1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi đề xuất kì thi học sinh giỏi các trường chuyên khu vực duyên hải và đồng bằng bắc bộ năm 2015 môn Toán khối 11 của trường chuyên NGUYỄN TẤT THÀNH , YÊN BÁI

4 1,1K 9

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 529,5 KB

Nội dung

HỘI CÁC TRƯỜNG CHUYÊN VÙNG DUYÊN HẢI VÀ ĐỒNG BẰNG BẮC BỘ TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH TỈNH YÊN BÁI ĐỀ THI MÔN TOÁN KHỐI 11 NĂM 2015 ĐỀ THI ĐỀ XUẤT Thời gian làm bài 180 phút (Đề này có 01 trang, gồm 05 câu) Câu 1 (4 điểm). Giải hệ phương trình 2 2 1 1 ( 1)( ) 2 3 3 3x 1 2x 8 2 2 4 2x 2 3( 5 3 1) x y x y y y y y x y  + + + =  + + + +   + − + + + − = + + + +  Câu 2 (4 điểm). Cho dãy số (x n ) thỏa mãn: 1 2 1 2 1 2 ; n 1 n n n x x x x n +  =     = + ∀ ≥   Chứng minh dãy số trên có giới hạn. Câu 3 (4 điểm). Cho tam giác ABC. Gọi B 1 là điểm đối xứng của B qua AC, C 1 là điểm đối xứng của C qua các đường thẳng AB, O 1 là điểm đối xứng của O qua BC. Chứng minh rằng: Tâm đường tròn ngoại tiếp tam giác AB 1 C 1 nằm trên đường thẳng AO 1 . Câu 4 (4 điểm). Tìm tất cả các đa thức hệ số thực P(x) không đồng nhất không thỏa mãn: P(2014) = 2046, 2 ( ) ( 1) 33 32, 0P x P x x = + − + ∀ ≥ Câu 5 (4 điểm). Cho 2015 điểm trên đường thẳng, tô các điểm bằng một trong 3 màu xanh, đỏ, vàng (mỗi điểm chỉ tô một màu). Có bao nhiêu cách tô khác nhau sao cho không có 3 điểm liên tiếp nào cùng màu. HẾT Người ra đề (Họ tên, ký tên -Điện thoại liên hệ) Tô Minh Trường-0915454109 ĐÁP ÁN + BIỂU ĐIỂM CHẤM MÔN TOÁN KHỐI 11 Câu Nội dung chính cần đạt Điểm Câu 1 Câu 1Giải hệ phương trình 2 2 1 1 ( 1)( ) 2(1) 3 3 3x 1 2x 8 2 2 4 2x 2 3( 5 3 1)(2) x y x y y y y y x y  + + + =  + + + +   + − + + + − = + + + +  f 4,0 Điều kiện: 2 2 0 1 2x 8 2 0 2 4 2x 2 0 x y y y y ≥   ≥ −   + − ≥   + + − ≥  0 0,5 Áp dụng bất đẳng thức AM-GM cho vế trái của (1) ta có: 1 1 ( ) 2 1 3 3 3 3 1 1 3 ( ) 2 1 2 3 3 1 1 1 2( 1) ( ) 2 2 3 3 3 3 x x x y x y x y x y x y x x y x y y y x y x y  + + ≤ +  + + + + + + + +  ⇒ ≤ +  + + + + + +  ≤ +  + + + +  Chứng minh tương tự ta cũng có: 1 1 1 3 ( ) 2 1 2 3x 1 x y y x y y + + + ≤ + + + + + Cộng lại ta được: 1 1 2 3 3 3x 1 x y x y x y y + + + + + ≤ + + + + Dấu đẳng thức xảy ra x=y+1 hay y= x - 1 1,0 Thế vào (2) ta có phương trình ( ) 2 2 2 8 10 2 2 4 3 5 2 1x x x x x x+ − + + − = + + + + (4) Điều kiện xác định của (4) là: 1 (*).x ≥ Với đk (*), ta có: 0,5 ( ) ( ) ( ) ( ) ( ) (4) (2 2)( 5) (2 2)( 2) 3 5 2 3 2 2 5 2 3 5 2 3 5 2 2 2 3 3 2 2 3 5 2 ( 2 2 5) ( 2 3) 0 7 7 0 2 2 5 2 3 1 1 ( 7) 0 2 2 5 2 3 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ⇔ − + + − + − + + + = ⇔ − + + + − + + + = ⇔ + + + − − = ⇔ − − = + − + ⇔ − − + + + − = − − ⇔ + = − + + + +   ⇔ − + =  ÷ − + + + +   1,0 7x ⇔ = (tm (*)) ( Vì 1 1 0 1) 2 2 5 2 3 x x x x + > ∀ ≥ − + + + + Với 7 6x y = ⇒ = (thỏa mãn điều kiện). Vậy hệ có nghiệm duy nhất ( ; ) (7;6).x y = 1,0 Câu 2 Câu 2. Cho dãy số (x n ) thỏa mãn: 1 2 1 2 1 2 ; n 1 n n n x x x x n +  =     = + ∀ ≥   (Họ tên, ký tên -Điện thoại liên hệ) Tô Minh Trường-0915454109 . HỘI CÁC TRƯỜNG CHUYÊN VÙNG DUYÊN HẢI VÀ ĐỒNG BẰNG BẮC BỘ TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH TỈNH YÊN BÁI ĐỀ THI MÔN TOÁN KHỐI 11 NĂM 2015 ĐỀ THI ĐỀ XUẤT Thời gian làm bài 180 phút (Đề này. Tìm tất cả các đa thức hệ số thực P(x) không đồng nhất không thỏa mãn: P(2014) = 204 6, 2 ( ) ( 1) 33 3 2, 0P x P x x = + − + ∀ ≥ Câu 5 (4 điểm). Cho 2015 điểm trên đường thẳng, tô các điểm bằng. xanh, đ , vàng (mỗi điểm chỉ tô một màu). Có bao nhiêu cách tô khác nhau sao cho không có 3 điểm liên tiếp nào cùng màu. HẾT Người ra đề (Họ tên, ký tên -Điện thoại liên hệ) Tô Minh Trường- 0915454109 ĐÁP

Ngày đăng: 27/07/2015, 08:59

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w