1. Trang chủ
  2. » Khoa Học Tự Nhiên

Hệ phương trình siêu việt- ViettelStudy

10 410 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 688,33 KB

Nội dung

TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 1 ************************************************************ MỘT SỐ BÀI TOÁN GIẢI PT, HỆ PT MŨ VÀ LOGARIT Bài số 1 : a/ Giải hệ phương trình Lời giải : Điều kiện Hệ phƣơng trình tƣơng đƣơng với hệ : Đặt: Ta có ( I ) Nhân hai phƣơng trình của hệ ( I ) vế theo vế , đƣợc: 3(3x+2y)(3x-2y) = (*) Kết hợp (1) với (*) Ta có 15 = Do đó t = 1Thế vào hệ ( I ) đƣợc hpt : Thỏa mãn điều kiện đã nêu . Nên đây là nghiệm của hệ phƣơng trình Lời giải 2: Điều kiện Hệ phƣơng trình tƣơng đƣơng với hệ : Nhân hai vế phƣơng trình (2) với và áp dụng = (Với mọi a,b,c dƣơng a và b ) Ta đƣợc : ( Vì từ pt (1) suy ra 3x-2y = ) 3x+2y = 5 (2’) Kết hợp với phƣơng trình (1) Ta đƣợc hệ phƣơng trình : Thỏa mãn điều kiện đã nêu Nên đây là nghiệm của hệ phƣơng trình đã cho b/ Giải hệ phương trình : Lời giải : Điều kiện Hệ phƣơng trình tƣơng đƣơng với : TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 2 Thỏa mãn điều kiện Nên là nghiệm của hệ phƣơng trình đã cho. Bài số 2 : Giải hệ phương trình Lời giải : Điều kiện xy . = Suy ra: = Phƣơng trình (1) trở thành : - - 2 = 0 Đặt t = Ta có t 2 – t – 2 = 0 t = 2 ( Loại t = - 1 ) Nhƣ vậy: = 2 Do đó = 1 (1’) . Hệ phƣơng trình đã cho tƣơng đƣơng với hệ phƣơng trình -Hệ (II) có hai nghiệm : và Cả hai nghiệm này đều thỏa mãn điều kiện xy Nên đây là hai nghiệm của hệ phƣơng trình đã cho. Bài số 3 : Tìm giá trị của tham số m để phương trình sau đây có 3 nghiệm phân biệt : - - 2mx + m 2 = 2 – x 2 Lời giải : Viết phƣơng trình thành : 4. = 2. - (x – m) 2 = 2. = (x – m) 2 (*) (Chú ý : = ) Bài toán trở thành :Tìm giá trị của m để phƣơng trình (*) có 3 nghiệm phân biệt. -Viết phƣơng trình (*) thành : 2. = TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 3 (Đặt t = x – 1) Nhận thấy : Phƣơng trình ( 1 ) và phƣơng trình ( 1’) đều không thể có hai nghiệm trái dấu (Do các hệ số a , c cùng dấu ) Để phƣơng trình (*) có 3 nghiệm phân biệt thì : Không thể xẩy ra các trường hợp : *- Trong hai pt (1) và (1’) : một phương trình có hai nghiệm cùng dấu – cả 2 nghiệm thỏa mãn điều kiện ; Phương trình kia có hai nghiệm trái dấu – một nghiệm thỏa mãn điều kiện và một nghiệm bị loại **- Hai phương trình (1) và (1’) đều có hai nghiệm phân biệt , đồng thời chúng có một nghiệm chung Do vậy mà phƣơng trình (*) có 3 nghiệm phân biệt chỉ khi một trong 2 trƣờng hợp sau xẩy ra: -Trường hợp 1: pt (1) có hai nghiệm dƣơng phân biệt ,đồng thời pt ( 1’) có nghiệm kép t 0 Điều này xẩy ra m = -Trường hợp 2: pt (1) có nghiệm kép dƣơng , đồng thời phƣơng trình (1’) có 2 nghiệm âm phân biệt Điều