1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phương pháp tích phân đầu và sóng mặt rayleigh ba thành phần

6 179 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 207,51 KB

Nội dung

Phương pháp tích phân đầu và sóng mặt Rayleigh ba thành phần Nguyễn Thị Nam Trường Đại học Công nghệ Luận văn ThS. Chuyên ngành: Cơ học; Mã số: 60 44 21 Người hướng dẫn: PGS.TS. Phạm Chí Vĩnh Năm bảo vệ: 2010 Abstract: Phương pháp phân tích phân đầu: tập trung giới thiệu phương pháp tích phân đầu của Mozhaev cho sóng Rayleigh ba thành phần, và chứng minh rằng "phương pháp phân tích phân đầu Mozhaev không dẫn đến một phương trình tán sắc, như mong muốn, mà dẫn đến một đồng nhất thức"; trình bày phương pháp truyền thống và phương pháp tích phân đầu cho sóng Rayleigh hai thành phần. Sóng Rayleigh ba thành phần truyền trong môi trường đàn hồi nén được có ứng suất trước: nghiên cứu sóng Rayleigh trong môi trường đàn hồi nén được có ứng suất trước, truyền theo hướng không phải là hướng chính của biến dạng ban đầu, khi đó sóng Rayleigh là sóng có ba thành phần (chuyển dịch), đồng thời tìm ra phương trình tán sắc dạng tường minh. Keywords: Phương trình tán sắc; Sóng Rayleigh; Cơ học chất rắn 1 Mở đầu Sóng mặt Rayleigh được phát hiện bởi Rayleigh [11] từ hơn một thế kỷ qua (vào năm 1885), vẫn đang được nghiên cứu rất mạnh mẽ, bởi những ứng dụng to lớn của nó trong nhiều ngành khác nhau của khoa học và kỹ thuật như: âm học, địa chấn học, khoa học vật liệu, công nghệ viễn thông, khoa học đánh giá độ bền của vật liệu mà không phá hủy vật liệu Theo Destrade [6], xuất hiện cách đây khoảng hơn 30 năm, các thiết bị sóng mặt (Rayleigh) đã được sử dụng rộng rãi và hết sức thành công trong ngành công nghiệp truyền thông. Theo Hess [8], trong những năm gần đây sóng mặt (Rayleigh) tạo ra bởi laze đã cung cấp những công cụ mới để nghiên cứu các tính chất của vật liệu. Có thể nói không quá rằng, sự phát hiện ra sóng mặt của Rayleigh có ảnh hưởng to lớn và sâu rộng đến thế giới ngày nay, trải dài từ chiếc mobile phone đến các nghiên cứu động đất, như Adams và các cộng sự [3] đã nhấn mạnh. Theo Malischewsky [9], vận tốc sóng Rayleigh là một đại lượng cơ bản và quan trọng, thu hút sự quan tâm đặc biệt của các nhà địa chấn học, vật liệu khoa học và các nhà nghiên cứu thuộc các lĩnh vực khác của vật lý. Vì vận tốc sóng Rayleigh là nghiệm của phương trình tán sắc, nên phương trình tán sắc dạng tường minh là mục tiêu cơ bản khi nghiên cứu sóng Rayleigh. Nó được sử dụng để giải bài toán thuận: nghiên cứu sự phụ thuộc của vận tốc sóng Rayleigh vào các tham số vật liệu (và các tham số khác), đặc biệt sử dụng để giải bài toán ngược: đánh giá (không hư hỏng) các tham số vật liệu (và các tham số khác) thông qua các giá trị đo được của vận tốc sóng. Đối với môi trường đàn hồi đẳng hướng hoặc môi trường dị hướng đơn giản (chẳng hạn môi trường đàn hồi trực hướng), để tìm phương trình tán sắc của sóng Rayleigh ta sử dụng phương trình đặc trưng của sóng. Vì nó là phương trình trùng phương nên ta dễ dàng tìm được biểu thức nghiệm của nó. Tuy nhiên, đối với môi trường dị hướng phức tạp hơn (chẳng hạn môi trường