1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi học sinh giỏi Toán lớp 12 số 4

6 223 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 213 KB

Nội dung

ĐỀ THI HỌC SINH GIỎI LỚP 12 Bảng B Bài I 1.Khảo sát và vẽ đồ thị hàm số y = x 3 -3x +2 (C) 2.Giả sử A,B,C là ba điểm thẳng hàng phân biệt thuộc (C), tiếp tuyến với (C) tại A,B,C tương ứng cắt lại (C) tại A',B',C'. Chứng minh rằng A',B',C' thẳng hàng. n Bài II. 1. Giải hệ phương trình 1-23 - =++ yxyx yx + + x – y = 0 2. Giải bất phương trình: ln 2 1+x - ln(x 2 -x +1) > 0 Bài III: 1. Gọi F(x) = ∫ 53 xx dx + Bằng phương pháp thêm bớt vào tử số hãy tính nguyên hàm F(x) trên. 2. Tính I = dxxax ∫ 1 1 22 )ln( − ++ (đk a # 0) Bài IV: Cho hình chóp SABC có đáy ABC là tam giác vuông cân với AB =AC =a. SA=a. Cạnh SA vuông góc với đáy, M là một điểm nằm trên cạnh SB, N nằm trên cạnh SC sao cho MN song song với BC và AN vuông góc với CM. Tìm tỉ số MS/MB. Bài V: Xét các tam giác ABC. Tính giá trị nhỏ nhất của biểu thức F = 5cotg 2 A +16cotg 2 B + 27 cotg 2 C. HƯỚNG DẪN CHẤM Bài (6 đ ) CâuI (3 đ ) 1. Tập xác định: R 2. Sự biến thiên: a. y’ = 3x 2 -3 = 3(x 2 -1) => x =-1 hoặc x = 1 (0.25 đ ) y’>0 trên khoảng (-∞; -1) và (1; +∞) y’<0 với x ∈ (-1;1) (0.5đ) b. Cực trị: Hàm số đạt cực đại tại x=-1; y CĐ = y(-1) = 4 Hàm số đạt cực tiểu tại x=1; y CĐ = y(1) = 0 (0.5đ) c. Giới hạn: = → ∞− y x lim ∞− + → )2/x 3/x-(1x 323 lim x = - ∞; = +∞ lim → y x = ∞+ + → )2/x 3/x-(1x 323 lim x = + ∞ (0.5đ) d. Tính lồi lõm và điểm uốn y” = 6 x ; y”= 0 <=> x = 0 x - ∞ 0 + ∞ y” - 0 + đồ thị lồi U(0;2) lõm (0.5đ) e. Bảng biến thiên: x - ∞ -1 0 1 + ∞ y’ + 0 - - 0 + y 4 2 + ∞ - ∞ 0 (0.25đ) 3.Đồ thị: ( Học sinh tự vẽ) Đồ thị: qua A(-2;0) nhận I(0;2) làm tâm đối xứng CâuII:(3 đ ) Giả sử A,B,C là 3 điểm thẳng hàng thuộc đường thẳng d có phương trình y=ax+b Gọi x 1, , x 2 , x 3 lần lượt là hoành độ các điểm A,B,C thuộc (d). Tiếp tuyến với đồ thị (C) của hàm số tại A có phương trình y=(3x 1 2 -3 , )(x- x 1, ) + x 1, 3 -3x 1, + 2 (d 1 ) (0.5 đ ) Phương trình hoành độ giao điểm của (d 1 ) và (C) là: x 3 -3x +2 = (3x 1 2 -3 , )(x- x 1, ) + x 1, 3 -3x 1, + 2. <=> (x- x 1, ) 2 (x+2x 1 ) = 0 (0.5 đ ) => d 1 cắt (C) lần nữa tại A' có hoành độ: x 1 ' = -2 x 1 . Tương tự B',C' lần lượt có hoành độ x 2 ' = -2 x 2 , x 3 ' = -2 x 3 (0.5 đ ) Vì A,B,C có hoành độ x i thoã mãn phương trình ax i + b = x i 3 -3 x i + 2 (i = 1,2,3) mà x i = - x i '/2 =>a(- x i '/2) + b = (- x i '/2) 3 -3(- x i '/2) + 2 (0.5đ) => -4a