Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
787,02 KB
Nội dung
Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 Bài 5: TỔNG HỢP HAI DAO ĐỘNG ĐIỀU HÒA CÙNG PHƯƠNG CÙNG TẦN SỐ A.TÓM TẮT LÝ THUYẾT 1.Phương pháp Fre-nen pháp xây dựng dựa mối quan hệ dao động điều hòa chuyển động tròn Một dao động điều hịa x A cos t biểu diễn véc tơ M + quay A có: +Gốc O x O +Độ dài tỉ lệ với A Tạo với trục góc pha ban đầu Ngược lại, biết đặc điểm véc tơ quay A biết phương trình dao động điều hịa 2.Tổng hợp hai dao động điều hòa phương tần số -Cho hai dao động điều hồ phương, tần số có phương trình dao động x1 A1 cos t 1 ; x2 A2 cos t 2 Li độ dao động tổng hợp: x x1 x2 -Phương trình dao động tổng hợp: x A cos t -Biên độ dao động tổng hợp: A2 A12 A2 A1 A2 cos 2 1 -Pha ban đầu dao động tổng hợp: tan A1 sin 1 A2 sin 2 A1 cos 1 A2 cos 2 3.Ảnh hưởng độ lệch pha hai dao động *Độ lệch pha hai dao động: 2t 2 1t 1 *Đối với hai dao động điều hòa phương tần số 2 1 Nếu dao động nhanh (sớm) pha dao động Nếu dao động chậm (trễ) pha dao động Nếu 2n n Z hai dao động pha, Amax A1 A2 Nếu 2n 1 n Z hai dao động ngược pha, Amin A1 A2 Nếu 2n 1 n Z hai dao động vng pha, A A12 A2 B.BÀI TOÁN Dạng 1: Tổng hợp hai dao động điều hòa phương tần số I.Phương pháp 1.Sử dụng giản đồ véc tơ *Độ lệch pha hai dao động: 2t 2 1t 1 *Đối với hai dao động điều hòa phương tần số 2 1 Nếu dao động nhanh (sớm) pha dao động Nếu dao động chậm (trễ) pha dao động Nếu 2n n Z hai dao động pha, Amax A1 A2 Nếu 2n 1 n Z hai dao động ngược pha, Amin A1 A2 Nếu 2n 1 n Z hai dao động vng pha, A A12 A2 Nếu độ lệch pha A A12 A2 A1 A2 cos 2 1 Pha ban đầu dao động tổng hợp tan A1 sin 1 A2 sin 2 A1 cos 1 A2 cos 2 Trang Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 -Khi vật tham gia đồng thời ba dao động điều hòa phương tần số Để tìm phương trình dao động tổng hợp, ta chọn dao động đặc biệt để tổng hợp trước, đặc biệt lựa chọn theo thứ tự ưu tiên sau: pha, ngược pha, vng góc Sau tổng hợp với dao động cịn lại -Khi vật tham gia đồng thời nhiều dao động điều hòa phương tần số: x1 A1 cos t 1 ; x2 A2 cos t 2 , chúng khơng có đặc biệt biên độ hay lệch pha trường hợp xét Lúc để tìm A tốt ta dùng cơng thức tính nhanh tổng quát sau: Ax A cos A1 cos 1 A2 cos 2 y M Ay A sin A1 sin 1 A2 sin 2 Khi A Ax Ay tan Ay M1 y1 Ax Nhưng cần ý để lấy nghiệm , ta cần cẩn thận xem dấu Ax Ay sau: Ax Nếu thuộc góc phần tư thứ vòng tròn lượng Ay 0 y2 A A1 1 O M2 A2 2 x1 x2 x giác Ax Ax Ax II ; III ; IV Ay 0 Ay 0 Ay 0 -Khi vật tham gia đồng thời nhiều dao động điều hòa phương tần số: x1 A1 cos t 1 ; x2 A2 cos t 2 , cần tìm li độ, gia tốc, vật thời điểm t Gặp tốn này, khơng thiết phải tìm phương trình dao động tổng hợp, để làm nhanh cần thay giá trị t vào phương trình dao động thành phần thu giá trị đại số chúng, cuối tính tổng x x1 x2 ; a a1 a2 , vv -Nếu gặp tốn cho phương trình dao động thành phần thứ phương trình dao động tổng hợp Tìm phương trình dao động thành phần thứ Ta nên làm sau: Viết: x x1 x2 x2 x x1 x x1 x