1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI HỌC SINH GIỎI TOÁN 7 SỐ 7

4 301 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 85,19 KB

Nội dung

THI HSG TON 7 Bài 1:(2,5điểm) A,Thực hiện phép tính : (1 +2 +3 + + 90). ( 12.34 6.68) : +++ 6 1 5 1 4 1 3 1 ; B, Tìm các số x, y nguyên biết rằng: x 1 1 8 y 4 = C,Với mọi số tự nhiên n 2 hãy so sánh: a. A= 2222 1 4 1 3 1 2 1 n ++++ với 1 Bài 2 (1,5đ): a) So sánh: 2 30 + 3 30 + 4 30 và 3.24 10 . b) So sánh: 4 + 33 và 29 + 14 c. Chứng minh với mọi n nguyên dơng thì: 3 n+3 -2 n+2 +3 n -2 n chia hết cho 10 Bài 3: ( 2 điểm) Độ dài các cạnh của một tam giác tỉ lệ với nhau nh thế nào,biết nếu cộng lần lợt độ dài từng hai đờng cao của tam giác đó thì các tổng này tỷ lệ theo 3:4:5. Bài 4. (3điểm) Cho ABC có A > 90 0 . Gọi I là trung điểm của cạnh AC. Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối C với D. a. Chứng minh CIDAIB = b. Gọi M là trung điểm của AB; N là trung điểm của CD. Chứng minh rằng I là trung điểm của MN c. Chứng minh ã ã AIB BIC< d. Tìm điều kiện của ABC để AC CD Bài 5. (1đ) Cho biểu thức A = 2014 14 x x . Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó. Đáp án (toán 7) Bài 1 A, Tính . (1+2+3+ +90).( 12.34 6.68) : +++ 6 1 5 1 4 1 3 1 = 0 ( vì 12.34 6.68 = 0). (0,5) B,Từ: x 1 1 1 x 1 8 y 4 y 8 4 = = Quy đồng mẫu vế phải ta có : 1 x - 2 y 8 = . Do đó : y(x-2) =8. Để x, y nguyên thì y và x-2 phải là ớc của 8. Ta có các số nguyên tơng ứng cần tìm trong bảng sau: y 1 -1 2 -2 4 -4 8 -8 x-2 8 -8 4 -4 2 -2 1 -1 x 10 -6 6 -2 4 0 3 1 C, Do 1 11 22 < nn với mọi n 2 nên . ( 0,2 điểm ) A< C = 1 1 14 1 13 1 12 1 2222 ++ + + n ( 0,2 điểm ) Mặt khác: C = ( ) ( ) 1.1 1 5.3 1 4.2 1 3.1 1 + ++++ nn ( 0,2 điểm) = + ++++ 1 1 1 1 5 1 3 1 4 1 2 1 3 1 1 1 2 1 nn ( 0,2 điểm) = 1 4 3 2 3 . 2 1 1 11 2 1 1 <=< + + nn (0,2 điểm ) Vậy A < 1 Bài 2 ( 1,5 điểm) a) Ta có 4 30 = 2 30 .4 15 3.24 10 = 2 30 .3 11 mà 4 15 > 3 11 4 30 > 3 11 2 30 + 3 30 + 4 30 > 3.24 10 (0,5đ) b) 4 = 36 > 29 33 > 14 (0,25đ) 36 + 33 > 29 + 14 0,5đ c/ 3 n+2 -2 n+2 +3 n -2 n =3 n (3 2 +1)-2 n (2 2 +1) = 3 n .10-2 n .5 vì 3 n .10 M 10 và 2 n .5 = 2n-1 .10 M 10 suy ra 3 n .10-2 n .5 M 10 0,5đ Bài 3(2 ) Gọi độ dài các cạnh tam giác là a, b, c ; các đờng cao tơng ứng với các cạnh đó là h a , h b , h c . Ta có: (h a +h b ) : ( h b + h c ) : ( h a + h c ) = 3 : 4 : 5 Hay: 1 3 (h a +h b ) = 1 4 ( h b + h c ) = 1 5 ( h a + h c ) = k ,( với k 0). Suy ra: (h a +h b ) = 3k ; ( h b + h c ) = 4k ; ( h a + h c ) = 5k . Cộng các biểu thức trên, ta có: h a + h b + h c = 6k. Từ đó ta có: h a = 2k ; h b =k ; h c = 3k. Mặt khác, gọi S là diện tích ABCV , ta có: a.h a = b.h b =c.h c a.2k = b.k = c.3k 3 a = 6 b = 2 c Bài 4( 3 điểm) a. Tam giác AIB = tam giác CID vì có (IB = ID; góc I 1 = góc I 2 ; IA = IC) b. Tam giác AID = tam giác CIB (c.g.c) góc B 1 = góc D 1 và BC = AD hay MB =ND tam giác BMI = tam giác DNI (c.g.c) Góc I 3 = góc I 4 M, I, N thẳng hàng và IM = IN Do vậy: I là trung điểm của MN c. Tam giác AIB có góc BAI > 90 0 góc AIB < 90 0 góc BIC > 90 0 d. Nếu AC vuông góc với DC thì AB vuông góc với AC do vậy tam giác ABC vuông tại A Bµi 5(1 ®iÓm) P = 14 2000 2000 1 14 14 x x x − + = + − − P lín nhÊt khi 2000 14 x− lín nhÊt XÐt x > 14 th× 2000 14 x − < 0; XÐt x< 4 th× 2000 14 x − > 0  2000 14 x − lín nhÊt  14 – x lµ sè nguyªn d¬ng nhá nhÊt  14 – x = 1  x = 13 ; khi ®ã 2000 14 x − = 2000  P lín nhÊt = 2001. . THI HSG TON 7 Bài 1:(2,5điểm) A,Thực hiện phép tính : (1 +2 +3 + + 90). ( 12.34 6.68) : +++ 6 1 5 1 4 1 3 1 ; B, Tìm các số x, y nguyên biết rằng: x 1 1 8 y 4 = C,Với mọi số tự. 2014 14 x x . Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó. Đáp án (toán 7) Bài 1 A, Tính . (1+2+3+ +90).( 12.34 6.68) : +++ 6 1 5 1 4 1 3 1 = 0 ( vì 12.34 . có : 1 x - 2 y 8 = . Do đó : y(x-2) =8. Để x, y nguyên thì y và x-2 phải là ớc của 8. Ta có các số nguyên tơng ứng cần tìm trong bảng sau: y 1 -1 2 -2 4 -4 8 -8 x-2 8 -8 4 -4 2 -2 1 -1 x 10 -6

Ngày đăng: 28/07/2015, 08:50

TỪ KHÓA LIÊN QUAN

w