1. Trang chủ
  2. » Luận Văn - Báo Cáo

Khảo sát phương trình sóng phi tuyến trong không gian Sobolev có trọng 5

17 364 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 3,66 MB

Nội dung

Luận văn thạc sĩ -ngành Toán Giải Tích-Chuyên đề :Khảo sát phương trình sóng phi tuyến trong không gian Sobolev có trọng

Trang 1

CHUONG 3

KHAO SA T PHUONG TRINH

Uti -( u" + ~ u,)+ F(u,u,) = f(r,t\

Xet bai tmin (3.1)- (3.4)sail

uu-( Urr+~Ur )+F(U,Uf)= f(r,t), O<r<l, O<t<T,

I

lill J;ur (r, t)

1

< +00, - u,(l, t) = hou(l, t) + h(t) Uf(1,t) + g(t),

r~O+

(3.1)

(3.2)

u(r,O) = uo(r), uJr,O) = ul(r), F(u,uf) =f;(u)+F2(Uf) = lula-l u+luf IP-l Up

(3.3)

(3.4)

111.1 Du'a v~ bili tmin bitn philo

Xet bai tmin (3.1)- (3.4)

Til (3.1) ta suy ra

r I

T I

f fr Ull-(urr +.lur)+ F(u,ul) wdrdt = f frfivdrdt, VwE D(O,T;V1) (3.5)

ChQn w(r,t)=~(t).v(r), trong d6 ~ED(O,T), VEVp k~t h<jp (2.12) va (3.2), ta

vi~t l~i (3.5) nhu' sail

ref!{( ul (t), v) + a(u, v)+ (F( u(t),ul (t»), v; ] ~(t)dt

JLdt T

+ f[h(t)ul(l,t)+g(t)Jv(1)~(t)dt

0

(3.6)

r

= f(!(t), v)~(t)dt, V; E D(O,T), Vv E VI.

0

Trang 2

Tli (3.6) ta thu duQc

~ \ul (t), v) + ău(t), v)+ (F(u(t), ul (t)), v) +( h(t)UI (l,t) + g(t) )v(l)

= (J(t), v), 'v'v E Ví ạẹ t E (O,T).

(3.7)

111.2 811t6n t~i va duy nhát nghĩm yéu

Ta thanh l~p nh6m gici thiét thu nhát nhu sail

(HI) ho > 0, 1::;a < 3, 1::;fJ < 3,

(H4) hEC2(~), h(t)"20, 'v't>O, h(O)=O,

/

va t6n ti;lih~ng sÓ8 E (O,ho) saDcho hI(t)"2 -8, 'v't"2 0,

(H5) Uo E V2 ' UI E VI

Chti thich 3.1 ho ia hang s{f duang xudt hĩn trang b6 d~ 2.5.

voi nh6m gici thiét thu nhát

Binh ly 1 Cho truac T>O va (HI)- (Hs) thoG Khi d6 bai loan (3.1) - (3.4)

ul E Loo(0, T; VI), Ull E LOO(O,T;Vo)'

Chung minh Vĩc chung minh dinh 19 1 duQc chia lam nhi€u buoc

Búocl Xáp Xl Galerkin

ặ,.) nhu trong b6 de 2.6.

Ta Hmnghĩm xáp xi cua bai loan bién phan (3.7) duai d~ng

m

um(r,t) = L>mj(t)Wj(r),

j=l

(3.8)

Trang 3

trong do cac ham s6 cmJt), j = 1,m thml h~ phuong trlnh vi phan thuong

(u~(t), WI)+a(um(t), WI)+(F( Um(t),u~(t)), Wi)

=(f(t),wJ,l'!;}'!;m,

(3.9)

cling vdi di€u ki~n d~u

m

um(O)= UOm= Lamiwi ~ Uo mqnh trang V2, khi m ~ 00,

J=I

(3.10)

m

u~(O)=Ulm =LPmJwJ ~ UI mqnhtrang~, khi m ~ 00.

J=I

Vdi m6i T > 0 cho trudc, ta se stt dl;lng dinh ly diem ba't d9ng Schauder de

chung minh h~ (3.9), (3.10) co nghi~m cm= (cm!"'" cmm) tren [O,Tm]c [O,T].