x ' tổng hợp cách thơng thường 2.Sử dụng máy tính Casio để giải tốn dao động tổng hợp a.Tìm dao động tổng hợp -Đưa máy radian độ (thống theo đề bài, đưa phương trình dao động thành phần hàm cos sin) -Đối với máy 570ES trở lên: MODE A1 SHIFT SHIFT 1 + A2 SHIFT (-) 2 (-) - A1 SHIFT (-) 1 = b.Tìm dao động thành phần -Đối với máy 570ES trở lên: MODE A SHIFT SHIFT (-) = II.Bài tập Trang Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 5 Bài 1: Một vật thực hai dao động điều hịa phương có phương trình: x1 3cos 8t cm x2 4sin 8t cm Biên độ dao động tổng hợp 3 A.7cm B.3,5cm C.5cm D.1cm Bài 2: Vật thực đồng thời hai dao động phương tần số theo phương trình x1 4sin t cm x2 cos t cm Biên độ dao động tổng hợp đạt giá trị lớn A B C D 2 Bài 3: Một chất điểm tham gia đồng thời hai dao động điều hịa phương, có phương trình là: x1 cos 6 t cm x2 3cos 6 t cm Biên độ dao động tổng hợp nhận giá trị 3 A.2cm B.5cm C.12cm D.15cm Bài 4: Một vật thực đồng thời hai dao động điều hòa phương, biểu thức có dạng 2 x1 cos 2 t cm x2 cos 2 t cm Phương trình dao động tổng hợp 6 A x cos 2 t cm B x cos 2 t cm 6 3 C x cos 2 t cm D x cos 2 t cm 6 3 Bài 5: Cho hai dao động điều hòa phương, tần số, biên độ có pha ban đầu & Pha ban đầu dao động tổng hợp hai dao động A B C D 12 Bài 6: Một vật có khối lượng m 200 g thực đồng thời hai dao động phương có phương trình x1 5cos 2 t cm x2 cos 2 t cm Lấy 10 Gia tốc vật thời điểm t 0, 25s 6 6 2 A.-1,4m/s B.1,4m/s C.2.8m/s2 D -2.8m/s2 Bài 7: Trong lắc lị xo, vật có khối lượng m 200 g đồng thời thực hai dao động điều hòa phương có phương trình x1 cos 5 t cm x1 cos 5 t cm Lấy 10 Thế vật 2 thời điểm t 1s A.90mJ B.180mJ C.900J D.180J Bài 8: Chuyển động vật tổng hợp hai dao động điều hòa phương Hai dao động có 3 phương trình x1 cos 10t cm x2 3cos 10t cm Độ lớn vận tốc vật 4 qua vị trí cân A.100cm/s B.50cm/s C.80cm/s D.10cm/s Bài 9: Một vật thực đồng thời hai dao động thành phần phương có dạng x1 cos 20t cm 6 x2 A2 cos 20t cm Biết dao động tổng hợp có vận tốc cực đại vMax 1, 3m / s Biên độ A2 2 A.6cm B.8cm C.12cm D.20cm Trang Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 Bài 10: Một vật tham gia đồng thời hai dao động điều hòa phương với x1 cos 2t cm 2 x2 A2 cos 2t cm Biết độ lớn vận tốc vật thời điểm động 40cm/s Biên độ dao động thành phần A2 A.4cm B 4cm C 3cm D 3cm Bài 11: Một vật có khối lượng m 200 g thực đồng thời hai dao động điều hòa phương có phương trình x1 3cos 15t cm x2 A2 cos 15t cm Biết dao động tổng hợp vật 2 6 0,06075J Biên độ A2 A.1cm B.3cm C.4cm D.6cm Bài 12: Dao động tổng hợp hai dao động điều hòa phương tần số có phương trình li độ 5 x 3cos t cm Biết dao động thứ có phương trình li độ x1 5cos t cm Dao động thứ 6 hai có phương trình li độ A x2 8cos t cm B x2 cos t cm 6 6 5 5 C x2 cos t D x2 8cos t cm cm Bài 13: Một vật thực đồng thời hai dao động điều hịa phương có phương trình x1 cos t cm; x2 A2 cos t 2 cm Biết phương trình dao động tổng hợp 6 x cos t cm Giá trị A2 6 A A2 12cm;2 C A2 6cm;2 B A2 6cm;2 D