1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Tài liệu, đề thi, đáp án tham khảo toán luyện thi vào lớp 10 THPT (2)

49 402 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 49
Dung lượng 1,72 MB

Nội dung

GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 Dạng I: rút gọn biểu thức Có chứa căn thức bậc hai Bài 1: Thực hiện phép tính: 1) 2 5 125 80 605 + ; 2) 10 2 10 8 5 2 1 5 + + + ; 3) 15 216 33 12 6 + ; 4) 2 8 12 5 27 18 48 30 162 + + ; 5) 2 3 2 3 2 3 2 3 + + + ; 6) 16 1 4 2 3 6 3 27 75 ; 7) 4 3 2 27 6 75 3 5 + ; 8) ( ) 3 5. 3 5 10 2 + + 9) 8 3 2 25 12 4 192 + ; 10) ( ) 2 3 5 2 + ; 11) 3 5 3 5 + + ; 12) 4 10 2 5 4 10 2 5+ + + + ; 13) ( ) ( ) 5 2 6 49 20 6 5 2 6+ ; 14) 1 1 2 2 3 2 2 3 + + + ; 15) 6 4 2 6 4 2 2 6 4 2 2 6 4 2 + + + + ; 16) ( ) 2 5 2 8 5 2 5 4 + ; 17) 14 8 3 24 12 3 ; 18) 4 1 6 3 1 3 2 3 3 + + + ; 19) ( ) ( ) 3 3 2 1 2 1+ 20) 3 3 1 3 1 1 3 1 + + + + . Bài 2: Cho biểu thức x 1 x x x x A = 2 2 x x 1 x 1 + ữ ữ ữ ữ + a) Rút gọn biểu thức A; b) Tìm giá trị của x để A > - 6. Trờng THCS Ninh Xuân Hoa L Ninh Bình GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 Bài 3: Cho biểu thức x 2 1 10 x B = : x 2 x 4 2 x x 2 x 2 + + + ữ ữ ữ + + a) Rút gọn biểu thức B; b) Tìm giá trị của x để A > 0. Bài 4: Cho biểu thức 1 3 1 C = x 1 x x 1 x x 1 + + + a) Rút gọn biểu thức C; b) Tìm giá trị của x để C < 1. Bài 5: Rút gọn biểu thức : a) 2 2 2 2 x 2 x 4 x 2 x 4 D = x 2 x 4 x 2 x 4 + + + + + + + ; b) x x x x P = 1 1 x 1 x 1 + + ữ ữ ữ ữ + ; c) 2 1 x 1 Q = : x x x x x x + + + ; d) x 1 2 x 2 H = x 2 1 Bài 6: Cho biểu thức 1 1 a 1 M = : a a a 1 a 2 a 1 + + ữ + a) Rút gọn biểu thức M; b) So sánh M với 1. Bài 7: Cho các biểu thức 2x 3 x 2 P = x 2 và 3 x x 2x 2 Q = x 2 + + a) Rút gọn biểu thức P và Q; b) Tìm giá trị của x để P = Q. Bài 8: Cho biểu thức 2x 2 x x 1 x x 1 P = x x x x x + + + + a) Rút gọn biểu thức P b) So sánh P với 5. Trờng THCS Ninh Xuân Hoa L Ninh Bình GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 c) Với mọi giá trị của x làm P có nghĩa, chứng minh biểu thức 8 P chỉ nhận đúng một giá trị nguyên. Bài 9: Cho biểu thức 3x 9x 3 1 1 1 P = : x 1 x x 2 x 1 x 2 + + + ữ ữ + + a) Tìm điều kiện để P có nghĩa, rút gọn biểu thức P; b) Tìm các số tự nhiên x để 1 P là số tự nhiên; c) Tính giá trị của P với x = 4 2 3 . Bài 10: Cho biểu thức : x 2 x 3 x 2 x P = : 2 x 5 x 6 2 x x 3 x 1 + + + ữ ữ ữ ữ + + a) Rút gọn biểu thức P; b) Tìm x để 1 5 P 2 . Dạng II CC BI TON V HM S V TH I.im thuc ng ng i qua im. im A(x A ; y A ) thuc th hm s y = f(x) y A = f(x A ). Vớ d 1: Tỡm h s a ca hm s: y = ax 2 bit th hm s ca nú i qua im A(2;4). Gii: Do th hm s i qua im A(2;4) nờn: 4= a.2 2 a = 1 Trờng THCS Ninh Xuân Hoa L Ninh Bình GV: TrÇn Danh Lîi C¸c d¹ng to¸n «n thi vµo líp 10 Ví dụ 2: Trong mặt phẳng tọa độ cho A(-2;2) và đường thẳng (d) có phương trình: y = -2(x + 1). Đường thẳng (d) có đi qua A không? Giải: Ta thấy -2.