Ta co b6 d€ sail day v€ slf t6n t(;linghi~m cua h~ (3.9), (3.10)

nghifm cm = (cml"'" cmm) tren [O,Tm]c[O,T].

Chung minh b6 d~ 3.1.

H~ (3.9), (3.10) duQcvie't l(;linhusau

c~/t) + AJCmJ(t)

=II~\2 [( F( um(t),u~(t)), wJ) +( h(t)u~(1,t)+ g(t) )WJ(1)-(f(t), Wi)1 J

Cm/O) = amJ' C~/O) = PmJ' I'!; j '!;m,

hay

cm;(t)= amicostA t)+ Jx; sin(At) (3.11)

1

II sinA (t-T)

-II Wi W 0 jx; [(F(Um(T),U~(T)), WJ)+ h(T)U~(1, T)Wi(l) JdT

- 1 II sinA (t-T)

IlwJW 0 A [g(T)w/l)-(f(T),wJ)]dT,l'!;j'!;m.

Bo qua chI s6 m, khi do h~ (3.11) duQcvie't l(;linhu sail

Trang 4

trong do

c = (cp , cm), UC= (U c\, ,(U c)m)' (3.13)

t

(U e)/t) =G/t)+ fN;U-r)(Ve)/r)dr,

0

(3.14 )

GU) =aNI (t)+ f3N(t)- 2fNU-r) [g(r)w ,(l)_1 fer), Wj )J dr,

(3.15)

(Ve)/t) =- 1 2

[

/F [ i>iU)wpIe:U)Wi ] ,W;)+h(t)Ie:(t)w;(1)Wj(1) } , (3.16)

sin(At) 1~ j ~ m .

Voi m6i 0 < Tm~ T, M > 0, ta d~t

S={CEC1([O,Tm];IRm): IleI11~M}, Ilelll=llcllo+lle/llo'

m

Ilello= sup leU)I\' leU)11= Ile;(t)I

Thl S Ia t~p con 16i dong va bi ch~n cua y = C1([o,Tm];IRm).

Sa dl;mg dinh ly diem bcft dQng Schauder, chung ta se chung minh r~ng anh X(;l

dQngnay chinh Ia nghi~m cua h~ (3.9), (3.10)

a) Chung minh U(S)cS.

Ta co

GIU)1 =-XaN. III ( t) + f3 N/(t)11 (3.18)

- 2 fN;U-r) [g(r)w/l)- <fer), Wj >] dr,

II Wj II 0

t

(U e)~(t) = G~U)+ fN;U-r)(Ve);(r)dr , 1~ j ~ m.

0

(3.19) Tli (3.14)- (3.19) ta suy ra anh X(;lU: Y +Y xac dinh.

Cho e E S, tli (3.14) - (3.19) ta suy ra

Trang 5

1 t T

(3.20)

.

1a; 1+ f1 II /3; 1+ f1 rT + f1 /3(M,T),

t

I(Ue)/(tH~ IG/(tH + fl(Ve)('Hd,~ IIG1 110+Tm IIVello

0

(3.21)

~ KII a;l+ II /3;1+rT+Tm/3(M,T),

trong do

m 1 T

rT =~IIwi W l(lg(t)w/l)l+I\i(t)'Wi)1 )dt ,

(3.22)

~ /3;CM,T)

/3;(M,T)=SUP

{

/F

Ch1ithich 3.2 Tit b6 di 2.20.i ta suy ra rling

F( ~e,(t) w"~e: (t)W,) EVo, 'Ie E S.

(3.23)

Do d6 (3.24) luon tbn tc;zi.

Tli (3.20) va (3.21) ta suy ra

(3.25) trong do

va /3(M,T) du'QCxac dinh bdi (3.23) va (3.24).

Chon M va 0 <1~ < T sao cho M?: 2"" va To(I + J;., ]P(M,T)'; ~.

Tli (3.25) ta thu du'QcIIUeIII ~ M, voi mQie ES

Trang 6

b) Chung minh U lien tl,lCtren S.

