình vuông ABCD biết các đỉnh B. giác trong của góc  MDN có phương trình là d : x − y √ 3 + 6 = 0.Tìm toạ độ đỉnh D của hình thoi ABCD. Lời giải: Từ giả thi t  A = 60 0 =⇒ tam giác ABD, CBD là các tam giác đều.Theo đề bài ta

Ngày đăng: 06/09/2015, 23:05

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w