(-2 + 1) = 2 nên điểm A thuộc v ào đường thẳng (d) II.Cách tìm giao điểm của hai đường y = f(x) và y = g(x). Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) (II) Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = f(x) hoặc y = g(x) để tìm tung độ giao điểm. Chú ý: Số nghiệm của phương trình (II) là số giao điểm của hai đường trên. III.Quan hệ giữa hai đường thẳng. Xét hai đường thẳng : (d 1 ) : y = a 1 x + b 1 . (d 2 ) : y = a 2 x + b 2 . a) (d 1 ) cắt (d 2 ) a 1 a 2 . b) d 1 ) // (d 2 ) c) d 1 ) (d 2 ) d) (d 1 ) (d 2 ) a 1 a 2 = -1 IV.Tìm điều kiện để 3 đường thẳng đồng qui. Bước 1: Giải hệ phương trình gồm hai đường thẳng không chứa tham số để tìm (x;y). Bước 2: Thay (x;y) vừa tìm được vào phương trình còn lại để tìm ra tham số . V.Quan hệ giữa (d): y = ax + b và (P): y = cx 2 (c 0). 1.Tìm tọa độ giao điểm của (d) và (P). Trêng THCS Ninh Xu©n – Hoa L – Ninh B×nh GV: TrÇn Danh Lîi C¸c d¹ng to¸n «n thi vµo líp 10 Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình: cx 2 = ax + b (V) Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = ax +b hoặc y = cx 2 để tìm tung độ giao điểm. Chú ý: Số nghiệm của phương trình (V) là số giao điểm của (d) và (P). 2.Tìm điều kiện để (d) và (P). a) (d) và (P) cắt nhau phương trình (V) có hai nghiệm phân biệt. b) (d) và (P) tiếp xúc với nhau phương trình (V) có nghiệm kép. c) (d) và (P) không giao nhau phương trình (V) vô nghiệm . VI.Viết phương trình đường thẳng y = ax + b biết. 1.Quan hệ về hệ số góc và đi qua điểm A(x 0 ;y 0 ) Bước 1: Dựa vào quan hệ song song hay vuông góc tìm hệ số a. Bước 2: Thay a vừa tìm được và x 0 ;y 0 vào công thức y = ax + b để tìm b. 2.Biết đồ thị hàm số đi qua điểm A(x 1 ;y 1 ) và B(x 2 ;y 2 ). Do đồ thị hàm số đi qua điểm A(x 1 ;y 1 ) và B(x 2 ;y 2 ) nên ta có hệ phương trình: Giải hệ phương trình tìm a,b. 3.Biết đồ thị hàm số đi qua điểm A(x 0 ;y 0 ) và tiếp xúc với (P): y = cx 2 (c 0). +) Do đường thẳng đi qua điểm A(x 0 ;y 0 ) nên có phương trình : y 0 = ax 0 + b (3.1) +) Do đồ thị hàm số y = ax + b tiếp xúc với (P): y = cx 2 (c 0) nên: Pt: cx 2 = ax + b có nghiệm kép (3.2) +) Giải hệ gồm hai phương trình trên để tìm a,b. Trêng THCS Ninh Xu©n – Hoa L – Ninh B×nh GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 VII.Chng minh ng thng luụn i qua 1 im c nh ( gi s tham s l m). +) Gi s A(x 0 ;y 0 ) l im c nh m ng thng luụn i qua vi mi m, thay x 0 ;y 0 vo phng trỡnh ng thng chuyn v phng trỡnh n m h s x 0 ;y 0 nghim ỳng vi mi m. +) ng nht h s ca phng trỡnh trờn vi 0 gii h tỡm ra x 0 ;y 0 . VIII.Mt s ng dng ca th hm s. 1.ng dng vo phng trỡnh. 