UBND THÀNH PHỐ HÒA BÌNH KỲ THI CHỌN HỌC SINH GIỎI THÀNH PHỐ PHÒNG GD&ĐT TP HÒA BÌNH LỚP 9 THCS NĂM HỌC 2013- 2014 Môn: Toán Thời gian: 150 phút (Không kể thời gian giao đề) (Đề thi gồm có 01 trang) Bài 1: (4,0 điểm) Cho đa thức: A = n 4 + 6n 3 + 11n 2 + 6n (n ∈ Z) a/ Phân tích đa thức A thành nhân tử. b/ Chứng minh rằng: (A + 1) là số chính phương với mọi giá trị của n. Bài 2: (4,0 điểm) Giải các phương trình sau: a/ 1 2 3 5 2 x x x − − − = − b/ x 4 = 4x + 1 Bài 3: (4,0 điểm) a/ Hai vòi nước cùng chảy vào một bể thì sau 6 giờ đầy bể. Nếu chảy một mình cho đầy bể thì vòi I cần nhiều hơn vòi II là 5 giờ. Hỏi mỗi vòi chảy một mình trong bao lâu thì đầy bể. b/ Tìm m để hai đường thẳng y = mx + 1 (d 1 ) và y = 2x + 2 (d 2 ) cắt nhau tại một điểm có tọa độ nguyên. Bài 4: (6,0 điểm) Cho tam giác ABC vuông cân tại A có AB = a, trung tuyến AE, M là một điểm di động trên đoạn AE, Gọi N và K lần lượt là hình chiếu của M trên các cạnh AB, AC. Gọi H là hình chiếu của N trên KE. a/ Chứng minh 5 điểm A, K, H, M, N cùng thuộc một đường tròn. b/ Chứng minh 3 điểm B, M, H thẳng hàng. c/ Xác định vị trí của điểm M để tam giác AHB có diện tích lớn nhất. Tính giá trị lớn nhất đó theo a. Bài 5: (2.0 điểm) Cho 4 số nguyên dương a, b, c, d thỏa mãn a 2 + b 2 = c 2 + d 2 . Chứng minh rằng: a + b + c + d là hợp số. ………………………. Hết …………………… Đề thi chính thức . KỲ THI CHỌN HỌC SINH GIỎI THÀNH PHỐ PHÒNG GD&ĐT TP HÒA BÌNH LỚP 9 THCS NĂM HỌC 2013- 20 14 Môn: Toán Thời gian: 150 phút (Không kể thời gian giao đề) (Đề thi gồm có 01 trang) Bài 1: (4, 0. theo a. Bài 5: (2.0 điểm) Cho 4 số nguyên dương a, b, c, d thỏa mãn a 2 + b 2 = c 2 + d 2 . Chứng minh rằng: a + b + c + d là hợp số. ………………………. Hết …………………… Đề thi chính thức . của n. Bài 2: (4, 0 điểm) Giải các phương trình sau: a/ 1 2 3 5 2 x x x − − − = − b/ x 4 = 4x + 1 Bài 3: (4, 0 điểm) a/ Hai vòi nước cùng chảy vào một bể thì sau 6 giờ đầy bể. Nếu chảy một mình