A2 12cm;2 Bài 14: Hai chất điểm M1, M2 dao động điều hòa trục Ox với phương trình 5 x1 5cos 10 t cm x2 5sin 10 t cm Phương trình x1 x2 A cos 10 t cm B cos 10 t cm 3 6 C 5cos 10 t cm D cos 10 t cm 6 6 Bài 15: Một vật đồng thời thực ba dao động điều hòa phương, tần số biểu thức có dạng x1 cos 2 t cm; x2 cos 2 t cm x3 8cos 2 t cm Phương trình dao động 6 3 tổng hợp 2 A x cos 2 t cm B x cos 2 t cm 4 2 C x sin 2 t cm D x cos 2 t cm 6 Trang Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 lượt có phương trình x1 3cos t (cm); x2 3cos t (cm); x3 cos t (cm) x4 cos t (cm) Phương trình 2 2 dao động tổng hợp bốn dao động nói A x cos t cm B x cos t cm 4 4 C x 5cos t cm D x 5cos t cm 4 4 Bài 17 Một vật tham gia đồng thời hai dao động điều hịa phương, tần số vng pha với Nếu tham gia dao động thứ vật đạt vận tốc cực đại v1 Nếu tham gia dao động thứ Bài 16 Cho dao động thành phần lần hai vật đạn vận tốc cực đại v2 Nếu tham gia đồng thời hai dao động vận tốc cực đại 1 2 A v1 v2 B v1 v2 C v12 v2 D v1 v2 2 Bài 18 Một vật nhỏ có chuyển động tổng hợp hai dao động điều hòa phương Hai dao động có phương trình x1 A1 cos t x2 A2 cos t Gọi E vật khối lượng 2 vật E 2E E 2E A B C 2 D 2 2 A1 A22 A1 A2 A12 A2 A12 A2 Bài 19 Một lắc lò xo gồm vật nhỏ nặng 1kg thực đồng thời hai dao động điều hòa theo phương ngang, theo phương trình: x1 5cos t cm x2 5sin t cm (gốc tọa độ vị trí cân bằng, thời gian đo giây, lấy 10 ) Lực cực đại mà lò xo tác dụng lên vật A 50 N B 0,5 N C 25 N D 0, 25 N Bài 20 Con lắc lò xo gồm vật nhỏ nặng 1kg thực đồng thời hai dao động điều hịa theo phương ngang, theo phương trình: x1 cos t cm x2 sin t cm (gốc tọa độ vị trí cân bằng, thời gian đo giây, lấy g 10m / s ) Lực cực đại mà lò xo tác dụng lên vật A.10N B.20N C.25N D.0,25N Bài 21 Hai dao động điều hịa phương, tần số có phương trình x1 cos 10t (cm) 6 5 x2 cos 10t (cm) Tại thời điểm li độ dao động tổng hợp 3cm tăng li độ dao động thứ hai bao nhiêu? A.10cm B.9cm C.6cm D.-3cm Bài 22 Một vật thực đồng thời ba dao động điều hòa cừng phương, tần số, có phương trình lần 2 2 lượt là: x1 A1 cos 2 t (cm); x2 A2 cos 2 t (cm); x3 A3 cos 2 t (cm) Tại thời điểm t1 T t t t giá trị li độ x11 10cm; x21 40cm; x31 20cm Tại thời điểm t2 t1 , giá trị li độ t2 t2 t2 x1 10 3cm; x2 0cm; x3 20 3cm Phương trình dao động tổng hợp A x 30 cos 2 t (cm) 3 C x 40 cos 2 t (cm) 3 B x 20 cos 2 t ( cm) 3 D x 20 cos 2 t (cm) 3 Trang Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 Bài 23 Hai dao động điều hòa (1) (2) cuang phương, tần số biên độ 4cm Tại thời điểm đó, dao động (1) có li độ 3cm , chuyển động ngược chiều dương, cịn dao động (2) có li độ 2cm chuyển động theo chiều dương Lúc dao động tổng hợp hai dao động có li độ chuyển động theo chiều nào? A x 8cm chuyển động ngược chiều dương B x 5, 46cm chuyển động ngược chiều dương C x 5, 46cm chuyển động theo chiều dương D x 8cm chuyển động theo chiều dương Bài 24 Ba dao động điều hòa phương, tần số có phương trình là: x1 10 cos 10t (cm); x2 12 cos 10t (cm); x3 A3 