2.ng dng vo bi toỏn cc tr. bài tập về hàm số. Bài tập 1. cho parabol y= 2x 2 . (p) a. tìm hoành độ giao điểm của (p) với đờng thẳng y= 3x-1. b. tìm toạ độ giao điểm của (p) với đờng thẳng y=6x-9/2. c. tìm giá trị của a,b sao cho đờng thẳng y=ax+b tiếp xúc với (p) và đi qua A(0;-2). d. tìm phơng trình đờng thẳng tiếp xúc với (p) tại B(1;2). e. biện luận số giao điểm của (p) với đờng thẳng y=2m+1. ( bằng hai phơng pháp đồ thị và đại số). f. cho đờng thẳng (d): y=mx-2. Tìm m để +(p) không cắt (d). +(p)tiếp xúc với (d). tìm toạ độ điểm tiếp xúc đó? + (p) cắt (d) tại hai điểm phân biệt. +(p) cắt (d). Bài tập 2. cho hàm số (p): y=x 2 và hai điểm A(0;1) ; B(1;3). Trờng THCS Ninh Xuân Hoa L Ninh Bình GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 a. viết phơng trình đờng thẳng AB. tìm toạ độ giao điểm AB với (P) đã cho. b. viết phơng trình đờng thẳng d song song với AB và tiếp xúc với (P). c. viết phơng trình đờng thẳng d 1 vuông góc với AB và tiếp xúc với (P). d. chứng tỏ rằng qua điểm A chỉ có duy nhất một đờng thẳng cắt (P) tại hai điểm phân biệt C,D sao cho CD=2. Bài tập 3. Cho (P): y=x 2 và hai đờng thẳng a,b có phơng trình lần lợt là y= 2x-5 y=2x+m a. chứng tỏ rằng đờng thẳng a không cắt (P). b. tìm m để đờng thẳng b tiếp xúc với (P), với m tìm đợc hãy: + Chứng minh các đờng thẳng a,b song song với nhau. + tìm toạ độ tiếp điểm A của (P) với b. + lập phơng trình đờng thẳng (d) đi qua A và có hệ số góc bằng -1/2. tìm toạ độ giao điểm của (a) và (d). Bài tập 4. cho hàm số xy 2 1 = (P) a. vẽ đồ thị hàm số (P). b. với giá trị nào của m thì đờng thẳng y=2x+m (d) cắt đồ thị (P) tại hai điểm phân biệt A,B. khi đó hãy tìm toạ độ hai điểm A và B. c. tính tổng tung độ của các hoành độ giao điểm của (P) và (d) theo m. Bài tập5. cho hàm số y=2x 2 (P) và y=3x+m (d) a. khi m=1, tìm toạ độ các giao điểm của (P) và (d). b. tính tổng bình phơng các hoành độ giao điểm của (P) và (d) theo m. c. tìm mối quan hệ giữa các hoành độ giao điểm của (P) và (d) độc lập với m. Trờng THCS Ninh Xuân Hoa L Ninh Bình GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 Bài tập 6. cho hàm số y=-x 2 (P) và đờng thẳng (d) đI qua N(-1;-2) có hệ số góc k. a. chứng minh rằng với mọi