này xẩy ra m = Trả lời :Có hai giá trị của m để phƣơng trình đã cho có 3 nghiệm phân biệt là m 1 = và m 2 = (Bài kiểm tra Học Kỳ I năm học 2009-2010 Lớp 12 CB Trƣờng THPT Tân kỳ I Tỉnh Nghệ an – Thầy Đặng Hữu Trung ra đề ) Bài số 4 : Giải và biện luận theo tham số m phƣơng trình sau : (1) Lời giải :Viết phƣơng trình thành dạng mới Lời giải : (Cùng dạng với Bài số 3 ở trên).Ta có : = x 2 + 2mx + m = 0 (2) TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 4 -Giải và biện luận phƣơng trình (1) Đƣa về giải và biện luận phƣơng trình (2). *Nếu ’= m 2 -m < 0 Tức là 0 < m < 1 Thì phƣơng trình vô nghiệm *Nếu ’= m 2 - m = 0 Tức là m 1 = 1 m 2 = 0 Thì phƣơng trình có nghiệm Kép (m = 1nghiệm kép x = - 1 ; m = 0 nghiệm kép là x = 0 ) *Nếu ’= m 2 - m > 0 Tức là : m < 0 hoặc m > 1 thì phƣơng trình có hai nghiệm phân biệt x 1 = - m - và x 1 = - m + ./. Bài số 5 : Giải phương trình : - Lời giải : Điều kiện x = Ta có = và = = . Do đó Phƣơng trình trở thành : = ( x 2 – 1 ).Chia 2 vế cho đƣợc phƣơng trình: = x 2 – 1 (*) Điều kiện x 2 – 1 , kết hợp điều kiện x .Ta suy ra điều kiện x . Với điều kiện x Lấy lôgarit cơ số 3 hai vế phƣơng trình (*),đƣợc phƣơng trình tƣơng đƣơng : = = t (Đặt = t ) Thì có hpt: x = 2 thỏa mãn điều kiện x . Trả lời : Phƣơng trình có nghiệm x = 2 Bài số 6 : Giải phương trình : Lời giải : Lấy lôgarit cơ số 2 hai vế ,đƣợc = (x – 2) (x – 2) = 0 Bài số 7 : Giải phương trình : 2. Lời giải : Điều kiện Đặt t = 2. Thì : (*) : Thế (2) vào (1) suy ra Chia hai vế phƣơng trình cho đƣợc : Phƣơng trình này có nghiệm duy nhất t = - 1 (Nhẩm nghiệm ,Chứng minh duy nhất – Dựa vào tính chất các hàm số liên tục ).Thế t = -1 vào hpt (*) TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 5 Nhƣ vậy ta có : x = , k z là nghiệm của pt Bài số 8 : Giải phương trình : = 1 (*) Lời giải : Điều kiện - 3 và x Chú ý : = 2. = - Nên = = - và lại có = Do đó ta có : (*) - = 1 = 6 = (4-x)(3+x) x 2 -7x -18 = 0 x = 9 ( Loại x = -2 ) Trả lời : Phƣơng trình có nghiệm x = 9 . Bài số 9 : Giải phƣơng trình : - = 2. Lời giải : Điều kiện x > 0 , x 1 Phƣơng trình viết thành : - = 2. 4.4 t – 6 t - 18.9 t = 0 .với t = .Chia hai vế phƣơng trình cho 4 t rồi đặt > 0 đƣợc pt : X = ( Loại X = - ) Vậy = , t = -2 Nhƣ vậy ta có: = - 2 x = (Thỏa mãn 0 < x ). Trả lời : Phƣơng trình có nghiệm x = Bài số 10 : Giaỉ hệ phƣơng trình với điều kiện , theo thứ tự đó lập thành cấp số nhân (3) Lời giải : Điều kiện x , y , z đều dƣơng và khác 1 Theo giả thiết theo thứ tự đó lập thành cấp số nhân suy ra: = = 1 = 1 suy ra y = z Do đó ,ta có hệ phƣơng trình : là nghiệm hpt Bài số 11 : Với giá trị nào của tham số m thì phƣơng trình sau đây có 4 nghiệm phân biệt : = + 1 (*) TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 6 Lời giải : Ta