cos 10t 3 (cm) Biết dao động tổng hợp có 2 6 phương trình x cos 10t (cm) Giá trị A3 A 16cm; B 15cm; C 10cm; D 18cm; 2 Bài 25 Ba lắc lò xo (1),(2),(3) đặt thẳng đứng cách theo thứ tự 1,2,3 Vị trí cân ba vật nằm đường thẳng Chọn trục Ox có phương thẳng đứng, gốc tọa độ vị trí cân phương trình dao động x1 A1 cos 20t 1 (cm); x2 5cos 20t (cm) 6 x3 10 cos 20t (cm) Để ba vật dao động ba lắc luôn nằm đường thẳng 3 A A1 20cm;1 C A1 20 3cm;1 B A1 20cm;1 rad rad D A1 20 3cm;1 rad rad Bài 26 Một vật thực đồng thời hai dao động điều hòa phương, có phương trình dao động lần 5 lượt x1 A1 cos t (cm) x2 A2 cos t (cm) Phương trình dao động tổng hợp vật 6 có dạng x 3 cos t (cm) Để biên độ A2 có giá trị lớn giá trị biên độ A1 bằng: A 2cm B 3cm C 2cm D 6cm Bài 27 Một vật có khối lượng khơng đổi, thực đồng thời hai dao động điều hịa phương có phương trình dao động x1 10 cos 2 t (cm) x2 A2 cos 2 t (cm) dao động 2 tổng hợp x A cos 2 t (cm) Để lượng dao động vật có giá trị cực đại biên độ A2 giá 3 trị 20 10 A 10 3cm B 20cm C D cm cm 3 Bài 28 Cho hai dao động điều hịa phương với phương trình x1 A1 cos t 0,35 (cm) x2 A2 cos t 1,57 (cm) Dao động tổng hợp hai dao động có phương trình x 20 cos t (cm) Giá trị cực đại A1 A2 gần giá trị sau đây? A.25cm B.20cm C.40cm D.35cm Dạng Khoảng cách hai vật trình dao động I.Phương pháp Ta xét dao động điều hòa phương, tần số có phương trình dao động là: x1 A1 cos t 1 ; x2 A2 cos t 2 1.Khoảng cách hai vật dao động điều hòa thời điểm t biết trước Trang Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 Khoảng cách hai vật trình dao động: x x2 x1 Để tính khoảng cách ta dùng phương pháp sau đây: Cách 1: Thay t vào phương trình x1 A1 cos t 1 x2 A2 cos t 2 để tính giá trị x1 x2 Thay vào x x2 x1 để tính khoảng cách Cách 2: -Xác định: x01 ?; v01 ? +Pha ban đầu vận tốc đầu dao động: t ý v01 , v02 xét dấu x02 ?; v02 ? +Tính góc qt t N -Biểu diễn giá trị x01 ; x02 ; v01; v02 lên trục Ox, từ suy M vị trí M N dao động đường tròn -Từ bán kính OM ON đường trịn vẽ góc x2 x02 x01 x1 x MOM ' NON ' t Từ vị trí M’ N’ hạ đường vng góc với Ox ta tìm x1 x2 , thay vào cơng thức x x2 x1 để tính khoảng cách hai vật dao động M’ N’ Cách 3: Khoảng cách hai vật trình dao động: x x2 x1 , x1 x2 dao động điều hòa nên x dao động điều hịa với phương trình dao động có dạng: x A cos t Tới ta dùng giản đồ Frenen hặc máy tính để tìm A pha ban ban đầu từ suy phương trình dao động x A cos t Thay t vào phương trình ta thu giá trị x , khoảng cách hai vật dao động Lưu ý: Hai chất điểm dao động điều hòa dọc theo hai đường thẳng song song với trục Ox, cạnh nhau, tần số vị trí cân gốc tọa độ Khi hai chất điểm gặp tọa độ x0, chúng chuyển động ngược chiều x1 A1 cos t 1 x0 t 1 ? v1 A1 sin t 1 t 2 t 1 ? x2 A2 cos t 2 x0 t ? v2 A2 sin t 2 2.Khoảng cách lớn nhỏ hai vật dao động điều hịa q trình dao động Khoảng cách hai vật trình dao động: x x2 x1 , x1 x2 dao động điều hòa nên x dao động điều hịa với phương trình dao động có dạng: x A cos t -Khoảng cách nhỏ hai vật