SỞ GIÁO DỤC VÀ ĐẠO TẠO THỪA THIÊN HUẾ ĐỀ THI THỬ ĐẠI HỌC LẦN 2 TRƯỜNG THPT CHUYÊN QUỐC HỌC Môn: TOÁN khối D - Năm học: 2012- 2013 Thời gian: 180 phút (không kể thời gian phát đề) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm). Cho hàm số 2 3 1 x y x + = + có đồ thị là ( ) C . a) Khảo sát sự biến thiên và vẽ đồ thị ( ) C của hàm số đã cho. b) Tìm m để đường thẳng : 1d y x m= + − cắt ( ) C tại hai điểm phân biệt A, B sao cho tam giác OAB có trọng tâm là điểm 2 4 ; 3 3 G − . Câu 2 (1,0 điểm). Giải phương trình ( ) 2 2 sin 2 3 2 cos 2sin 3 sin cosx x x x x+ + − = + . Câu 3 (1,0 điểm). Giải phương trình ( ) 2 4 6 4 2 7 1 x x x x x+ + = − + + ∈ » . Câu 4 (1,0 điểm). Tính tích phân ( ) 2 0 2sin 3 cos 2sin 1 x x I dx x − = + ∫ π . Câu 5 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với 3 ; 2AB a AD a= = . Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho 2AH HB= . Góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng o 60 . Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SC và AD theo a. Câu 6 (1,0 điểm). Cho x, y là các số thực dương. Tìm giá trị lớn nhất của biểu thức 4 2 2 2 9( ) 8 xy x xy A y x + + = + . II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần riêng (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang ABCD có diện tích bằng 50, đỉnh ( ) 2; 5C − , 3 AD BC = . Biết rằng đường thẳng AB đi qua điểm 1 ;0 2 M − , đường thẳng AD đi qua ( ) 3;5N − . Viết phương trình đường thẳng AB biết đường thẳng AB không song song với các trục tọa độ. Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm ( ) 1;1;0I biết (S) cắt tia Ox tại A, cắt tia Oy tại B sao cho 2AB = . Câu 9.a (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho số phức z thỏa mãn 1 2z − = . Tìm tập hợp điểm biểu diễn số phức 2w z i= − . B. Theo chương trình Nâng cao Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác cân ABC có đáy BC nằm trên đường thẳng : 2 5 1 0d x y− + = , cạnh AB nằm trên đường thẳng ' :12 23 0d x y− − = . Viết phương trình đường thẳng AC biết nó đi qua điểm M(3; 1). Câu 8.b (1,0 điểm). Trong không với hệ tọa độ Oxyz, cho điểm ( ) 1;2;3A − và mặt phẳng ( ) : 2 2 0P x y z+ − + = . Đường thẳng d qua A cắt trục Ox tại điểm B, cắt mặt phẳng (P) tại điểm C sao cho 2 AC AB = . Tìm tọa độ của điểm B và điểm C. Câu 9.b (1,0 điểm). Một hộp chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng một quả cầu màu đỏ và không quá hai quả cầu màu vàng. HẾT Cả m ơ n cô ĐặngPhư ơ n gTâ m ( pta mtt @gm ail. com ) gửi tới www .lai sac. pag e.tl . DỤC VÀ ĐẠO TẠO THỪA THI N HUẾ ĐỀ THI THỬ ĐẠI HỌC LẦN 2 TRƯỜNG THPT CHUYÊN QUỐC HỌC Môn: TOÁN khối D - Năm học: 2012- 2013 Thời gian: 180 phút (không kể thời gian phát đề) I. PHẦN CHUNG. điểm) Câu 1 (2,0 điểm). Cho hàm số 2 3 1 x y x + = + có đồ thị là ( ) C . a) Khảo sát sự biến thi n và vẽ đồ thị ( ) C của hàm số đã cho. b) Tìm m để đường thẳng : 1d y x m= + − cắt ( ) C