http://www.violet.vn/haimathlx KỲ THI KSCL THI ĐẠI HỌC NĂM 2011 LẦN THỨ 1 ĐỀ THI MÔN TOÁN 12. KHỐI D. Thời gian làm bài: 180 phút, không kể thời gian giao đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y= x 3 - 3(m + 1)x 2 + 3m(m + 2)x + 1 (1) (m là tham số thực) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m= 1 2. CMR: Hàm số (1) luôn có cực đại và cực tiểu. Xác định các giá trị của m để hàm số (1) đạt cực đại và cực tiểu tại các điểm có hoành độ dương. Câu II (2,0 điểm) 1. Giải bất phương trình: x 2 + xxx 26342 2 −≥++ 2. Giải phương trình: sin2x - 22 (sinx + cosx) -5=0 Câu III (1,0 điểm) Tính tổng: S= !1!2010 1 !3!2008 1 !2005!6 1 !2007!4 1 !2009!2 1 +++++ Câu IV (1,0 điểm) Cho tứ diện ABCD có ABC là tam giác vuông tại A, AB =a, AC =a 3 , DA =DB =DC. Biết rằng DBC là tam giác vuông. Tính thể tích tứ diện ABCD Câu V (1,0 điểm) CMR: Với mọi x , y, z dương thoả mãn xy + yz + zx = 3 ta có: 1 ))()(( 4 2 1 ≥ +++ + xzzyyxxyz II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho 2 điểm A(5;-2), B(-3;4) và đường thẳng d có phương trình: x - 2y + 1 = 0. Tìm toạ độ điểm C trên đường thẳng d sao cho tam giác ABC vuông tại C. Viết phương trình đường tròn ngoại tếp tam giác ABC. 2. Trong mặt phẳng (P), cho hình chữ nhật ABCD có AB=a, AD=b. S là một điểm bất kỳ nằm trên đường thẳng At vuông góc với mặt phẳng (P) tại A. Xác định tâm, bán kính mặt cầu ngoại tiếp hình chóp S.ABCD và tính thể tích khối cầu đó khi SA=2a. Câu VII.a (1,0 điểm) Giải hệ phương trình: 2 3 12 1 = + − x xy 6 3 12 1 = + + y xy B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh A(-2;3), đường cao CH nằm trên đường thẳng: 2x + y -7= 0 và đường trung tuyến BM nằm trên đường thẳng 2x – y +1=0. Viết phương trình các đường thẳng chứa các cạnh của tam giác ABC. 2. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SAB là tam giác đều và mp(SAB) vuông góc với mp(ABC). Xác định tâm, bán kính mặt cầu ngoại tiếp hình chóp S.ABC và tính thể tích khối cầu đó. Câu VII.b (1,0 điểm) Giải phương trình e x = 1+ ln(1+x). Hết http://www.violet.vn/haimathlx Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh:……………………… …… ; Số báo danh:……………… ĐÁP ÁN - THANG ĐIỂM ĐỀ THI KSCL THI ĐẠI HỌC NĂM 2011 LẦN THỨ 1 MÔN: TOÁN 12; KHỐI D. (Đáp án - Thang điểm gồm 05 trang) Câu Ý Nội dung đáp án Điểm I 2,0 1 (1,0 điểm) Khi m=1, ta có hàm số y = x 3 -6x 2 +9x+1 * TXĐ: R * Sự biến thiên - Chiều biến thiên: y' = 3x 2 -12x + 9 y' = 0 <=> x =1 hoặc x =3 0,25 Hàm số đồng biến trên các khoảng (- )1;∞ và ( );3 +∞ ; Nghịch biến trên khoảng (1; 3) - Cực trị: Hàm số đạt cực đại tại x =1; y CĐ =5 Hàm số đạt cực tiểu tại x =3; y CT =1 - Giới hạn: ±∞= ±∞→ y x lim 0,25 - Bảng biến thiên: x - ∞ 1 3 + ∞ y' + 0 - 0 + + ∞ 5 y - ∞ 1 0,25 * Đồ thị: y 5 1 0 1 3 4 x 0,25 2 (1,0 điểm) * Ta có: y' = 3x 2 - 6 (m+1)x + 3m(m+2) y' = 0 <=> x 2 - 2(m+1)x + m(m+2) = 0(2) => '∆ =(m+1) 2 - m(m+2)=1 > 0, m∀ 0,25 