có + 1 = (m 2 - ) 2 + > 0 với mọi m , Do đó lấy lôgarit cơ số hai vế của (*) thì ta có :(*) = + 1) = - + 1) -Gọi t (1) (Gọi cho gọn.) Ta tìm giá trị của t để phƣơng trình = t Có 4 nghiệm phân biệt . Sau đó, tìm đƣợc m , từ đẳng thức (1) Dùng phƣơng pháp đồ thị,(chỉ cần lập bảng biến thiên,không cần vẽ đồ thị )Ta có: phƣơng trình = t có 4 nghiệm phân biệt khi 0 < t < 1 Suy ra :phƣơng trình có 4 nghiệm phân biệt khi 0 < < 1 0 > > -1 1 > > Giải hệ bpt này ta đƣợc những giá trị cần tìm của m. Bài số 12 : Giải hệ phƣơng trình Lời giải : Viết hệ phƣơng trình thành: Là nghiệm của hệ phƣơng trình đã cho Bài số 13 : Cho phƣơng trình = 0 (1) -Tìm tích các nghiệm số của phƣơng trình Lời giải : Điều kiện x > 0 và x .Chuyển vế rồi lấy lôgarit cơ số 6 hai vế, đƣợc phƣơng trình tƣơng đƣơng : = 2 + . Đặt t = ta có phƣơng trình bậc hai : t 2 – t .( - . ) – 2 = 0 (2) -Với mỗi giá trị của x > 0 , x tƣơng ứng với một giá trị t = .Và ngƣợc lại,mỗi giá trị của t tƣơng ứng một giá trị x = ( Do t = ) -Phƣơng trình (2) có tối đa là 2 nghiệm .Do đó phƣơng trình (1) có tối đa 2 nghiệm. -Gọi : là hai nghiệm của phƣơng trình (1)thì ta có Mà t 1 và t 2 là hai nghiệm của phƣơng trình (2) nên theo Vi-et : t 1 + t 2 = - . Do đó : = . TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 7 Bài số 14 : Giải và biện luận theo tham số a hệ phƣơng trình: Lời giải : Viết hệ phƣơng trình thành : Theo Vi-et ta có: x , y là hai nghiệm của phƣơng trình : t 2 – (1-a).t + (1-a) 2 = 0 (*) Phƣơng trình (*) có nghiệm khi = -(1-a) 2 0 tức là khi a = 1.Với a = 0 ta có x = y = 0. Trả lời :-Nếu a thì hệ phƣơng trình vô nghiệm . - Nếu a = 1 hệ phƣơng trình có nghiệm duy nhất Bài số 15 : Giải hệ phƣơng trình: Lời giải :Điều kiện Với điều kiện đã nêu hệ phƣơng trình tƣơng đƣơng với với hệ phƣơng trình: (Do điều kiện đã nêu: nên x-2 0) x = y Vậy hệ phƣơng trình có vô số nghiệm ,công thức tổng quát của nghiệm Tức là : Bài số 16 : Cho hệ phƣơng trình: 1/ Giải hệ phƣơng trình khi m = 3 2/ Tìm giá trị của m sao cho hệ phƣơng trình đã cho có nghiệm duy nhất ? Hãy xác định nghiệm duy nhất đó ? Lời giải : Điều kiện xy 0 .Hệ phƣơng trình tƣơng đƣơng với hệ : TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 8 1/Với m =3 : Hệ phƣơng trình trở thành -Phƣơng trình (2) có 2 nghiệm t 1 = và t 2 = 3 *Với t = - Ta có : *Với t = 3 Ta có : Nhƣ vậy với m = 3 hệ phƣơng trình có hai nghiệm và 2/Xác định m để hệ phƣơng trình có nghiệm duy nhất : Hệ phƣơng trình đã cho có nghiệm duy nhất khi và chỉ khi hệ phƣơng trình : có nghiệm duy nhất . Khi và chỉ khi phƣơng trình (*) có nghiệm duy nhất .Khi và chỉ khi = 8m +25 = 0. Vậy m = - thì hệ phƣơng trình có nghiệm duy nhất -Khi m = - thì phƣơng trình (*) có nghiệm kép t = . Hệ phƣơng trình trở thành: Trả