trình dao động là: xmin -Khoảng cách lớn hai vật trình dao động là: xmax A với A biên độ dao động tổng hợp x x2 x1 x2 x1 A cos t Để tìm A ta sử dụng cách sau: MODE +Dùng giản đồ Frenen: Shift A A12 A2 A1 A2 cos 1 2 vẽ giản đồ MODE véc tơ để tìm A A Shift (-) A Shift (-) +Dùng máy tính Casio FX570 ES: Shift = x x2 x1 A A22 A11 Quy trình bấm máy tính sau: 3.Tìm thời điểm để hai vật dao động điều hịa cách khoảng b -Phương trình khoảng cách: x x2 x1 A2 cos t 2 A1 cos t 1 A cos t Trang 1 Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 -Khi chúng cách khoảng b x b Cách 1: giải phương trình lượng giác x b A cos t b để tìm t Cách 2: Dùng vịng trịn lượng giác để tìm bốn thời điểm t1, t2, t3, t4 Các thời điểm khác du 1: t nT t1 du : t nT t So lan xác định sau: n du : t nT t3 du : t nT t4 4.Thời điểm số lần hai vật dao động điều hòa gặp *Giả sử hai lắc bắt đầu dao động từ thời điểm t Sau khoảng thời gian t lắc (1) thực n a n1 dao động, lắc (2) thực n2 dao động thì: t n1T1 n2T2 (phân số tối giản) n2 b n a.n t a.nT1 b.nT2 , tmin a.T1 b.T2 n n2 b.n *Giả sử thời điểm t0 hai lắc có chu kì gặp li độ x1 , sau nửa chu kì li độ chúng đề đổi dấu, tức chúng gặp li độ x1 Do đó: +Khoảng thời gian hai lần liên tiếp hai lắc gặp T +Khoảng thời gian n lần liên tiếp hai lắc gặp t n 1 T T t0 *Để tìm thời điểm gặp hai dao động điều hòa phương biên độ vị trí cân có phương trình: x1 A cos 1t 1 ; x2 A cos 2t 2 với 2 1 , ta giải phương trình lượng giác +Thời điểm gặp lần thứ n tn t0 t n 1 x1 x2 A cos 1t 1 A cos 2t 2 cos 1t 1 cos 2t 2 2t 2 1t 1 k.2 2t 2 1t 1 k 2 2t 2 1t 1 k 2 2t 2 1t 1 k 2 2t 2 1t 1 -Xét phương trình: 2t 2 1t 1 +Nếu phương trình thứ cho nghiệm t cịn phương trình thứ hai cho nghiệm Lan 2n 1: 2t 2 1t 1 n.2 Lan 2n : 2t 2 1t 1 n.2 +Nếu phương trình thứ hai cho nghiệm t cịn phương trình thứ cho nghiệm Lan 2n 1: 2t 2 1t 1 n.2 Lan 2n : 2t 2 1t 1 n.2 +Nếu phương trình thứ cho nghiệm t cịn phương trình thứ hai cho nghiệm Lan 2n 1: 2t 2 1t 1 n 1 2 Lan 2n : 2t 2 1t 1 n.2 +Nếu phương trình thứ hai cho nghiệm t cịn phương trình thứ cho nghiệm Lan 2n 1: 2t 2 1t 1 n 1 2 Lan 2n : 2t 2 1t 1 n.2 Trang t thì: t thì: t thì: t thì: Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 -Nếu hai dao động điều hòa phương, biên độ , vị trí cân tần số x1 A cos t 1 ; x2 A cos t 2 phương trình x1 x2 có họ nghiệm t 1 t 2 k 2 Lúc A sin t 1 v1 A sin t 1 1 Trong v2 A sin t 2 A sin k 2 t 1 chu kì chúng gặp lần n chu kì chúng gặp 2n lần *Để tìm thời điểm gặp hai dao động điều hòa phương tần số vị trí cân có phương trình: x1 A1 cos t 1 ; x2 A2 cos t 2 ta làm sau: ( ( +Xét lúc t : so sánh x1(t 0) x2t 0) Giả sử x2t 0) x1(t 0) +Lập phương trình khoảng cách: x x2 x1 A2 cos t 2 A1 cos t 1 A cos t +Hai vật gặp nhau: x1 x2 x A cos t +Giải phương trình ta họ nghiệm: t k 2 t k 2 lúc xét thêm d (x) A sin t thời điểm t để chọn nghiệm t dt II.Bài tập Bài Hai chất điểm dao động điều hòa trục tọa độ Ox Coi trình dao động hai chất điểm khơng va chạm vào Biết phương trình dao động hai chất điểm là: x1 cos 4t cm x2 cos 4t cm Trong qua trình dao động khoảng cách lớn 12 3 hai vật A.4cm B 1 cm C cm D.6cm v Bài Hai điểm M N dao động điều hòa trục x quanh điểm O với tần số góc Biên độ M A , N A Dao động M chậm pha góc so với dao động N Nhận xét sau đúng? A.