Khóa h ọc Toán 12 – Thầy Lê Bá Trần Phương Khoảng ñồng biến, nghịch biến của hàm số Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 - Bài 1. Xét sự ñồng biến, nghịch biến của hàm số: 1. 4 2 1 1 3 4 2 y x x = − + 2. 3 2 2 2 3 y x x = − + 3. 3 1 1 2 x y x + = − 4. 2 1 2 1 x x y x − + = − Bài 2. Xét chiều biến thiên của hàm số: 1. 2 1 3 5 y x x = − − − 2. [ ] 1 1 os2 3 cos ; 0, 2 2 y c x x x π = − − + ∈ 3. 1 2 3 3 .(1 ) y x x = − 4. 2 2 . os 2 os 2 cos 1 x c x c y x x α α α − + = − + ; α là tham số. Bài 3. Tìm các giá trị của tham số m ñể hàm số: 3 2 1 ( 6) 2 1 3 y x mx m x m = + + + − − ñồng biến trên R (ñồng biến với mọi x). Bài 4. Cho hàm số: 3 2 ( 1) . (3 2) 3 m y x mx m x − = + + − Tìm m ñể hàm số luôn ñồng biến. Bài 5. Cho hàm số: 4 2 ( 1) 3 y m x mx m = − − + − Tìm m ñể hàm số ñồng biến trên (1, ) +∞ Bài 6. Cho hàm số: 2 3 2 ( 5 ) 6 6 5 y m m x mx x = − + + + − Tìm m ñể hàm số ñơn ñiệu trên R. Khi ñó hàm số ñồng biến hay nghịch biến? Bài 7. Cho hàm số: 2 1 m y x x = + + − Tìm m ñể hàm số ñồng biến trên tập xác ñịnh (ñồng biến trên mỗi khoảng xác ñịnh của nó). Giáo viên: Lê Bá Trần Phương Nguồn : Hocmai.vn KHOẢNG ðỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐ BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Các bài tập trong tài liệu này ñược biên soạn kèm theo bài giảng Khoảng ñồng biến nghịch biến của hàm số thuộc khóa học Toán 12 – Thầy Lê Bá Trần Phương tại website Hocmai.vn ñể giúp các Bạn kiểm tra, củng cố lại các kiến thức ñược giáo viên truyền ñạt trong bài giảng Khoảng ñồng biến nghịch biến của hàm số. ðể sử dụng hiệu quả, Bạn cần học trước Bài giảng sau ñó làm ñầy ñủ các bài tập trong tài liệu này. (Tài liệu dùng chung bài 01+02+03) . ñồng biến, nghịch biến của hàm số: 1. 4 2 1 1 3 4 2 y x x = − + 2. 3 2 2 2 3 y x x = − + 3. 3 1 1 2 x y x + = − 4. 2 1 2 1 x x y x − + = − Bài 2. Xét chiều biến thiên của hàm số: . KHOẢNG ðỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐ BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Các bài tập trong tài liệu này ñược biên soạn kèm theo bài giảng Khoảng ñồng biến nghịch biến của hàm. h ọc Toán 12 – Thầy Lê Bá Trần Phương Khoảng ñồng biến, nghịch biến của hàm số Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 5 8-5 8-1 2 - Trang | 1 - Bài 1.