monoclinic (xem [4]), môi trường gồm các tinh thể trực hướng bị xoắn (xem [5])), phương trình đặc trưng của sóng là phương trình bậc bốn đầy đủ, hoặc bậc sáu, việc tìm biểu thức nghiệm của nó là rất khó khăn, nếu không nói là không thể thực hiện được. Để vượt qua khó khăn này, Mozhaev [10] đã đưa ra một phương pháp được gọi là “phương pháp tích phân đầu” (method of first intergrals). Phương pháp này cho phép ta tìm được phương trình tán sắc của sóng Rayleigh mà không cần sử dụng phương trình đặc trưng. 2 Destrade [6] đã cải tiến phương pháp tích phân đầu của Mozhaev [10] và đã ứng dụng rất thành công vào các bài toán sóng Rayleigh có hai thành phần. Theo hướng này cũng cần kể đến nghiên cứu gần đây của PGS.TS Phạm Chí Vĩnh và các cộng sự [15]. Gần đây, Destrade [4] và Ting [13] đã khẳng định rằng: phương pháp tích phân trình bầy bởi Mozhaev [10] không có hiệu lực đối với sóng Rayleigh có ba thành phần (chẳng hạn sóng Rayleigh trong môi trường monoclinic có mặt phẳng đối xứng x 1 = 0 hay x 2 = 0, hoặc sóng Rayleigh trong môi trường dị hướng tổng quát). Gần đây hơn, PGS.TS Phạm Chí Vĩnh và Nguyễn Thị Nam [1] đã áp dụng thành công phương pháp tích phân đầu cho sóng Rayleigh ba thành phần. Các tác giả đã không xuất phát từ phương trình đối với chuyển dịch như Mozhaev [10], mà dựa vào phương trình đối với ứng suất, và không dừng lại ở hệ chín phương trình đại số tuyến tính thuần nhất phụ thuộc lẫn nhau đối với chín ẩn số như Ting [13], mà đi đến hệ gồm ba phương trình độc lập đối với ba ẩn số. Vật liệu có ứng suất trước đã và đang được sử dụng rộng dãi trong thực tiễn, nên việc đánh giá (không phá hủy) ứng suất trước trong các công trình trước và trong quá trình sử dụng là hết sức cần thiết và quan trọng. Vì sóng mặt Rayleigh là một công cụ hữu hiệu để thực hiện nhiệm vụ này, nên việc nghiên cứu tìm ra phương trình tán sắc, dạng tường minh, của nó là hết sức cần thiết và có ý nghĩa, đang được nhiều tác giả quan tâm. Mục đích chính của luận văn là nghiên cứu sóng mặt Rayleigh ba thành phần truyền trong môi trường đàn hồi nén đựợc có biến dạng trước. Áp dụng các kỹ thuật đã được sử dụng trong [1], phương trình tán sắc dạng tường minh của sóng đã được tìm ra. Đây là một kết quả mới. Nội dung của luận văn được trình bày trong hai chương. Chương 1: Phương pháp tích phân đầu. Chương này nhằm giới thiệu phương pháp tích phân đầu của Mozhaev [10] cho sóng Rayleigh ba thành phần, và chứng minh rằng "phương pháp tích phân đầu Mozhaev không dẫn dến một phương trình tán sắc, như mong muốn, mà dẫn đến một đồng nhất thức". Chứng minh chi tiết này dựa trên chứng minh vắn tắt của Ting [13]. Để hiểu rõ nguồn gốc của phương pháp tích phân đầu, và sự khác nhau của phương pháp này khi áp dụng đối với sóng Rayleigh hai và ba thành phần, chương này cũng trình bày phương pháp truyền thống và phương pháp tích phân đầu cho sóng Rayleigh hai thành phần. Chương 2: Sóng Rayleigh ba thành phần truyền trong môi trường đàn hồi nén được có ứng suất trước. Chương này nghiên cứu sóng Rayleigh trong môi trường đàn hồi nén được có ứng suất trước, 3 truyền theo hướng không phải là hướng chính của biến dạng ban