Vậy phương trình y'=0 luôn có 2 nghiệm phân biệt với mọi m. Do đó hàm số (1) luôn có cực đại và cực tiểu. 0,25 * Hàm số (1) đạt cực đại và cực tiểu tại các điểm có hoành độ dương <=> (2) có 2 nghiệm dương phân biệt <=> P > 0 S > 0 0,25 http://www.violet.vn/haimathlx m(m+2) > 0 <=> <=> m > 0 2(m+1) > 0 0,25 II 2,0 1 (1,0 điểm) BPT đã cho <=> x 2 + 2x - 6 + 342 2 ++ xx > 0 Đặt t = 1)1(2342 22 ++=++ xxx => điều kiện t >1 0,25 BPT trở thành: 06 2 3 2 ≥+− − t t <=> t 2 + 2t - 15 >0 0,25 <=> t >3 t <-5 (loại vì trái điều kiện) 0,25 Vậy: 2x 2 + 4x + 3 > 9 <=> x 2 + 2x - 3 > 0 <=> x > 1 x < -3 0,25 2 (1,0 điểm) PT đã cho <=> (sinx + cosx) 2 - 2 2 (sinx + cosx) - 6 = 0 0,25 <=> sinx + cosx = - 2 sinx + cosx = 3 2 0,25 <=> 2 sin 2 4 −= + x 2 sin 23 4 = + x => vô nghiệm 0,25 <=> 2 24 kx +−=+ <=> )(2 4 3 Zkkx ∈+−= 0,25 III 1,0 Ta có 2011!S= !1!2010 !2011 !3!2008 !2011 !2005!6 !2011 !2007!4 !2011 !2009!2 !2011 +++++ = 2010 2011 2008 2011 6 2011 4 2011 2 2011 CCCCC +++++ 0,25 Khai triển (1+x) 2011 = 20112011 2011 20102010 2011 22 2011 1 2011 0 2011 xCxCxCxCC +++++ 0,25 Chọn x = -1 ta có: 2011 2011 3 2011 1 2011 2010 2011 2 2011 0 2011 CCCCCC +++=+++ Chọn x = 1 ta có: 20112011 2011 2 2011 1 2011 0 2011 2 =++++ CCCC 0,25 http://www.violet.vn/haimathlx Do đó: 20102010 2011 4 2011 2 2011 0 2011 2 =++++ CCCC Vậy S = !2011 12 2010 − 0,25 IV 1,0 D Gọi M là trung điểm của BC Ta có: MA=MB=MC Mà: DA=DB=DC (gt) B Suy ra: DM ⊥ (ABC) C M a A Hình vẽ 0.25 0,25 Có ∆ DBC vuông cân tại D nên DM = aaaaBC ==+= 2. 2 1 3 2 1 2 1 22 0,25 Vậy V ABCD = 3 . 6 3 2 3 . 3 1 . 3 1 a aa aSDM ABC == ∆ (đvtt) 0,25 V 1,0 Áp dụng BĐT Côsi ta có: = +++ ≥ +++ + ))()((2 4 .2 ))()(( 4 2 1 xzzyyxxyzxzzyyxxyz = ))()(( 22 xyyzxzxyyzxz +++ 0,25 Mà 2 3 )(2 ))()(( 3 = ++ ≤+++ zxyzxy xyyzxzxyyzxz => (xz+yz)(xy+xz)(yz+xy) < 8 0,25 Do đó: 1 8 22 ))()(( 4 2 1 =≤ +++ + xzzyyxxyz 0,25 Dấu "=" xẩy ra <=> ))()(( 4 2 1 xzzyyxxyz +++ = xz + yz = xy + xz = yz +xy <=> x = y = z = 1 xy+ yz + zx = 3 0,25 VI.a 2,0 1 (1,0 điểm) Giả sử C=(x o ;y o ) Vì C ∈ d nên x o - 2y o + 1 = 0 (1) 0,25 Vì CA ⊥ CB nên 0. =CBCA <=> (5 - x o )(-3 - x o ) + (-2 - y o )(4 - y o ) = 0 <=> 02322 0 2 00 2 0 =−−+− yyxx (2) 0,25 a 3 http://www.violet.vn/haimathlx Thế (1) vào (2) ta có: 042 0 2 0 =−− yy <=> 52151 00 −==>−= xy 52151 00 +==>+= xy Vậy có 2 điểm thoả mãn đề bài là: C 1 = 521( + ; 51+ ) C 2 = 521( − ; )51− 0,25 Đường tròn ngoại tiếp tam giác ABC có tâm I(1;1) là trung điểm AB và bán kính R= 5 2 10 2 == AB . Vậy phương trình đường tròn đó là: 25)1()1( 22 =−+− yx 0,25 2 (1,0 điểm) Gọi O là giao điểm hai đường chéo AC và BD của hình chữ nhật S ABCD. Qua O kẻ đường thẳng song song với SA cắt SC tại điểm I Ta có: OI ⊥ (ABCD) vì SA ⊥ (ABCD) A I => OI là trục của đường tròn ngoại tiếp D hình vuông ABCD. O => IA = IB = IC = ID (1) B C Mà OI là đường trung bình của SAC∆ => IS = IC (2) Từ (1) và (2) => I là tâm của mặt cầu ngoại tiếp hình chóp S.ABCD Hình vẽ 0,25 0,25 Do đó bán kính mặt cầu đó là: R= 2 5 2 4 22 ¸SC 2222222 babaaACSA + = ++ = + = 0,25 Vậy thể tích khối cầu ngoại tiếp hình chóp S.ABCD là: V= 6 5)5( 8 )5( . 