b Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên.. Từ M vẽ MP vuông góc AB, MQ vuông góc AC P thuộc AB, Q thuộc AC.. Chứng minh các tam giác OPH và OQH là tam giác
Trang 1së GD & ®t qu¶ng b×nh kú thi tuyÓn sinh vµo líp 10 thpt
n¨m häc 2012 - 2013
(ĐỀ CHÍNH THỨC) Khoá ngày 04 - 07 - 2012
Môn : TOÁN
Họ tên : Thời gian làm bài : 120 phút (không kể thời gian giao đề)
SBD: MÃ ĐỀ: 011
Đề thi gồm có 01 trang
Câu 1: (2,0 điểm) Cho biểu thức 1 2 21
1
A
a) Rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Câu 2: (1,5 điểm) Giải hệ phương trình sau: 3 3
Câu 3: (2,0 điểm)
a) Giải phương trình: 2
x x b) Cho phương trình bậc hai: 2
x xm (m là tham số)
Tìm m để phương trình có hai nghiệm x1, x2 và thoả mãn: 2 2
1 2 8
x x
Câu 4: (1,0 điểm) Cho các số thực a, b thoả mãn: a b 2
Tìm giá trị nhỏ nhất của biểu thức: Pa3 b3 a2 b2
Câu 5: (3,5 điểm) Cho tam giác ABC đều có AH là đường cao, M là điểm bất kì trên
cạnh BC (M khác B, C) Từ M vẽ MP vuông góc AB, MQ vuông góc AC (P thuộc
AB, Q thuộc AC)
a) Chứng minh: A, P, M, H, Q cùng nằm trên một đường tròn
b) Gọi O là trung điểm của AM Chứng minh các tam giác OPH và OQH là tam giác đều, từ đó suy ra OH PQ
c) Tìm giá trị nhỏ nhất của đoạn PQ khi M chạy trên cạnh BC, biết độ dài cạnh của tam giác ABC là a
HÕT