Cho C E S, {Ck} C S va Ck ~ C trong Y, ta co

t

(U Ck);(t) - (U c)/t) = fN;(t-T)[(VCk)/T)-(VC)/T)]dT,

0

t

(U Ck)~(t) - (U c)~(t) = fN;(t- T)[ (VCk)/T)-(V C)/T) ]dT,

0

Tm IIUCk - Ucllo::; JX: IIVCk - Vcllo,

II(UCk)/ - (Uci 110::;Tm IIVCk - Vcllo,

( fck;(t)w;,fc~;(t)W; )

-F

( fc/t)w;,fc:(t)w; ) 'Wj)

j=1 II Wj II \ ;=1 ;=1 ;=1 ;=1

(

~

)[

~lw/l)I

J

( (

m

m

)

)

+ F; LCk;(t)W; -F; LC/t)W;,L 2

1=1 1=1 J=1 II Wj II

( (

) (

m /

)

)

+ F; LCk;(t)W; -F; LC;(t)W;,L 2.

m

Dịit R = MIll w,IIÍKhi do tli (3.28) va b6 d€ 2.20.iii, ta dúQC

1=1

I (V c, )(1) - (V c)( t) I,S K,' IIhilL"ÍT) (tII w, "l ~ IIII:~ II:; J II c~ - C'II,

+

(fIIWIIII)( f 1 2

J [ ~KR(a)llck-cllỡKR(j3)llc~-c/lloJ.

;=1 J=l IIwi II

Tli (3.27) va (3.29) ta suy ra U lien tl,lCtren S.

(3.27)

(3.28)

(3.29)

Trang 7

c) Chung minh US compact trong CI ([O,Tm];IRm).

Do US c S, nen hQ cac ham us = {Ue: e E S} bi ch~n d€u theo chu~n 11.111trong

d6ngb~cd6i voichu~n 11.111trongkhonggian CI([O,Tm];IRm).

Cho eES, t,tl E[O,TmLta co

=G/t)-Gj(t/)+ IN/t-r)(Vc)lr)dr- INj(tl-r)(Vc)/r)dr

(

=G/t)-G/tl)+(, aI[N/t-r)-N/tl -r)]cVC)/r)d~

- IN/tl -r)(Vc)j(r)dr,

(

G(t)-G(t/)1 1 =a.1[NI (t)-NI j j (tl) J + {3.1[N.(t)-N.(tl) j j J

- 2 I [N.(t-r)-N.(tl -r) J [g(r)w ,.(1)_1 f(r),w j .

)J dr

('

+II W: 112fNj(t1 -r) [g(r)w/l)-\f(r), Wj) Jdr.

(3.31)

M~t khac ta co

f INj(t)- N/tl) I:::;It- tl I,

lIN~(t)-N~(t/)1 :::;[X:lt-tll, Vt,tl E[O,Tm],l:::;j:::;m.

(2.32)

Tli (3.23), (3.30) - (3.32), ta suy ra

m

I(Ue)(t) - (Ue)(tl) II= LI(Ue), (t) - (Ue)/tl) I

,;[tlaj 1+F.tIP, I+r, }-tll+p(M,r{r + k )It-tl

Danh gia tu'dng tt,I'nhu' (3.33), ta co

m

I(Uei (t)-(Ue)1 (t/)11=LI(Ue)~(t)-(Ue)~(t/)1

j=1

(3.34)

,; K[ Ktl aj 1+ ~Ilij I+r,] 1t-t' 1+1i(M,T)(KTm +1)1 I-I' I.

Trang 8

Tli (3.33) va (3.34) ta suy ra hQ cac ham us Ia lien t1;lCd6ng b~c d6i voi chuffn 11.111trong khong gian C\[O,Tm];IRm).V~y theo dinh ly Arzela - Ascoli thl

US compact Tli cac ket qua a), b), c) va dinh ly di€m beltdQngSchauder, U co

di€m beltdQngtrong S

Nhu v~y bai toan (3.9), (3.10) t6n t(;linghi<$mUmtren [O,Tm].V~y b6 d~

3.1 duQc chung minh xong

Cac danh gia tien nghi<$msan day cho phep ta lelyTm = T, Vm.