Độ dài đại số MN biến đổi tần số góc , biên độ 2A vng pha với dao động N B.Khoảng cách MN biến đổi điều hịa với tần số góc 2 , biên độ A 5 C.Khoảng cách MN biến đổi điều hòa với tần số góc , biên độ A lệch pha so với dao động M D.Độ dài đại số MN biến đổi tần số góc 2 , biên độ A vng pha với dao động N Bài Hai chất điểm M N có khối lượng, dao động điều hòa tần số dọc theo hai đường thẳng song song kề song song với trục tọa độ Ox Vị trí cân M N đường thẳng qua gốc tọa độ vng góc với Ox Biên độ M N 6cm Trong trình dao động, khoảng cách lớn M N theo phương Ox 6cm ĐỘ lệch pha hai dao động 3 2 A B C D Bài Hai chất điểm M, N dao động điều hòa trục Ox, quanh điểm O, biên độ A, tần số góc , lệch pha góc Khoảng cáh MN A.bằng A cos B.giảm dần từ 2A C.tăng dần từ đến giá trị 2A D.biến thiên tuần hoàn theo thời gian Bài Hai chất điểm M N có khối lượng, dao động điều hịa tần số dọc theo hai đường thẳng song song kề song song với trục tọa độ Ox Vị trí cân M N đường thẳng qua gốc tọa độ vuông góc với Ox Biên độ M 6cm, N 8cm Trong trình dao động, Trang Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 khoảng cách lớn M N theo phương Ox 10cm Mốc vị trí cân Ở thời điểm mà M có động năng, tỉ số động M động N 16 A B C D 16 Bài Hai chất điểm M N có khối lượng, dao động điều hịa tần số dọc theo hai đường thẳng song song kề song song với trục tọa độ Ox Vị trí cân M N đường thẳng qua gốc tọa độ vng góc với Ox Biên độ M N 6cm Trong trình dao động, khoảng cách lớn M N theo phương Ox 6cm Mốc vị trí cân Ở thời điểm mà M có động gấp ba lần năng, tỉ số động M N 4 A.4 B.3 C.3 D.4 3 Bài Hai chất điểm dao động điều hòa dọc theo hai đường thẳng sóng song với trục Ox, cạnh nhau, A tần số biên độ chất điểm thứ biên độ chất điểm thứ hai A Vị trí cân A chúng xem trùng gốc tọa độ Khi hai chất điểm gặp tọa độ x , chúng chuyển động ngược chiều Hiệu số pha hai dao động 2 A B C D 3 Bài Hai chất điểm M N dao động điều hòa trục tọa độ Ox (O vị trí cân chúng), coi q trình dao động hai chất điểm không va chạm vào Biết phương trình dao động chúng x1 10 cos 4 t cm x2 10 cos 4 t cm Hai chất điểm cách 3 12 5cm thời điểm thời điểm lần thứ 2014 kể từ lúc t 11 2015 6041 6041 2015 A s B s C s D s s s s s 24 24 8 24 24 Bài Hai vật dao động điều hòa dọc theo hai đường thẳng song song kề song song với trục tọa độ Ox cho không va chạm vào q trình dao động Vị trí cân hai vật đường thẳng qua gốc tọa độ O vng góc với trục Ox Biết phương trình dao động hai vật x1 cos 4 t cm x2 cos 4 t cm Tính từ lúc t , thời điểm hai vật cáh 3 12 2cm 1 A s B s C s D 1s Bài 10 Hai lắc lắc đơn có chiều dài 64cm 81cm thực dao động nhỏ hai mặt phẳng song song Lấy gia tốc trọng trường g m / s Hai lắc qua vị trí cân theo chiều lúc t Xác định thời