3 4 3 4 2222 322 3 baba ba R ++ = + = (đvtt) 0,25 VII.a 1,0 Điều kiện x>0, y>0, x+3y ≠ 0 Hệ đã cho tương đương với x xy 2 3 12 1 = + − 1 31 =+ yx y xy 6 3 12 1 = + + xy yx 3 1231 + − =− 0,25 Suy ra xyyx 3 1291 + − =− => y 2 + 6xy - 27x 2 = 0 0,25 => 0276 2 =− + x y x y <=> 3= x y hoặc 9−= x y (loại) 0,25 Với y = 3x thế vào PT đầu của hệ đã cho ta có: x – 2 x - 2 = 0 <=> x = (1+ 2 )3 => y = 3 (1+ 2 )3 0,25 VI.b 2,0 http://www.violet.vn/haimathlx 1 (1,0 điểm) Đường thẳng chứa cạnh AB đi qua A (-2;3) và nhận véctơ chỉ phương CH u = (-1;2) của đường CH làm véctơ pháp tuyến nên có phương trình là: - 1(x+2) + 2(y-3) = 0 <=> - x + 2y - 8 = 0 0,25 Toạ độ điểm B là nghiệm hệ: =+− =−+− 012 082 yx yx => B = (2; 5) 0,25 Giả sử đỉnh C = (x o ; y o ) => M = ; 2 2 0 −x + 2 3 0 y Vì C ∈ CH nên 2x o + y o - 7 = 0 (1) Vì M ∈ BM nên: 01 2 3 2 2 .2 00 =+ + − − yx <=> 2x o - y o - 5 = 0 (2) 0,25 Giải hệ (1), (2) ta có: = = 1 3 0 0 y x Vậy C= (3; 1) Phương trình đường thẳng AC là: 2x + 5y -11 =0 Phương trình đường thẳng BC là: 4x + 5y -13 =0 0,25 2 (1,0 điểm) Gọi H là trung điểm AB => SH ⊥ (ABC) S Gọi I là trọng tâm ∆ ABC, J là trọng tâm ∆ SAB và O là điểm sao cho OIHJ là hình vuông Ta có: OA=OB=OC (Vì OI là trục của đường tròn B ngoại tiếp ∆ ABC) J O OS=OA=OB (vì OJ là trục của đường tròn ngoại tiếp ∆ SAB ) H I Vậy O là tâm mặt cầu ngoại tiếp hình chóp S.ABC C A Hình vẽ 0,25 0,25 Bán kính mặt cầu là: R=OA= 6 15 2 3 9 5 3 2 3 1 2 22 22 aa CHSHIAOI = = + =+ 0,25 Thể tích khối cầu là: V = 3 3 3 54 155 6 15 . 3 4 3 4 a a R = = (đvtt) 0,25 VII.b 1,0 Điều kiện: x > -1 0,25 Xét hàm số: f(x) = e x - ln(1+x) - 1 trên khoảng (-1; + ∞ ) Ta có: f'(x)= e x - x+1 1 ; f''(x) = e x + 0 )1( 1 2 > + x , x∀ ∈ (-1; + ∞ ) Suy ra f'(x) đồng biến /(-1; + ∞ ) 0,25 http://www.violet.vn/haimathlx Vì f'(0) = 0 nên f'(x) > 0 , x∀ >0 f'(x)<0, x∀ <0 Ta có bảng biến thiên: x -1 0 ∞+ )( ' xf - 0 + f(x) 0 0,25 Dựa vào bảng biến thiên ta có: f (x) =0 <=> x = 0 Vậy phương trình có nghiệm duy nhất: x = 0 0,25 Hết Thí sinh làm theo cách khác đúng vẫn được cho điểm tối đa theo thang điểm của phần đó. . liệu. Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh:……………………… …… ; Số báo danh:……………… ĐÁP ÁN - THANG ĐIỂM ĐỀ THI KSCL THI ĐẠI HỌC NĂM 2011 LẦN THỨ 1 MÔN: TOÁN 12; KHỐI D. (Đáp án -. http://www.violet.vn/haimathlx KỲ THI KSCL THI ĐẠI HỌC NĂM 2011 LẦN THỨ 1 ĐỀ THI MÔN TOÁN 12. KHỐI D. Thời gian làm bài: 180 phút, không kể thời gian giao đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7, 0 điểm) Câu I. Thang điểm gồm 05 trang) Câu Ý Nội dung đáp án Điểm I 2,0 1 (1,0 điểm) Khi m=1, ta có hàm số y = x 3 -6x 2 +9x+1 * TXĐ: R * Sự biến thi n - Chiều biến thi n: y' = 3x 2 -12x + 9 y' = 0