Chli thich 3.3. Trang chang minh Sl! tbn tf;li nghi~m xfip xl Galerkin cua bili

{

hO>0, 0<a<3, 0<{J<3, fEL\O,T;Vo),

gEL\O,T), hECo(IR), UOEVI' ul EVo'

V6'i gid thift UoE VI, UIE Vo thi (3.10) du(fc thay thf bili

m

um(O)=uom = IamjWj ~uo mf;lnh trang~, khi m~oo,

j=1

(3.35)

m

u~ (0) = Ulm=I PmjWj ~ UI mf;lnh trang ~p khi m ~ 00.

j=1

Bu'oc 2 Danh gia tit~n nghi~m

Danh gia 1 Nhan phuong trlnh thu j cua h<$(3.9) voi C~j(t) va lely t6ng theo j

tli 1 den m, ta duQc

Id

I

1

+ frlu~(t)IJJ+l dr+h(t)lu~(1,t)12 +g(t)u~(1,t)

0

=(f(t),u~(t)).

f)~t

t

Xm(t) = Ilu~(t)W +a(um(t), um(t)) + 2 fh(r)lu~(1,r)12 dr

0

+- fr Ium(t) Ia+ldr+2 f fr Iu~(r) IJJ+ldrdr.

(3.37)

Trang 9

La'y tich phan hai vfS(3.36) theo t tu 0 dfSn t, ta du(jc

Xm(t) =Xm (0) + 2 f(J('l"),u~(r»)dr - 2 fg(r)u~(l, r)dr

~Xm(O)+ fIIJ(r)112dr+ fllu~(r)112dr

I

+21g(t)um(l,t) I+2 IiI (r)um(l, r) Idr

0

(vi g(O)=0)

I

~ Xm(O)+ IIJ 11~2(o,T;Vo) + fXm(r)dr

0

+-l(t)+-.JLu~(l,t)+ - fll(r)12 dr+ ho fu~(l,r)dr.

a+1o

2 I I-a

a+1

a+10

2Ka+1 I I-a

~ II Ulm W + CIII UOm II~ + 2 IIUOmII~+I fr 2 dr

4Ka+1

(a + 1)(3-a)

Tu (3.10), va (3.39) ta suy ra

Xm(O)~M?), '\1m,

trong do Mil) dQc l~p vdi ffi Tu (3.38) - (3.40) ta suy ra

X (t)~ gl (t)+-X (t)+2 fX (r)dr,

hay

I

0

trong do gj (t) =MT + II f IIL2(O,T;Vo) +-,;-10 g(t) I +-,;-110 g IIL2(o,T).

Tu giii thifSt (H3) va do H'(O,T) c.Co([O,T]) Den ta suy ra

gl (t) ~ Mi2) a.e t E [0, T]

Ap dl;lng b6 d€ Gronwall vao (3.41), ta du(jc

Xm(t) S 2M?)e41 ~ M?) , a.e t E [O,T].

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Trang 10

Ch6 thich 3.4. Trang danh gia 1, ta chua sit df:lng htt nhom gid thitt thri nh{{t, thq.m chi co thi thay m(Jt s{;'gid thitt bJi cac gid thitt ytu han tuang ring, ch~ng hqn

(Hi) dur;c thay bJi ho > 0, 0 < a < 3, 0 < fJ < 3;

(H3) dur;c thay bJi g E Hi(O,T) Trang tru(jng hr;p nay, ta chi vifc c(Jng

them VaGvt phdi cua (3.38) dqi lur;ng 21g(O)Uom (1)\ I hi chq.n; .

Nhom gid thitt thri nh{[t nay th1;lcs1;lcan den trang danh gia 2 sau day"va trang cac burJc sau db.

Danh gia 2 L1y d<;loham hai v€ cua phuong trlnh thuj cua h~ (3.9) d6i voi t,

ta du<;lc

(u:;(t),Wj) + a(u~(t),Wj)+(:tF(Um(t),U~(t)),Wj)

+(hi (t)UI (1, t) + h(t)UII (l,t) + gl (t) )w/l)

(3.44)

=(Ir(t),Wj)' l~j~m.