x i ' + 8b = -x i 3 -12 x i +16 <=> x i ' 3 -3 x i ' + 2 = (4a + 9) x i ' + 18 - 8b hay ba điểm A',B',C' nằm trên đường thẳng y = (4a + 9) x' + 18 - 8b Bài II (4 đ ) Câu I: điều kiện x+y ≥ 0 3x +2y ≥ 0 Đặt u = yx + 0 ≥ => x –y = 2v 2 -5u 2 (0.5đ) v = yx 23 + 0 ≥ Ta có hệ phương trình đã cho  u – v = -1 (0.5đ) u + 2v 2 -5u 2 = 0 u = 2 (0.5đ)  v = 3 Vậy x + y = 4 x = 1 3x + 2y = 9  y = 3 (0.5đ) Thõa mãn điều kiện Câu II điều kiện x # -1 Ta có bất phương trình <=>ln 2 1+x > ln(x 2 -x +1) (0.5đ) <=> 1+x > 2(x 2 -x +1) (1) (0.5đ) * Nếu x+1 > 0 <=> x>-1 thì (1) <=> x+1 >2(x 2 -x +1) <=>2x 2 -3x +1<0 <=> 1/2 < x < 1 ( thoã mãn x>-1) (0.5đ) * Nếu x + 1 <0 <=> x<-1 thì (1) <=> -x-1 >2(x 2 -x +1) <=>2x 2 -x +3 < 0 ( bất phương trình vô nghiệm) Tóm lại bất phương trình đã cho có nghiệm 1/2 < x < 1 (0.5đ) Bài III (5 đ ) CâuI: (2.5 đ ) Ta có )1( 1 )1( 11 23 22 2353 xx xx xxxx + −+ = + = + (0.5đ) = −= + − 323 1 )1( 11 xxxx = + −+ )1( 1 2 22 xx xx 3 1 x - 2 1 1 x x x + + (1đ) => F(x) = ∫ ∫∫ +++−−= + + +− − Cxx xx xd x dx dxx )1ln( 2 1 ln 1 1 )1( 2 1 2 22 2 2 3 (1đ) CâuII (2.5 đ ) Đặt t= - x => I = ∫ − −+ 1 1 22 )ln( dttat (0.5đ) ∫∫∫ −−− ++−== ++ = 1 1 22 1 1 2 1 1 22 2 )ln(lnln dttatdtadt tat a (1đ) I = 2lna 2 – I => I = lna 2 (1đ) Bài IV: S N A C M B Cho hệ toạ độ Axyz với A(0,0,0) B(a,0,0) C(0,a,0) S(0,0,a) Giả sử M(x,0,a-x) (0 ≤ x ≤ a) Do tam giác SAC vuông cân tại A và MS/MB = NS/NC => N(0,x,a-x) (1đ) Vậy AN = (0,x,a-x) CM = (x,-a,a-x) Do AN vuông góc với CM <=>AN. CM = 0 (1đ) => -ax + (a-x) 2 = 0 <=> x 2 - 3ax + a 2 = 0 x = 2 53 − => 2 15 − = − = xa x MB MS (1đ) Bài V:(2đ) F = 5cotg 2 A + 16cotg 2 B + 27 cotg 2 C = (3+2)cotg 2 A +(12+4) cotg 2 B +(9+18) cotg 2 C = (3 cotg 2 A +12 cotg 2 B) + (4 cotg 2 B+9 cotg 2 C) +(18 cotg 2 C + 2 cotg 2 A) (1đ) ≥12(cotgA cotgB + cotgC cotgB + cotgA cotgC) =12 Đẳng thức xảy ra khi cotgA = 1,cotgB = 1/2, cotgC =1/3 (1đ) . ĐỀ THI HỌC SINH GIỎI LỚP 12 Bảng B Bài I 1.Khảo sát và vẽ đồ thị hàm số y = x 3 -3x +2 (C) 2.Giả sử A,B,C là ba điểm thẳng hàng phân. (3+2)cotg 2 A + (12+ 4) cotg 2 B +(9+18) cotg 2 C = (3 cotg 2 A +12 cotg 2 B) + (4 cotg 2 B+9 cotg 2 C) +(18 cotg 2 C + 2 cotg 2 A) (1đ) 12( cotgA cotgB + cotgC cotgB + cotgA cotgC) =12 Đẳng thức. (0.5đ) => -4a x i ' + 8b = -x i 3 -12 x i +16 <=> x i ' 3 -3 x i ' + 2 = (4a + 9) x i ' + 18 - 8b hay ba điểm A',B',C' nằm trên đường thẳng y = (4a + 9)

Ngày đăng: 29/07/2015, 10:56

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w