điểm gần mà tượng tái diễn A.1,44s B.16s C.28,2s D.7,2s N Bài 11 Hai lắc lò xo giống nhau, vật có khối lượng 10g, độ cứng lò xo k 100 m , dao động điều hòa dọc theo hai đường thẳng song song kề song song với trục tọa độ Ox Vị trí cân hai lắc nằm đường thẳng qua gốc tọa độ O vng góc với Ox Biên độ lắc thứ lớn gấp đôi lắc thứ hai Biết hai vật gặp chúng chuyển động ngược chiều Khoảng thời gian ba lần vật nặng hai gon lắc gặp A.0,03s B.0,02s C.0,04s D.0,01s N Bài 12 Hai lắc lò xo giống nhau, vật có khối lượng 400g, độ cứng lò xo k 10 m , dao động điều hòa dọc theo hai đường thẳng song song kề song song với trục tọa độ Ox Vị trí cân hai lắc nằm đường thẳng qua gốc tọa độ O vng góc với Ox Biên độ Trang 10 Tổng hợp dao động - Biên soạn: Nguyễn Đình Vụ - email: nguyendinhvu@thuvienvatly.com - phone: 0948249333 lắc thứ lớn gấp đôi lắc thứ hai Biết hai vật gặp chúng chuyển động ngược chiều Khoảng thời gian ba lần vật nặng hai gon lắc gặp A.0,3s B.0,2s C.0,4s D.0,1s Bài 13 Tại thời điểm ban đầu, hai chất điểm qua gốc O theo chiều dương, thực dao động điều 5 hòa trục Ox có biên độ có tần số góc rad / s 2,5 rad / s Thời điểm thời điểm lần thứ 2013 hai chất điểm gặp A.0,3s 603,9s B.0,3s 1207,2s C.1,2s 1207,2s D.0,3s 603,2s Bài 14 Hai chất điểm thực dao động điều hòa trục Ox, O vị trí cân bằng, có A biên độ A có tần số 3Hz 6Hz Lúc đầu, hai chất điểm qua li độ theo chiều âm Thời điểm lần chất điểm gặp 1 A s B s C s D s 27 27 Bài 15 Hai chất điểm thực dao động điều hòa trục Ox, O vị trí cân bằng, có A biên độ A có tần số 3Hz 6Hz Lúc đầu, hai chất điểm qua li độ chất điểm (1) theo chiều âm, chất điểm (2) theo chiều dương Tìm thời điểm hai chất điểm gặp Tìm tỉ số vận tốc chất điểm (1) chất điểm (2) gặp lần thứ 26 Bài 16 Hai chất điểm thực dao động điều hịa trục Ox có phương trình x1 A cos t x2 A cos t Tìm thời điểm lần thứ 2013 hai chất điểm gặp tính 2 6 tỉ số vận tốc vật vật v v A t2013 0,3s; B t2013 s; 1 v2 v2 v v C t2013 0, 4s; 1 D t2013 s; 2 v2 v2 Bài 17 Hai chất điểm dao động điều hòa dọc theo hai đường thẳng song song với song song với trục Ox, với biên độ tần số 3Hz 6Hz Vị trí cân chúng xem trùng gốc tọa độ Khi gặp tỉ số tốc độ chất điểm thứ tốc độ chất điểm thứ hai 2 A B C D Bài 18 Hai chất điểm thực dao động điều hịa trục Ox có phương trình A x1 A cos 4 t x2 cos 4 t Tìm thời điểm hai chất điểm gặp tính tỉ số vận tốc vật vật v v v v A 0,125s; B 0, s; 1 C 0, 4s; 1 D 0,5s; 2 v2 v2 v2 v2 Trang 11 ... gia đồng thời hai dao động điều hòa phương, tần số vuông pha với Nếu tham gia dao động thứ vật đạt vận tốc cực đại v1 Nếu tham gia dao động thứ Bài 16 Cho dao động thành phần lần hai vật đạn vận... A2 cos 15t cm Biết dao động tổng hợp vật 2 6 0,06075J Biên độ A2 A.1cm B.3cm C.4cm D.6cm Bài 12: Dao động tổng hợp hai dao động điều hịa phương tần số có phương trình li độ 5? ?? ... 2 t cm 6 3 Bài 5: Cho hai dao động điều hòa phương, tần số, biên độ có pha ban đầu & Pha ban đầu dao động tổng hợp hai dao động A B C D 12 Bài 6: Một vật có khối lượng