Nhan phuong trlnh thu j cua h~ (3.44) vOi c~/t) va l1y t6ng theo j tit 1 d€n m,

ta du<;lc

+-hl (t)-I u~(l,t) 12+h(t) Iu~(1,t) 12

+l (t)U~(1,t)+(:t F;(um(t)), U~(t))

=(Ir(t),u~(t)), l~j~m.

Bi;it

Ym(t) = II u~ (t) W +a (u~ (t), u~(t)) + ( hi (t) + e) Iu~ (1, t) 12 (3.46)

L1y tich phan (3.45) theo t tit 0 d€n t, ta du<;lc

Trang 11

Ym(t)=Ym(o)+elu~(1,T)121~:;) + fhll(T)lu~(1,T)12 dT

0

(3.47)

(

d

)

t

+2 f\ft(T),U~(T))dT-2 f -F; (Um(T)),U~(T) dT-2 fl(T)U~(1,T)dT

t

::;;ym(o)+eKj21Iulm II~+elu~(1,t)12 +llhll Ilc'(O,T) flu~(1,T)12dT

0

I

+2 fllft(T)llllu~(T)lldT+2 fll~F;(Um&))IIIIU~(T)lldT

t

+ 21l (O)Ulm(1) I+ 21l (t)u~(1, t) I+ 2 fill (T)U~(1,T) IdT.

0

Ta co

ho I u~(1,t) 12::;;a( u~(t),u~(t))::;; Ym(t), (3.48)

(3.49)

2 +~Y (t)

h - £I0 2h0 m '

2fll/(T)U~(1,T)ldT::;;~llgIIW L 2 T +fYm(T)dT,

h (0, )

(3.50)

IIU~(t)II~::;; ~a( u~(t),u~(t))::;;~ Ym(t).

(3.51)

Til (3.37), (3.43), (3.51), va b6 d€ 2.20.ii, ta duQc

1

II ~FJum(t))112=a2 frlum(t)12a-2Iu~(t)12 dr

0

(3.52)

1

::;; a2 K; II U~(t) II~ fl Um(t) 12a-2dr::;; a2 K; Ym(t) k\(a) II Um(t)ll~a-2

a2 K2 K (a )

(

M(3)

)

a-l a2 K2K(a )(M(3) )a-l

Til (3.47)- (3.50), (3.52) ta thuduQc

Trang 12

Ym(t) s Ym(0) + 8 KJz II uJm II~ + :0 Ym(t) + II it IIL2(0,T;Vo)

+ fYmCr)dT+ L"'(O,T) fYm(T)dT

-( (3)

aZK;K1(a) MT fYm(T)dT+ fYm(T)dT

+ Il (0) IZ +KJZII UJm II~+~ Igl (t) IZ

ho-8

h - 8 II gll 11~2 T

f

l +~Ym(t)+ (0, ) + Ym(T)dT,

hay

t

Ym(t) sgzm(t)+ Mi4) fYm(T)dT,

0

(3.53) trang do

gZm(t) = h2~)8[Ym(0)+KIZ(8+1)IIUlm0 II~+llit 1I~2(O,T;Vo)J

+~

[

ll(O)IZ + 2Il(t)lz +llglllI~2(0'T)

]

,

(3.54)

Mi4) =~

[

3+ IIhIIIILoo(O,T) + aZK;KJ(a)(M?)r-l

]

ho -8 h0 Co a. // (3.55)

Nhan phuong trlnh thli j cua h~ (3.9) vOi c~ (t) va la"y t6ng theo j tli' 1 de"n m, J

ta duQc

Ilu~(t)IIZ +(Aum(t), u~(t»)+(F(um(t),U~(t»), u~(t»)

+( h(t) u~(1,t) + get) )u~ (1,t) = (J(t), u~ (t»).

Trang (3.56), cho t = 0, va chuyding g(O)=h(O)= 0, ta duQc

Ilu~(O)llz +(Auom' u~(O»)+(F(uom,uJm)' u~(O») = (J(O),u~(O»).

(3.56)

Suy ra

Ilu~(O)11s IIAum(O)II+11 F{uom,uJm) II+IIJ(O)II.