giá trị của k thì đờng thẳng (d) luôn cắt đồ thị (P) tại hai điểm A,B. tìm k cho A,B nằm về hai phía của trục tung. b. gọi (x 1 ;y 1 ); (x 2 ;y 2 ) là toạ độ của các điểm A,B nói trên, tìm k cho tổng S=x 1 +y 1 +x 2 +y 2 đạt giá trị lớn nhất. Bài tập7. cho hàm số y= x a. tìm tập xác định của hàm số. b. tìm y biết: + x=4 + x=(1- 2 ) 2 + x=m 2 -m+1 + x=(m-n) 2 c. các điểm A(16;4) và B(16;-4), điểm nào thuộc đồ thị hàm số, điểm nào không thuộc đồ thị hàm số? tại sao. d. không vẽ đồ thị hãy tìm hoành độ giao điểm của đồ thị hàm số đã cho với đồ thị hàm số y= x-6 Bài tập 8. cho hàm số y=x 2 (P) và y=2mx-m 2 +4 (d) a.tìm hoành độ của các điểm thuộc (P) biết tung độ của chúng y=(1- 2 ) 2 . b.chứng minh rằng (P) với (d) luôn cắt nhau tại 2 điểm phân biệt. tìm toạ độ giao điểm của chúng. với giá trị nào của m thì tổng các tung độ của chúng đạt giá trị nhỏ nhất. Bài tập 9. cho hàm số y= mx-m+1 (d). Trờng THCS Ninh Xuân Hoa L Ninh Bình GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 a. chứng tỏ rằng khi m thay đổi thì đờng thẳng (d) luôn đI qua điểm cố định. tìm điểm cố định ấy. b. tìm m để (d) cắt (P) y=x 2 tại 2 điểm phân biệt A và B, sao cho AB= 3 . Bài tập 10. trên hệ trục toạ độ Oxy cho các điểm M(2;1); N(5;-1/2) và đờng thẳng (d) y=ax+b. a. tìm a và b để đờng thẳng (d) đI qua các điểm M, N. b. xác định toạ độ giao điểm của đờng thẳng MN với các trục Ox, Oy. Bài tập 11. cho hàm số y=x 2 (P) và y=3x+m 2 (d). a. chứng minh với bất kỳ giá trị nào của m đờng thẳng (d) luôn cắt (P) tại 2 điểm phân biệt. b. gọi y 1 , y 2 kà các tung độ giao điểm của đờng thẳng (d) và (P) tìm m để có biểu thức y 1 +y 2 = 11y 1 .y 2 bài tập 12. cho hàm số y=x 2 (P). a. vẽ đồ thị hàm số (P). b. trên (P) lấy 2 điểm A, B có hoành độ lần lợt là 1 và 3. hãy viết phơng trình đờng thẳng AB. c. lập phơng trình đờng trung trực (d) của đoạn thẳng AB. d. tìm toạ độ giao điểm của (d) và (P). Bài tập 13 a. viết phơng trình đờng thẳng tiếp xúc với (P) y=2x 2 tại điểm A(-1;2). b. cho hàm số y=x 2 (P) và B(3;0), tìm phơng trình thoả mãn điều kiện tiếp xúc với (P) và đi qua B. c. cho (P) y=x 2 . lập phơng trình đờng thẳng đi qua A(1;0) và tiếp xúc với (P). Trờng THCS Ninh Xuân Hoa L Ninh Bình GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 d. cho (P) y=x 2 . lập phơng trình d song song với đờng thẳng y=2x và tiếp xúc với (P). e. viết phơng trình đờng thẳng song song với đờng thẳng y=-x+2 và cắt (P) y=x 2 tại điểm có hoành độ bằng (-1). f. viết phơng trình đờng thẳng vuông góc với (d) y=x+1 và cắt (P) y=x 2 tại điểm có tung độ bằng 