lời : m = - thì hệ phƣơng trình có nghiệm duy nhất, Bài số 17 : Cho hệ phƣơng trình Với a >0 và a .Xác định giá trị của a để hệ phƣơng trình có nghiệm duy nhất và giải hệ phƣơng trình trong trƣờng hợp đó. Lời giải : Điều kiện : Ta có : TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 9 . -Thấy :hệ phƣơng trình (1a),(2) không thỏa mãn yêu cầu có nghiệm duy nhất .Mọi cặp (x;y) thỏa mãn x+y > 0 và x 2 -y 2 = 2 đều là nghiệm .Chẳng hạn ( ) và ( là hai nghiệm của hệ phƣơng trình. -Xét a ,(a > 0 ,a ): -Hệ phƣơng trình (1b) ,(2) : có nghiệm duy nhất là : Đây là nghiệm duy nhất của hệ phƣơng trình (với 0 < a ,a và a ) Trả lời : Với 0 < a , a và a Hệ phƣơng trình có nghiệm duy nhất: : MỘT SỐ BÀI TOÁN BĐT MŨ,LÔGARIT Bài số 18 : (TRẦN ĐỨC NGỌC RA ĐỀ VÀ GIẢI) Cho n là số tự nhiên lớn hơn 1. Hãy so sánh hai số : A = và B = Lời giải : Với mọi số tự nhiên n , ta có : n(n+2) (*) Lấy lôgarit cơ số n hai vế bđt (*) đƣợc bđt tƣơng đƣơng : 1+ 2. 1+ - (**) Vì nên bđt (**) có vp Do đó từ (**) suy ra : Vậy với mọi số tự nhiên lớn hơn 1 , ta có: TRẦN ĐỨC NGỌC - YÊN SƠN, ĐÔ LƢƠNG, NGHỆ AN - GV THPT TÂN KỲ I – ĐT : 0985128747 10 Lời giải 2 : Áp dụng bđt côsi ,có : + 2 (1) -Với mọi số tự nhiên ta có (n+1) 2 n(n+2) Lấy lôgarit cơ số (n+1) hai vế đƣợc bđt Cùng chiều: 2 + (2) -Từ (1) và (2) suy ra : đúng với mọi n là số tự nhiên lớn hơn 1. Bài số 19 : (TRẦN ĐỨC NGỌC RA ĐỀ VÀ GIẢI - Tổng quát hóa Bài số 18) Cho ba số thực a , b , k với k > 0 , b > a > 1. Hãy so sánh hai số : A = B = Lời giải : Vì b > a > 1 , k > 0 Nên : b(a+k) > a(b+k) Lấy lôgarit cơ số b hai vế, đƣợc bđt cùng chiều : > 1+ > + > - 1 .( Chú ý: 0 < < 1) > – 1 > Trả lời :Nếu a , b , k là 3 số thực với k > 0 , b > a > 1 Thì > Bài số 20 : Chứng minh với a , b thì : + Lời giải : Với a >1 , b >1 ta có > 0 , > 0 . Do đó áp dụng bđt côsy : loga+logb > 2(loga+logb) > loga+logb+ 4log > ( ) 2 > (1) Ta lại có: > 2. (2) Từ (1) và (2) suy ra điều phải chứng minh : > ***************************************************************************** ***************************************************************************** . với phƣơng trình (1) Ta đƣợc hệ phƣơng trình : Thỏa mãn điều kiện đã nêu Nên đây là nghiệm của hệ phƣơng trình đã cho b/ Giải hệ phương trình : Lời giải : Điều kiện Hệ phƣơng trình tƣơng. - Nếu a = 1 hệ phƣơng trình có nghiệm duy nhất Bài số 15 : Giải hệ phƣơng trình: Lời giải :Điều kiện Với điều kiện đã nêu hệ phƣơng trình tƣơng đƣơng với với hệ phƣơng trình: (Do. Vậy hệ phƣơng trình có vô số nghiệm ,công thức tổng quát của nghiệm Tức là : Bài số 16 : Cho hệ phƣơng trình: 1/ Giải hệ phƣơng trình khi m = 3 2/ Tìm giá trị của m sao cho hệ phƣơng trình

Ngày đăng: 13/08/2015, 18:40

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN