Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
368 KB
Nội dung
Một số phơng pháp giải phơng trình bậc cao 1 Đặt vấn đề Giải bài tập toán là một trong những phơng tiện dạy học rất quan trọng giúp học sinh củng cố và khắc sâu nội dung bài học. Chỉ có thể thông qua các bài tập ở các hình thức khác nhau tạo điều kiện cho học sinh vận dụng linh hoạt những kiến thức một cách tự lực. Để giải quyết những tình huống cụ thể khác nhau thì những kiến thức đó mới trở nên sâu sắc, hoàn thiện và trở thành vốn riêng của học sinh. Bài tập toán là phơng tiện rất tốt để phát triển t duy đồng thời rèn luyện cho học sinh đức tính kiên trì, chịu khó; khả năng vận dụng lý thuyết vào thực tiễn. Bài tập về phơng trình bậc cao rất đa dạng cho nên phơng pháp giải cũng phong phú. Các em thờng tỏ ra lúng túng, bế tắc không biết làm thế nào để hạ bậc của biến, đặt ẩn phụ nh thế nào, nên chọn cách giải nào Qua thực tế giảng dạy, tham khảo tài liệu, tôi đã rút ra đợc một số phơng pháp nhằm phần nào khắc phục các khó khăn trên của học sinh, giúp các em có thêm tự tin và hứng thú hơn khi giải các bài toán ở phần này. Trong khuôn khổ bài viết này tôi chỉ nêu ra Một số phơng pháp giải phơng trình bậc cao dành chủ yếu cho đối tợng là học sinh khá, giỏi lớp 9 và giải một số bài toán điển hình của phần này. Nội dung của bản sáng kiến đợc chia làm 2 phần: Phần I: Phơng pháp giải một số phơng trình bậc cao đặc biệt + Phơng trình tam thức + Phơng trình đối xứng: - Phơng trình đối xứng bậc chẵn - Phơng trình đối xứng bặc lẻ + Phơng trình dạng (x + a) 4 + (x + b) 4 = c Phần II: Phơng pháp giải một số phơng trình bậc cao khác + Phân tích vế trái thành nhân tử - Phơng pháp thử nghiệm - Phơng pháp hệ số bất định. + Phơng pháp đặt ẩn phụ I. Ph ơng pháp giải một số ph ơng trình bậc cao đặc biệt 1. Ph ơng trình tam thức: phơng trình có dạng: ax 2n + bx n + c = 0 (a 0) (*) Phơng pháp giải: đặt y = x n ta đa về dạng ay 2 + by + c = 0 L u ý: Với n = 2 khi đó phơng trình (*) có dạng: ax 4 + bx 2 + c = 0 ( a 0) đợc gọi là phơng trình trùng phơng. Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An Một số phơng pháp giải phơng trình bậc cao 2 VD1: Giải phơng trình: x 4 -10x 2 + 24 = 0 (phơng trình trùng phơng) (1) Giải: đặt x 2 = y vì x 2 0 nên y 0 khi đó phơng trình có dạng: y 2 - 10y + 24 = 0(1) =(-5) 2 -1.24 = 25 - 24 = 1 phơng trình (1)có 2 nghiệm phân biệt : y 1 = 5 - 1= 4 (thoả mãn); y 2 = 5 + 1 = 6 ( thoả mãn) y 1 = 4 => x 2 = 4 => x 1 = 2; x 2 = -2 y 2 = 6 => x 2 = 6 => 66 43 == x;x Vậy phơng trình (1) có 4 nghiệm: x 1 = 2; x 2 = -2; x 3 = 6 ; x 4 = - 6 VD2 Giải phơng trình: -2x 4 + 15x 2 + 27 = 0 (phơng trình trùng phơng) (2) Giải: -2x 4 + 15x 2 + 27 = 0 2x 2 15x 27 = 0 đặt x 2 = y vì x 2 0 nên y 0 khi đó phơng trình có dạng: 2y 2 - 15y - 27 = 0 (2) = 15 2 - 4.2.(-27) = 225 + 216 = 441 => =21 phơng trình (2) có 2 nghiệm: 2 3 22 2115 1 = = . y (loại vì không thoả mãn điều kiện) 9 22 2115 2 = + = . y (thoả mãn điều kiện) y 2 = 9 => x 2 = 9 => x 1 = 3; x 2 = -3 Vậy phơng trình (2) có 2 nghiệm là: x 1 = 3; x 2 = -3 VD3: Giải phơng trình: x 4 + 2 15 19 x + 5 2 = 0 (3) 15x 4 + 19x 2 + 6 = 0 Giải: Đặt y = x 2 Điều kiện y 0. khi đó phơng trình có dạng : 15y 2 + 19y + 6 = 0 (3) = 19 2 4.15.6 = 1; 1= phơng trình có 2 nghiệm y 1 = 5 3 30 119 = + (loại) y 2 = 3 2 30 119 = (loại) Vậy phơng trình (3) vô nghiệm VD4: Giải phơng trình: x 6 - 9x 3 + 8 = 0 (4) Giải: Đặt y = x 3 khi đó PT(4) có dạng: y 2 - 9y + 8 = 0 (4) Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An Một số phơng pháp giải phơng trình bậc cao 3 Vì 1 + (-9) + 8 = 0 nên pt(4 ' ) có 2 nghiệm y 1 = 1; y 2 = 8 y 1 = 1 => x 3 = 1 x = 1; y 2 = 9 => x 3 = 8 x = 2 Vậy phơng trình có 2 nghiệm là x 1 = 1 ; x 2 = 2 Lu ý: Nếu phơng trình có tổng các hệ số bằng 0 thì phơng trình luôn có một nghiệm bằng 1. Bài tập đề nghị: Giải các phơng trình sau: a. 2x 4 - 8x 2 + 6 = 0 b. x 6 - 5x 3 - 6 = 0 c. - 2x 4 + 7x 2 - 3 = 0 d. 6x 12 x 6 - 1 = 0 e. x 6 + x 4 + x 2 = 0 f. 5x 4 13x 2 + 6 = 0 g. x 6 - 2 7 x 3 + 3 25 = 0 2. Ph ơng trình đối xứng: phơng trình a n x n + a n-1 x n-1 + + a 1 x + a 0 = 0 (a n 0) gọi là phơng trình đối xứng nếu các hệ số của những số hạng cách đều số hạng đầu và cuối bằng nhau, nghĩa là: a n = a 0 a n-1 = a 1 a n-2 = a 2 L u ý: Nếu a là một nghiệm của phơng trình đối xứng thì a 1 cũng là nghiệm của ph- ơng trình đó. 2.1 Ph ơng trình đối xứng bậc chẵn: là phơng trình có dạng: a 2n x 2n + a 2n-1 x 2n-1 + + a 1 x + a 0 = 0 (a 2n 0) Trong đó: a 2n = a 0 a 2n-1 = a 1 Phơng pháp giải:Vì x = 0 không phải là nghiệm của phơng trình, nên ta chia cả 2 vế của phơng trình cho x n . Sau đó đặt y = x + x 1 Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An Một số phơng pháp giải phơng trình bậc cao 4 Vì 2 1 + x x nên y phải có điều kiện là /y/ 2 VD 5: Giải các phơng trình: x 4 + 2x 3 - 13x 2 + 2x + 1 = 0 (5) Giải: Ta thấy rằng x = 0 không phải là nghiệm của phơng trình. Chia cả 2 vế của phơng trình (5) cho x 2 ta đợc: x 2 + 2x - 13 + 0 12 2 =+ x x )'5(013 1 2 1 013 2 2 1 2 2 2 2 = ++ + = ++ + x x x x x x x x Đặt y = x + x 1 điều kiện |y| 2 Ta có: 22 11 2 11 2 22 2 2 = += += + y x x x .x. x x x x PT(5) có dạng: y 2 + 2y - 15 = 0; 16151 =+= phơng trình có 2 nghiệm:y 1 = -1 - 4 = -5 (thoả mãn); y 2 = -1 + 4 = 3 (thoả mãn) + y 1 = -5 => x + x 1 = -5 =>x 2 + 5x +1 = 0 = 25 - 4 = 21 phơng trình có 2 nghiệm: 2 215 2 215 21 + = = x;x + y 2 = 3 => x + x 1 = 3 => x 2 - 3x +1 = 0 ; Xét = (-3) 2 - 4 = 5 Phơng trình có 2 nghiệm: 2 53 2 53 43 + = = x;x Vậy phơng trình (5) có 4 nghiệm là: 2 215 2 215 21 + = = x;x ; 2 53 2 53 43 + = = x;x VD6: Giải phơng trình: x 4 - 3x 3 + 4x 2 -3x + 1 = 0 Giải: x= 0 không phải là nghiệm nên ta chia cả 2 vế của phơng trình cho x 2 ta đợc: 04 1 3 1 2 2 =+ + + x x x x Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An Một số phơng pháp giải phơng trình bậc cao 5 Đặt y = x + x 1 với |y| 2 thì 22 11 2 2 2 2 = +=+ y x x x x ta đợc: y 2 - 3y + 2 = 0 => y 1 = 1 (loại) y 2 = 2 (thoả mãn) Với y 2 = 2 => x + x 1 = 2 =>x 2 -2x + 1 = 0 <=>(x- 1) 2 = 0 <=> x =1 Vậy phơng trình có một nghiệm là : x = 1 VD7. Giải phơng trình 2x 4 5x 3 + 13x 2 5x + 2 = 0 (7) Giải: Vì x = 0 không phải là một nghiệm của phơng trình nên ta chia cả 2 vế cho x 2 ta đợc: 013 1 5 1 2 2 2 =+ + + x x x x (7) Đặt y = x + x 1 với |y| 2 thì 22 11 2 2 2 2 = +=+ y x x x x Phơng trình (7) có dạng 2(y 2 -2) - 5y +13 = 0 2y 2 5y + 9 = 0 (7) = (-5) 2 4.2.9 = 25 72 =-47 < 0 Phơng trình (7) vô nghiệm. Vậy phơng trình (7) vô nghiệm VD 8. x 6 -3x 5 + 6x 4 - 7x 3 + 6x 2 - 3x + 1= 0 (8) Giải: Vì x = 0 không phải là một nghiệm của phơng trình nên ta chia cả 2 vế cho x 3 ta đợc: 07 1 6 1 3 1 2 2 3 3 = ++ + + x x x x x x (8) Đặt y = x + x 1 với |y| 2 thì 22 11 2 2 2 2 = +=+ y x x x x yy x x x .x x x x x 3 11 3 11 3 3 3 3 = + +=+ Thay vào pt(8) ta đợc: y 3 - 3y - 3(y 2 - 2) + 6y - 7 = 0 y 3 -3y 2 + 3y -1 = 0 (y - 1) 3 = 0 y = 1 loại Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An Một số phơng pháp giải phơng trình bậc cao 6 Vậy phơng trình (8) vô nghiệm 2.2 Ph ơng trình đối xứng bậc lẻ: có dạng: a 2n+1 x 2n+1 + a 2n x 2n + + a 1 x + a 0 = 0 Trong đó: a 2n+1 = a 0 a 2n = a 1 a 2n-1 = a 2 Phơng pháp giải: Phơng trình đối xứng bậc lẻ luôn có nghiệm là -1 nên vế trái của phơng trình bậc lẻ luôn chia hết cho x + 1. L u ý: Khi chia 2 vế của phơng trình đối xứng bậc lẻ ẩn số x cho x+ 1 ta đợc một ph- ơng trình đối xứng bậc chẵn. VD9: Giải phơng trình: 2x 3 + 7x 2 + 7x + 2 = 0 (9) Giải: 2x 3 + 7x 2 + 7x + 2 = 0 (Đây là pt đối xứng bậc lẻ nên có 1 nghiệm là -1) (x + 1)(2x 2 + 5x + 2) = 0 (x + 1)(x + 2)(2x + 1) = 0 Phơng trình (9) có 3 nghiệm là: x 1 = -1; x 2 = -2; x 3 = 2 1 VD10: Giải phơng trình: x 5 + 3x 4 -11x 3 -11x 2 + 3x + 1 = 0 (10) Giải: (x +1)(x 4 + 2x 3 -13x 2 +2x +1) = 0 =+++ =+ )''10(012132 )'10(01 234 xxxx x Giải phơng trình (10) ta đợc x = -1 Giải phơng trình (10): ta thấy phơng trình (10) là phơng trình đối xứng bậc chẵn có 4 nghiệm: 2 215 2 215 21 + = = x;x ; 2 53 2 53 43 + = = x;x (đã giải ở VD5). Vậy phơng trình (10) có 5 nghiệm: 2 215 2 215 21 + = = x;x ; 2 53 4 + =x ; x 5 = -1 VD11: Giải phơng trình: x 5 - 2x 4 +x 3 + x 2 - 2x + 1 = 0 (x + 1)(x 4 - 3x 3 + 4x 2 - 3x + 1) = 0 (*) Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An ; 2 53 3 = x Một số phơng pháp giải phơng trình bậc cao 7 =++ =+ )''11(01343 )'11(01 234 xxxx x Giải phơng trình (11) ta đợc x = -1 Giải phơng trình (11): ta thấy phơng trình (2) là phơng trình đối xứng bậc chẵn có 1 nghiệm là x = 1 (Đã giải ở VD6 ) Vậy phơng trình (11) có hai nghiệm là: x 1 = -1; x 2 = 1 VD 12: Giải phơng trình: x 7 - 2x 6 + 3x 5 -x 4 -x 3 +3x 2 - 2x +1 = 0 (12) Giải: x 7 - 2x 6 + 3x 5 -x 4 -x 3 +3x 2 - 2x +1 = 0 (x + 1)(x 6 -3x 5 + 6x 4 - 7x 3 + 6x 2 - 3x + 1) = 0 =+++ =+ )''12(0136763 )'12(01 23456 xxxxxx x Phơng trình (12) có một nghiệm là x = -1 Phơng trình (12) vô nghiệm (đã giải ở VD8) Vậy phơng trình (12) có một nghiệm là x = -1 Bài tập đề nghị: Giải các phơng trình sau: a. x 4 - 3x 3 + 6x 2 + 3x + 1 = 0 b. x 4 + 2x 3 - 6x 2 + 2x + 1 = 0 c. x 4 - x 3 - x + 1 = 0 d. x 5 - 3x 4 + 6x 3 + 6x 2 - 3x + 1 = 0 e. x 4 3x 3 + 6x 2 + 3x +1 ( Đề thi vào lớp 10 Trờng chuyên Lê Hồng Phong- TP Hồ Chí Minh) f. x 4 + 2x 3 6x 2 + 2x +1 = 0 (Thi chuyên A- Bùi Thị Xuân TP Hồ Chí Minh) g. x 5 5x 4 + 4x 3 + 4x 2 -5x +1 = 0 h. x 6 - 5x 3 + 4x 2 - 5x + 1 = 0 3. Ph ơng trình có dạng: (x + a) 4 + (x + b) 4 = c Phơng pháp giải: Ta đặt y ba x = + + 2 ; rồi đa về phơng trình trùng phơng. Tuy nhiên trong trờng hợp (a + b) 2 ta thờng đặt y = x + a hoặc y = x + b VD 11: Giải phơng trình: (x + 3) 4 + (x + 5) 4 = 2 Giải: Đặt x + 4 = y khi đó phơng trình đã cho có dạng: (y -1) 4 + (y +1) 4 =2 y 4 - 4y 3 + 6y 2 - 4y + 1+ y 4 + 4y 3 + 6y 2 + 4y + 1-2 = 0 Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An Một số phơng pháp giải phơng trình bậc cao 8 2y 4 + 12y 2 = 0 2y 2 (y 2 + 6)= 0 y = 0 y = 0 => x+ 4 = 0 <=> x = - 4 Vậy phơng trình có một nghiệm là: x = - 4 VD 12: Giải phơng trình (x 2) 4 + (x 3) 4 = 1 Giải: Đặt x 3 = y => x 2 = y + 1 khi đó phơng trình đã cho có dạng: (1 + y) 4 + y 4 = 1 y 4 + 4y 3 + 6y 2 + 4y + 1 + y 4 = 1 2y 4 + 4y 3 + 6y 2 + 4y = 0 2y( y 3 + 2y 2 + 3y + 2) = 0 2y(y + 1)(y 2 + y + 2) = 0 y = 0 hoặc y = -1 y = 0 => x -3 = 0 x = 3 y = -1 => x 3 = -1 x = -2 Vậy phơng trình có hai nghiệm là: x 1 = 3; x 2 = -2 Bài tập đề nghị a. x 4 + (x - 1) 4 = 97 b.(x 2) 4 + (x - 6) 4 = 82 c. (x 5) 2 + (x 2) 4 = 17 II. Một số ph ơng pháp giải ph ơng trình bậc cao khác Để giải phơng trình bậc cao, nguời ta thờng dùng cách phân tích vế trái thành nhân tử để đa phơng trình bậc cao về các phơng trình bậc nhất và bậc hai. Phơng pháp đặt ẩn phụ cũng thờng đợc sử dụng. 1. Phân tích vế trái thành nhân tử Phân tích đa thức thành nhân tử có nhiều phơng pháp khác nhau nh: Đặt nhân tử chung, nhóm hạng tử, dùng hằng đẳng thức, thêm bớt hạng tử, tách hạng tử, thử nghiệm; Sau đây tôi chỉ trình bày 2 phơng pháp thờng sử dụng trong quá trình giải phơng trình bậc cao 1.1. Phân tích vế trái thành nhân tử bằng ph ơng pháp thử nghiệm Cơ sở của phơng pháp này là: một phơng trình a n x n +a n-1 x n-1 + +a 1 x + a 0 = 0 có hệ số hữu tỉ (a i Q n;i 1= ) bao giờ cũng đa đợc về phơng trình có hệ số nguyên. Định lý: Nếu phơng trình a n x n +a n-1 x n-1 + +a 1 x + a 0 = 0 (1) (a i Z n;i 1= ). có nghiệm hữu tỉ thì nghiệm có dạng x = q p (trong đó : p là ớc của a 0 ; q là ớc của a n ) Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An Một số phơng pháp giải phơng trình bậc cao 9 Hệ quả 1: Mỗi nghiệm nguyên nếu có của phơng trình (1) đều là ớc a 0 Hệ quả 2: Nếu a n = 1 thì mỗi nghiệm hữu tỉ của (1) đều nguyên VD 13: Giải phơng trình: x 3 +6x 2 + 2x + 12 = 0 Nhận xét: Ta có a n = 1; a 0 =12. Nếu phơng trình có nghiệm hữu tỉ thì nghiệm đó phải là ớc của 12. Các ớc của 12 là: 1; 2; 3; 4; 6; 12 Lần lợt thay các giá trị trên vào phơng trình ta thấy x = 6 là một nghiệm của PT Giải: x 3 +6x 2 + 2x + 12 = 0 (x+6)(x 2 +2) = 0 x + 6 = 0 (vì x 2 + 2 > 0 với mọi x) x = - 6 Vậy phơng trình có một nghiệm là: x 1 = - 6 VD 14: Giải phơng trình: x 4 + x 3 - 7x 2 - x + 6 = 0 Nhận xét: Ta có a n = 1; a 0 = 6. Nếu phơng trình có nghiệm hữu tỉ thì nghiệm đó phải là ớc của 6. Các ớc của 6 là: 1; 2; 3; 6 Lần lợt thay các giá trị trên vào phơng trình ta thấy x= 1; x=-1; x= 2; x= -3 là nghiệm của phơng trình. Giải: x 4 + x 3 - 7x 2 - x + 6 = 0 (x+1)(x-1)(x- 2)(x + 3) = 0 x+ 1 = 0 hoặc x - 1 = 0 hoặc x - 2 = 0 hoặc x + 3 = 0 x = -1 hoặc x= 1 hoặc x = 2 hoặc x= - 3 Vậy phơng trình có 4 nghiệm là: x 1 = 1; x 2 = -1; x 3 = 2; x 4 = -3 VD 15: Giải phơng trình: 2x 3 + x 2 - 7x + 3 = 0 Nhận xét: Ta có a n = 2; a 0 =3 Các ớc của 2 là: 1; 2, Các ớc của 3 là: 1; 2; 3 Nếu phơng trình có nghiệm hữu tỉ thì nghiệm đó phải là thơng của phép chia ớc của 3 cho ớc của 2. Nh vậy, các nghiệm có thể là: 1; 2; 3; 2 3 2 1 ; Lần lợt thay vào ta thấy phơng trình chỉ có một nghiệm hữu tỉ là x = 2 1 Giải: 2x 3 + x 2 - 7x + 3 = 0 (2x -1)(x 2 + x - 3) = 0 Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An Một số phơng pháp giải phơng trình bậc cao 10 =+ = )(xx )(x 203 1012 2 giải PT(1): 2x -1 = 0 x = 2 1 giải PT(2): x 2 + x - 3 = 0 Xét = 1 2 -4.(-3) = 13 phơng trình(2) có 2 nghiệm phân biệt: 2 131 2 131 21 + = = x;x Vậy phơng trình có 3 nghiệm là : 2 131 ; 2 131 21 + = = xx ; x 3 = 2 1 VD 16: tìm nghiệm nguyên của phơng trình x 3 + x 2 + 1 = 0 Giải: Nếu phơng trình có nghiệm nguyên thì nghiệm đó phải là ớc của 1. Các ớc của 1 là: 1. Với x =1 ta có 1 3 + 1 2 + 1 = 3 0 => x = 1 không phải là nghiệm Với x = -1 ta có (-1) 3 + (-1) 2 + 1 = 1 0 => x = -1 không phải là nghiệm Vậy phơng trình không có nghiệm nguyên. L u ý: Nếu a 0 lớn và nhiều ớc số thì việc tìm nghiệm nguyên của phơng trình gặp nhiều khó khăn ta có thể dựa vào dấu hiệu sau để giảm bớt phép thử: Định lý: Nếu 0 là nghiệm của đa thức P(x) = a n x n +a n-1 x n-1 + +a 1 x +a 0 với a i Z n;i 1= . Khi đó 1 1 1 1 + )(P và )(P là nguyên VD 17: Tìm nghiệm nguyên của phơng trình: x 4 + 2x 3 - 4x 2 - 5x - 6 = 0 (*) Nhận xét: Nếu (*) có nghiệm nguyên thì nghiệm đó phải là ớc của 6. Các ớc của 6 là: 1; 2; 3; 6 x 1 -1 2 -2 3 -3 6 -6 1 1 )(P -12 4 -6 3 5 12 7 12 1 1 + )(P -2 2 3 2 3 3 Thay x= 2 và x= -3 vào pt(*) ta thấy nó thoả mãn. Vậy phơng trình (*) có 2 nghiệm nguyên là x = 2 và x = -3 Chú ý: Việc tìm nghiệm hữu tỉ của phơng trình: a n x n +a n-1 x n-1 + +a 1 x + a 0 = 0 (1) Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An [...]... Trong bản sáng kiến này tôi chỉ nêu ra một số dạng phơng trình bậc cao đặc biệt và một số phơng pháp giải Qua thực tế giảng dạy, tôi thấy rằng: việc nắm vững các phơng pháp sẽ giúp các em tự tìm ra đợc cái chốt có vấn đề Từ đó, đề xuất ra đợc phơng pháp giải phù hợp Chính vì vậy, việc nắm vững các phơng pháp giải phơng trình bậc cao sẽ góp phần giúp các em thêm tự tin, mạnh dạn khi giải toán, tạo đợc... (ad + bc)x + bd Đồng nhất hệ số ta có: a + c = 4 a = 5 b=2 b + d + ac = 10 ad + bc = 37 c =1 bd = 14 d = 7 Vậy x4 - 4x3 - 10x2 + 37x - 14 = 0 (x2 -5x +2)(x2 + x - 7) = 0 x 2 5x + 2 = 0 (1) 2 x + x 7 = 0 (2) Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An Một số phơng pháp giải phơng trình bậc cao 14 Giải pt(1): x2 -5x + 2 = 0 = 25 8 = 17 x 1,2 = 5 17 2 Giải pt(2): x2 + x - 7 =... trình: xn +an-1 xn-1 + +a1x + a0 = 0 (2) Chúng ta chuyển từ (1) sang (2) bằng cách nhân cả 2 vế của phơng trình (1) với ann1 khi đó (1) trở thành (1'): ann xn +an-1.ann-1 xn-1 + +a1.ann-1x + ann-1.a0 = 0 Đặt y=anx thì (1') trở thành: yn +an-1 yn-1 + +a1.ann-2y + ann-1.a0 = 0 VD 18: Tìm nghiệm hữu tỉ của phơng trình: 2x3 + x2 - 7x + 3 = 0 (1) Giải: Nhân cả 2 vế của phơng trình với 22 ta đợc: 23x3 +... y3 - 5y2 + 16y - 12 = 0 (y -1)(y2 - 4y + 12) = 0 y 1 = 0 (1) 2 y 4y + 12 = 0 (2) giải pt(1): y - 1 = 0 y =1 y =1 => 2x = 1 => x= 1 2 giải pt(2): y2 - 4y + 12 = 0 (y - 2)2 + 8 = 0 phơng trình vô nghiệm vì: (y - 2)2 + 8 > 0 với mọi y Kết luận: Phơng trình có một nghiệm duy nhất x = 1 2 VD 23 Giải phơng trình: x4 - 4x3 - 10x2 + 37x - 14 = 0 Giải: Nếu vế trái phân tích đợc thành nhân... 12 = 0 Đặt 2x = y phơng trình trở thành: y3 + y2 - 14y + 12 = 0 (2) Nếu pt(2) có nghiệm hữu tỉ thì nghiệm đó phải là ớc của 12 Các ớc của 12 là: 1; 2; 3; 4; 6; 12 P(1) = 0; P(-1) = 24 X 1 -1 2 -2 3 -3 4 -4 6 -6 12 -12 P(1) 1 P (1) +1 0 0 0 0 0 0 0 8 -24 6 -12 24 5 -8 24 7 0 Thử với y= 1; y= 2; y = 3; y= - 4 ta thấy chỉ có y =1 thoả mãn y =1 => x = 0 24 5 24 13 0 24 11 1 2 Vậy phơng trình... = 0 = 1 + 28 = 29 x 3,4 = 1 29 2 Vậy phơng trình có 4 nghiệm: x 1,2 = 5 17 ; x 3,4 = 1 29 2 2 Bài tập đề nghị: Giải các phơng trình a x3 + 2x2 + x - 1 = 0 b 2x3 + 3x + 4 = 0 c x4 + 2x3 + x + 5 = 0 d x4 - 4x2 + 7x 3 = 0 2 Phơng pháp đặt ẩn phụ Phơng pháp đặt ẩn phụ rất đa dạng, tuỳ bài toán cụ thể để có cách đặt ẩn phù hợp Do vậy, khi giảng dạy giáo viên cần giúp cho các em nhận diện đợc phơng... 14)(x2 - 9x + 20) = 72 Đặt x2 - 9x + 17 = y khi đó pt có dạng: (y- 3)(y+ 3) =72 y2 = 81 y = 9 + Với y = 9 ta có: x2 - 9x +17 = 9 (1) x2 - 9x + 8 = 0 Phơng trình (1) có 2 nghiệm x1 = 1; x2 = 8 + Với y = - 9 ta có: x2 - 9x + 17 = -9 x2 - 9x + 26 = 0 = 81 - 4 26 = 81 - 104 =- 23 < 0 => phơng trình (2) vô nghiệm Vậy phơng trình (*) có 2 nghiệm: x1 = 1; x2 = 8 VD 27 (6x +7)2 (3x +4)(x + 1) = 6 Giải:... 5)(x2 + x + 1) = 0 (1) x 5 = 0 2 x + x + 1 = 0 (2) giải pt(1): x - 5 = 0 x = 5 1 2 1 4 3 4 1 2 3 4 giải pt(2): x2 + x + 1 = 0 x2 + 2.x + + = 0 (x + ) 2 + = 0 1 2 1 2 3 4 Ta có: (x + ) 2 0 với mọi x, nên (x + ) 2 + > 0 với mọi x nên phơng trình (2) vô nghiệm Kết luận: Vậy phơng trình chỉ có một nghiệm duy nhất x = 5 VD 21: Giải phơng trình: x4 + 6x3 + 11x2 + 6x +1= 0 (1) Giải: Nếu vế trái... -12 = 0 (*) Giải: Đặt x2 + x = y khi đó phơng trình (*) có dạng: y2 + 4y - 12 = 0 = 22 -1.(12) = 16; = 4 =>y1 = -2 - 4= -6; y2 =-2 + 4 = 2 y1 = -6 => x2 + x = -6 x2 + x + 6 = 0 (1) = 12 - 4.6 = - 23 < 0 => pt(1) vô nghiệm y2 = 2 => x2 + x - 2 = 0 (2) Phơng trình (2) có 2 nghiệm x1 = 1; x2 = -2 Vậy phơng trình (*) có 2 nghiệm: x1 = 1; x2 = -2 VD 25: Giải phơng trình: (x2 + 5x)2 8x(x + 5) -... trình bậc cao sẽ góp phần giúp các em thêm tự tin, mạnh dạn khi giải toán, tạo đợc sự hứng thú học tập cho các em Mặc dù đã có nhiều cố gắng song do trình độ còn hạn chế, nên trong bản sáng kiến kinh nghiệm này còn nhiều thi u sót, phiến diện rất mong sự góp ý chân tình của các bạn bè đồng nghiệp và các em học sinh Nguyễn Quang Phúc THCS Cửa Nam - Vinh - Nghệ An . giảng dạy, tham khảo tài liệu, tôi đã rút ra đợc một số phơng pháp nhằm phần nào khắc phục các khó khăn trên của học sinh, giúp các em có thêm tự tin và hứng thú hơn khi giải các bài toán ở phần. - 3x + 1 = 0 e. x 4 3x 3 + 6x 2 + 3x +1 ( Đề thi vào lớp 10 Trờng chuyên Lê Hồng Phong- TP Hồ Chí Minh) f. x 4 + 2x 3 6x 2 + 2x +1 = 0 (Thi chuyên A- Bùi Thị Xuân TP Hồ Chí Minh) g x 4 -10x 2 + 24 = 0 (phơng trình trùng phơng) (1) Giải: đặt x 2 = y vì x 2 0 nên y 0 khi đó phơng trình có dạng: y 2 - 10y + 24 = 0(1) =(-5) 2 -1.24 = 25 - 24 = 1 phơng trình (1)có