9. Dạng III: Hệ phơng trình Baứi 1: : Giải các HPT sau: 1.1. a. 2 3 3 7 x y x y = + = b. 2 3 2 5 2 6 x y x y + = + = Giải: a. Dùng PP thế: 2 3 3 7 x y x y = + = 2 3 2 3 2 2 3 2 3 7 5 10 2.2 3 1 y x y x x x x x x y y = = = = + = = = = Vaọy HPT đã cho có nghiệm là: 2 1 x y = = Dùng PP cộng: 2 3 3 7 x y x y = + = 5 10 2 2 3 7 3.2 7 1 x x x x y y y = = = + = + = = Vaọy HPT đã cho có nghiệm là: 2 1 x y = = - Để giảI loại HPT này ta thờng sử dụng PP cộng cho thuận lợi. Trờng THCS Ninh Xuân Hoa L Ninh Bình [...]... Ninh B×nh GV: TrÇn Danh Lỵi C¸c d¹ng to¸n «n thi vµo líp 10 A = x1x2 + 2x1 + 2x2 Bµi tËp 32: Cho ph¬ng tr×nh: x2 - 2(m + 1)x + 2m + 10 = 0 (m lµ tham sè) T×m m sao cho 2 2 nghiƯm x1; x2 cđa ph¬ng tr×nh tho¶ m·n 10x1x2 + x1 + x 2 ®¹t gi¸ trÞ nhá nhÊt T×m gi¸ trÞ 2 ®ã Trêng THCS Ninh Xu©n – Hoa L – Ninh B×nh GV: TrÇn Danh Lỵi C¸c d¹ng to¸n «n thi vµo líp 10 D¹ng V Bµi tËp H×nh tỉng hỵp Bµi 1 Cho tam... ®iĨm c¸ch chÝnh gi÷a qu·ng ®êng AB lµ 10 km vµ xe ®i chËm t¨ng vËn tèc gÊp ®«i th× hai xe gỈp nhau sau 1 giê 24 phót HPT:  x − y = 10   2 1 5 ( x + 2 y ) = 2( x + y )  Bµi 8 Hai líp 9A vµ 9B cã tỉng céng 70 HS nÕu chun 5 HS tõ líp 9A sang líp 9B th× sè HS ë hai líp b»ng nhau TÝnh sè HS mçi líp Bµi 9 Hai trêng A, B cã 250 HS líp 9 dù thi vµo líp 10, kÕt qu¶ cã 210 HS ®· tróng tun TÝnh riªng tØ lƯ... Danh Lỵi C¸c d¹ng to¸n «n thi vµo líp 10 c) Víi gi¸ trÞ nµo cđa m th× ph¬ng tr×nh ®· cho v« nghiƯm d) T×m m ®Ĩ ph¬ng tr×nh cã hai nghiƯm tho· m·n ®iỊu kiƯn x1 = 3x2 Bµi tËp 10: BiÕt r»ng ph¬ng tr×nh : x2 - 2(m + 1 )x + m2 + 5m - 2 = 0 ( Víi m lµ tham sè ) cã mét nghiƯm x = 1 T×m nghiƯm cßn l¹i Bµi tËp 11: BiÕt r»ng ph¬ng tr×nh : x2 - 2(3m + 1 )x + 2m2 - 2m - 5 = 0 ( Víi m lµ tham sè ) cã mét nghiƯm x...GV: TrÇn Danh Lỵi C¸c d¹ng to¸n «n thi vµo líp 10  2 x + 3 y = −2 10 x + 15 y = 10 11 y = −22  y = −2 x = 2 ⇔ ⇔ ⇔ ⇔  5 x + 2 y = 6 10 x + 4 y = 12 5 x + 2 y = 6 5 x + 2.(−2 = 6)  y = −2 x = 2 Vậy HPT cã nghiƯm lµ  y = −2  - 1.2 §èi víi HPT ë d¹ng nµy ta cã thĨ sư dơng hai... ∆MOP => OC = MP (1) Theo gi¶ thi t Ta cã CD ⊥ AB; PM ⊥ AB => CO//PM (2) Tõ (1) vµ (2) => Tø gi¸c CMPO lµ h×nh b×nh hµnh 3 XÐt hai tam gi¸c OMC vµ NDC ta cã ∠MOC = 900 ( gt CD ⊥ AB); ∠DNC = 900 (néi tiÕp ch¾n nưa ®êng trßn ) => ∠MOC =∠DNC = 900 l¹i cã ∠C lµ gãc chung => ∆OMC ∼∆NDC Trêng THCS Ninh Xu©n – Hoa L – Ninh B×nh GV: TrÇn Danh Lỵi => C¸c d¹ng to¸n «n thi vµo líp 10 CM CO = => CM CN = CO.CD mµ... trªn DE = 1 BC => tam gi¸c DBE c©n t¹i D => ∠E3 = ∠B1 (2) 2 Trêng THCS Ninh Xu©n – Hoa L – Ninh B×nh GV: TrÇn Danh Lỵi C¸c d¹ng to¸n «n