Tính các cạnh góc vuông của tam giác vuông đó.. Hai đường thẳng AM và BE cắt nhau tại điểm C, AE và BM cắt nhau tại điểm D.. 1 Chứng minh MCED là một tứ giác nội tiếp.. Chứng minh BE.BC
Trang 1SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT
MÔN THI: TOÁN
Thời gian: 120 phút (Không kể thời gian giao đề) Bài 1: (1,5 điểm)
Cho biểu thức với
1) Rút gọn P.
2) Tính giá trị của P khi
Bài 2: (1,5 điểm)
1) Giải phương trình : 2) Không dùng máy tính, giải hệ phương trình sau:
Bài 3: (1,5 điểm)
Cho parabol (P): y = x2 và đường thẳng (d ): y = 2x + m.
1) Vẽ parabol (P).
2) Tìm m để đường thẳng (d ) cắt parabol (P) tại hai điểm.
Bài 4: (1,5 điểm)
Cạnh huyền của một tam giác vuông bằng 10cm, hai cạnh góc vuông hơn
kém nhau 2cm Tính các cạnh góc vuông của tam giác vuông đó.
Bài 5: (4,0 điểm)
Trên đường tròn (O, R) đường kính AB, lấy hai điểm M, E theo thứ tự A, M,
E, B Hai đường thẳng AM và BE cắt nhau tại điểm C, AE và BM cắt nhau tại
điểm D.
1) Chứng minh MCED là một tứ giác nội tiếp.
2) Gọi H là giao điểm của CD và AB Chứng minh BE.BC = BH.BA.
3) Cho , tính thể tích của hình do
1
0 < ≠ a 1;4
9
a=
2 5 4 0
x y
x y
+ =
CAB 60∆AMB=
Trang 2SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT
MÔN THI: TOÁN
ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM MÔN TOÁN
1
(1,5 đ)
1) Điều kiện:
= =
0,5 0,25
0,25
2
(1,5 đ)
1) Giải phương trình : (1)
Ta có: a + b + c = 0
0,25 0,25 0,25
2)
0,25 0,25
0,25
3
(1,5 đ) 1) Vẽ đồ thị:Bảng giá trị:
0,25
0 < ≠ a 1;4
2 2
1
a
−
− +
=
1
1 4
− ×
3
a a
−
P
9
a a
= x2− + = 5 x= 4 0 =
1 1
x
⇒ =
2
4
1 4
c a
=
1
x y
⇔
=
=
x … - 2 -1 0 1 2 …
… 4 1 0 1 4 …
2
y x=
Trang 3Vẽ đúng đồ thị 0,5
2) Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình:
(1)
Ta có:
Để (d) cắt (P) tại hai điểm thì phương trình (1) có 2 nghiệm phân biệt,
hay:
0,25 0,25 0,25
4
(1,5 đ)
Gọi x(cm) là độ dài cạnh góc vuông nhỏ; 0 < x <10
Thì độ dài cạnh góc vuông lớn là: x + 2 (cm)
Áp dụng định lý Pitago vào tam giác vuông, ta có phương trình:
x2 + (x + 2)2 = 102
2x2 + 4x - 96 = 0
x2 + 2x - 48 = 0
(tmđk) (loại) Hai cạnh góc vuông của tam giác vuông là: 6cm và 8cm
0,25 0,25 0,25
0,25
0,25
0,25
Vẽ hình, ghi GT,KL đúng
1
1
I M
E D
C
B A
Trang 4giác ABC, suy ra CH cũng là đường cao.
Hai tam giác vuông CHB và AEB có góc B chung nên đồng dạng 0,25
0,25 3) Tam giác
vuông AMB có:
Hình tạo thành khi quay tam giác vuông AMB quanh cạnh MB là hình nón đỉnh B,
đường cao MB, bán kính đáy AM
0,25 0,25
0,25 4) Gọi I là trung điểm của CD, nối MI
(tam giác OMB cân ở O)
(tam giác CMI cân ở I)
Mà (cùng phụ với )
Suy ra
Ta có , hay
Suy ra MI là tiếp tuyến của đường tròn (O, R) tại M
Chứng minh tương tự có EI là tiếp tuyến của đường tròn (O, R) tại E
Vậy các tiếp tuyến tại M và E của đường tròn (O) cắt nhau tại một điểm
nằm trên đường thẳng CD, đó chính là trung điểm I của đoạn thẳng CD
0,25
0,25
0,25
0,25
Ghi chú: Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì cho đủ điểm
từng phần như hướng dẫn quy định
BC BH
BE BC BH BA
BA BE
2
MB AB= MAB= = =R
os 2R os60 2R
2
MA AB c MAB= = c = =R
3
R
V = π AM BM = π R R = π
M =B
· O 900
IM =
1
CMI IM+ = ⇒M +IM =
1
CMI =M
·MAB
1
MCI =B
MCI CMI=
Trang 5SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT
MÔN THI: TOÁN
Thời gian: 120 phút (Không kể thời gian giao đề)
Mức độ
Nội dung
Phương trình và hệ
1 Lê văn Trung THPT Quang Trung
2 Nguyễn Trọng Nga THCS Nguyến Tất Thành