SỞGIÁODỤCVÀĐÀOTẠO TrườngTHPTChuyênVĩnhPhúc KHẢOSÁTCHẤTLƯỢNGLẦNTHỨII NĂMHỌC2013– 2014 (Đềcó01trang) Môn:Toán12 KhốiD Thờigian :180phút(Khôngkểgiaođề) A. PHẦNCHUNGCHOTẤTCẢTHÍSINH(7,0 điểm) CâuI(2,0điểm).Chohàmsố x 1 y 2x 1 - + = + . 1) Khảosátsựbiếnthiênvàvẽđồthị (C)củahàmsốđãcho. 2) Viếtphươngtrìnhtiếptuyếncủađồthịhàmsố(C)saochotiếptuyếnđiquagiaođiểmcủa đườngtiệmcậnvàtrụcOx. CâuII(2, 0điểm)1)Giảiphươngtrình: ( ) 3 sin 2x sinx cos2x cos x 2 + + - = . 2) Giải phươngtrình: ( ) x e 1 ln 1 x = + + . CâuIII(1,0điểm). Tínhtíchphân : 2 0 2 x I dx 1 2x + = + ò CâuIV(1,0điểm). ChohìnhchópS.ABCDcóđáyABCDlàhìnhthangvuôngtạiAvàD, AB= AD=2a,CD=a,gócgiữahaimặtphẳng(SBC)là(ABCD)bằng 0 60 .GọiIlàtrungđiểmcủa cạnhAD.Biếthaimặtphẳng(SBI)và(SCI)cùngvuônggócvớimặtphẳng(ABCD).Tínhthểtích khốichópS.ABCD. CâuV(1,0điểm). Cho , ,a b c làcácsốdươngthoảmãn 3ab bc ca + + = .Tìmgiátrịnhỏnhấtcủa biểuthức: 1 4 ( )( )( ) M abc a b b c c a = + + + + . B.PHẦNRIÊNG(3điểm). Thísinhchỉđượclàmmộttronghaiphần(phần 1hoặc 2) 1.TheochươngtrìnhChuẩn CâuVIA(2,0điểm) 1)Trong mặtphẳng Oxy,cho đườngtròn ( ) 2 2 : ( 1) ( 1) 4C x y - + + = . Gọi ( ) 'C làđườngtròncó tâm thuộcđườngthẳng ( ) :3 0d x y - = vàtiếpxúcvớitrụcOyđồngthờitiếpxúcngoàivớiđườngtròn(C). Viếtphươngtrình đườngtròn ( ) 'C . 2)TrongkhônggiantọađộOxyz,viếtphươngtrình đườngthẳng ( ) D điqua ( ) A 3; 2; 4 - - ,songsong vớimặtphẳng(P): 3x 2y 3z 7 0 - - - = và cắtđườngthẳng(d): x 2 3t y 4 2t z 1 2t = + ì ï = - - í ï = + î .CâuVIIA(1,0điểm).Tínhgiớihạn 1 2 x 1 3 tan( 1) 1 lim 1 x e x x - ® + - - - . 2.Theochươngtrìnhnângcao. CâuVIB( 2,0điểm) 1) TrongmặtphẳngvớihệtọađộOxy,chođườngtròn ( ) 2 2 : ( 1) ( 2) 12C x y - + + = . Viếtphươngtrình đườngtròn(C’)có tâm M(5;1) biết(C’)cắt(C) tạihaiđiểm A,Bsaocho 2 3AB = . 2)TrongkhônggianvớihệtọađộOxyz,chobađiểm A(2;2; 2), B(0;1; 2)vàC(2;2;1).Viết phươngtrìnhmặtphẳng ( ) P điquaA,songsongvới BCvàcắtcáctrụcOy,Oz theothứtựtại M,N khácvớigốctọađộOsaochoOM =3ON. CâuVIIB(1,0điểm). Mộtchiếchộpđựng6cáibútmàuxanh,6cáibútmàuđen,5cáibútmàutím và3cáibútmàuđỏđượcđánhsốtừ1đến20.Lấyngẫunhiênra4cáibút.Tínhxácsuấtđểlấy được ítnhất2bútcùngmàu. HẾT www.VNMATH.com . SỞGIÁODỤCVÀĐÀOTẠO Trường THPT Chuyên Vĩnh Phúc KHẢOSÁTCHẤTLƯỢNGLẦNTHỨ II NĂMHỌC2013– 2014 (Đề có01trang) Môn:Toán12 KhốiD Thờigian :180phút(Khôngkểgiao đề) A. PHẦNCHUNGCHOTẤTCẢTHÍSINH(7,0. + . 1) Khảo sát sựbiến thi nvàvẽđồthị (C)củahàmsốđãcho. 2) Viếtphươngtrìnhtiếptuyếncủađồthịhàmsố(C)saochotiếptuyếnđiquagiaođiểmcủa đườngtiệmcậnvàtrụcOx. Câu II (2,. sin 2x sinx cos2x cos x 2 + + - = . 2) Giải phươngtrình: ( ) x e 1 ln 1 x = + + . CâuIII(1,0điểm). Tínhtíchphân : 2 0 2 x I dx 1 2x + = + ò CâuIV(1,0điểm). ChohìnhchópS.ABCDcóđáyABCDlàhìnhthangvuôngtạiAvàD, AB=