thi vµo líp 10 Mµ ∠B1 = ∠A1 ( v× cïng phơ víi gãc ACB) => ∠E1 = ∠E3 => ∠E1 + ∠E2 = ∠E2 + ∠E3 Mµ ∠E1 + ∠E2 = ∠BEA = 900 => ∠E2 + ∠E3 = 900 = ∠OED => DE ⊥ OE t¹i E VËy DE lµ tiÕp tun cđa ®êng trßn (O) t¹i E 5 Theo gi¶ thi t AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD... ph¬ng tr×nh: mx2 - 2(m + 1)x + (m - 4) = 0 (m lµ tham sè) a) X¸c ®Þnh m ®Ĩ c¸c nghiƯm x1; x2 cđa ph¬ng tr×nh tho¶ m·n x1 + 4x2 = 3 b) T×m mét hƯ thøc gi÷a x1; x2 mµ kh«ng phơ thc vµo m Bµi tËp 25: Cho ph¬ng tr×nh x2 - (m + 3)x + 2(m + 1) = 0 Trêng THCS Ninh Xu©n – Hoa L – Ninh B×nh (1) GV: TrÇn Danh Lỵi C¸c d¹ng to¸n «n thi vµo líp 10 T×m gi¸ trÞ cđa tham sè m ®Ĩ ph¬ng tr×nh cã (1) cã nghiƯm x1 = 2x2... - 25x - 25 = 0 6x2 - 5x + 1 = 0 7x2 - 13x + 2 = 0 3x2 + 5x + 60 = 0 2x2 + 5x + 1 = 0 5x2 - x + 2 = 0 x2 - 3x -7 = 0 x2 - 3 x - 10 = 0 4x2 - 5x - 9 = 0 2x2 - x - 21 = 0 6x2 + 13x - 5 = 0 56x2 + 9x - 2 = 0 10x2 + 17x + 3 = 0 7x2 + 5x - 3 = 0 x2 + 17x + 3 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Trêng THCS Ninh Xu©n – Hoa L – Ninh B×nh x2 - 4x + 2 = 0 9x2 - 6x + 1 = 0 -3x2 + 2x + 8 = 0 x2 - 6x + 5 = 0 3x2... - 6 x2 - 12x + 32 = 0 x2 - 6x + 8 = 0 9x2 - 38x - 35 = 0 x2 - 2 3 x + 2 = 0 4 2 x2 - 6x - 2 = 0 2x2 - 2 2 x + 1 = 0 c a GV: TrÇn Danh Lỵi C¸c d¹ng to¸n «n thi vµo líp 10 Bµi tËp 2: BiÕn ®ỉi c¸c ph¬ng tr×nh sau thµnh ph¬ng tr×nh bËc hai råi gi¶i a) 10x2 + 17x + 3 = 2(2x - 1) - 15 b) x2 + 7x - 3 = x(x - 1) - 1 c) 2x2 - 5x - 3 = (x+ 1)(x - 1) + 3 d) 5x2 - x - 3 = 2x(x - 1) - 1 + x2 e) -6x2 + x - 3 = -3x(x... Ninh Xu©n – Hoa L – Ninh B×nh ) GV: TrÇn Danh Lỵi 2 x + y = 4  3 x − y = 1 C¸c d¹ng to¸n «n thi vµo líp 10 x − y = 1 x + 2 y = 5 3 x − y − 5 = 0  ; x + y − 3 = 0 ; 3x + 2 y = 3 ; 3x − y = 1 ;   x = 3 − 2 y  ;  2 x + 4 y = 2007 3 x − y = 2  ;  −3 y + 9 x = 6 0, 2 x − 3 y = 2  ;  x − 15 y = 10 2 x + 3 y = 6  5 5 ; 3 x + 2 y = 5  y  x − = 5 2  ; 2 x − y = 6  2 x + y = 5  . Giải bài toán bằng cách lập hệ phơng trình. Trờng THCS Ninh Xuân Hoa L Ninh Bình GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 I, Mục tiêu: * Kiến thức: HS giải đợc các bài toán thực tế. 70 HS. nếu chuyển 5 HS từ lớp 9A sang lớp 9B thì số HS ở hai lớp bằng nhau. Tính số HS mỗi lớp. Bài 9. Hai trờng A, B có 250 HS lớp 9 dự thi vào lớp 10, kết quả có 210 HS đã trúng tuyển. Tính. Ninh Xuân Hoa L Ninh Bình GV: Trần Danh Lợi Các dạng toán ôn thi vào lớp 10 2 3 2 5 2 6 x y x y + = + = 10 15 10 11 22 2 2 10 4 12 5 2 6 5 2.( 2 6) 2 x y y y x x y x y x y + = =

Ngày đăng: 12/07/2015, 09:10

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w