đầu. Khi đó sóng Rayleigh là sóng có ba thành phần (chuyển dịch). Áp dụng phương pháp tích phân đầu trình bày trong [1], tác giả khóa luận đã tìm ra phương trình tán sắc dạng tường minh. Tài liệu tham khảo [1] Phạm Chí Vĩnh, Nguyễn Thị Nam, "Áp dụng phương pháp tích phân đầu để tìm phương trình tán sắc của sóng Stoneley", Hội nghị Cơ học lần thứ 8, Hà Nội 6-7/12/2007, P.654-663. [2] J. D. Achenbach Wave Propagation in Elastic Solids, North Holland, Amsterdam (1973). [3] S. D. M. Adam et al," Rayleigh Waves Guided by Topography", Proc. R. Soc. London, Ser. A, 463, pp 531-550, (2007) [4] M. Destrade,"The explicit secular equation for surface acoustic waves in monoclinic elastic crystals", Journal of the Acoustic Society of America, 109 (2001),1398-1402. [5] M. Destrade,"Elastic interface acoustic waves in twinned crystals", Int. J. Solids and Struct., 40 (2003), 7375-7383. [6] M. Destrade, "Rayleigh Waves in anisotropic crystals rotating about the nomal asym- metry plane", ASME J.Appl.Mech,71 (2004), 516-520. [7] M. A. Dowaikh, R.W. Ogden, "On Surface Waves and Deformations in a Compressible Elastic hafl-space", SAACM-Vol-1, pp 27-45. [8] P. Hess, "Surface acoustic waves in material science", Phys. Today 55 (2002),43-47. 35 36 [9] P. Malischewsky, "A note on Rayleigh waves velocity as a function of a material parameters", Geoficica International,43 (2004).507-509. [10] V. G. Mozhaev, "Some new ideas in the theory of surface acoustic waves in anisotropic media", IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics (ed by O.F.Paker and A.H.England), KluWer Academic Pub, Dordrencht, The Netherlands,(1995), 455-462. [11] Lord Rayleigh, "On waves propagated along the plane surface of an elastic solid", Proc. R. Soc. London 17 (1885), 4-11. [12] T. C. T. Ting, Anisotropic Elasticity: Theory and Applications, Oxford Unversity Press NewYork 1996. [13] T. C. T. Ting, "Explicit secular equation for surface waves in an anisotropic elastic half-space-From Rayleigh to today, Surface waves in anisotropic and laminated bodies and defects detection", ed by R. V. Goldstain, and G. A. Maugin, Kluwer Academic, 95-117, 2004. [14] R. W. Ogden, Non-linear Elastic Deformation, Ellis Horwood: Chichester,(1984). [15] Pham Chi Vinh, Trinh Thi Thanh Hue, Dinh Van Quang, Nguyen Thi Khanh Linh, Nguyen Thi Nam, "Method of first intergrals and interface Surface Waves", Vietnam Journal of Mechanics, VAST, Vol. 32 (2010) (2). . Abstract: Phương pháp phân tích phân đầu: tập trung giới thiệu phương pháp tích phân đầu của Mozhaev cho sóng Rayleigh ba thành phần, và chứng minh rằng " ;phương pháp phân tích phân đầu Mozhaev. chương. Chương 1: Phương pháp tích phân đầu. Chương này nhằm giới thiệu phương pháp tích phân đầu của Mozhaev [10] cho sóng Rayleigh ba thành phần, và chứng minh rằng " ;phương pháp tích phân đầu Mozhaev. đầu, và sự khác nhau của phương pháp này khi áp dụng đối với sóng Rayleigh hai và ba thành phần, chương này cũng trình bày phương pháp truyền thống và phương pháp tích phân đầu cho sóng Rayleigh

Ngày đăng: 25/08/2015, 11:05

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w