Ap d\lng b6 d€ 2.20.i, ta duQc

s K(a) II UOm II~ +K (,8) II U1m Iii.

(3.57)

(3.58)

Trang 13

Tli (3.46), (3.57) va (3.58), ta thu du'Qc

Ym(O)= Ilu~(O)W+ a(Ulm'ulm)+(h/(O)+B)u~m(1)

(3.59)

+[CI + KI2(e+IIhi Ilco(o,TJJllulrn II~.

Tli (3.10), (3.54), (3.59), gii thi€t (H3), va do HI (0, T) C.CO([0, Tn nen ta suy ra

Tli (3.53), (3.60) va b6 d~ Gronwall, ta du'Qc

Yrn(t)~MT e T ~MT, a.e tE[O,T]. (3.61)

Tu'dng tlj (3.58), ta co du'Qc

IIF(um(t),u~(t))II:S; K(a) IIum(t) lit +K(jJ)llu~(t)llf

(

M(3)

J

~

(

M(6)

J

~

(3.62)

Tli (3.62), ta suy ra

IIF(urn,u~)lloo .

) ~Mr),a.e.tE[O,T],

va

I

(3.64)

Bu'oc 3 Qua gioi h~n

Tli (3.37), (3.43), (3.46), (3.61), va (3.64) ta co th€ trich tli day {urn} mQt day

con v~n ky hi~u la {urn}'sao cho

Urn~ u trong D$J(O,T;VI)y€u *,

u~ ~ul trong DJ(O,T;VI) y€u *,

uti ~Ull rn tron g L"' ( O T V ), , 0 Y€u *,

(3.65)

(3.66)

urn(l,t) ~ u(l,t) trong WI""(O,T) y€u *,

(3.67)

(3.68)

Trang 14

ra+IUm ~ ra+lu trong LOO(O,T;La+l(o.)) ye'u *, (3.69)

(3.71)

Ap dl;lng b6 d€ v€ tinh compact cua Lions vao (3.65) - (3.68), va do phep

con v§n ky hi~u la {um}, sao cho

um ~ u m(;lnh trongL2(0,T;Vo),

U~ ~ UI m(;lnh trong L2(0,T;Vo),

(3.72) (3.73)

Um(1,t) ~ u(l, t) m(;lnh trong CO([0, T]) (3.74)

mQtday con v§n ky hi~u Ia {um}, sao cho

um(r,t) ~ u(r,t), a.e (r,t)EQT'

~.

u~(r,t) ~ ul (r,t), a.e (r,t)EQT'

(3.75)

(3.76)

Do F(u,ut) = Iu Ia-I U+1 Ut 113-1Ut lien tl;lc, nen tu (3.75) va (3.76) ta suy ra

Ap dl;lng b6 d€ 2.15 vOi q=n=2, Q=Qp Gm=FrF(um,u~), G=FrF(u,ul), tu (3.64) va (3.77), ta du'Qc

Tu (3.71) va (3.78) ta suy ra

F(um,u~)~ F(u,uJ trong L2(0,T;Vo) ye'u. (3.79)

Nhan (3.9) voi rpE D(O,T) tuy y, r6i lfiy tich phan theo t tuO de'n T, ta du'Qc

f(u~(t),w/)rp(t)dt + fa(um(t),wJrp(t)dt

+ f(F (um (t), u~ (t) ), WI)rp(t) dt + f(h(t) u~ (1,t) + get) )wi (1) rp(t)dt

T

= f(f(t), wJrp(t)dt, VI

o

(3.80)

Trang 15

Do (3.67) ta co

f(u~(t),wJqy(t)dt~ f(UII(t),Wj)qy(t)dt, khi m~+oo.

(3.81)

Qua giOi h(;ln khi m ~ +00 trang (3.80) bdi (3.65), (3.68), (3.79) va (3.81), ta

duQc

[( Ull(t), Wi) + a( u(t), Wj) +( F( u(t),ul (t)), Wi) Jqy(t)dt

T

+ f( h(t)ul (l,t)+ get) )WJ(l)qy(t)dt

0

T

= f(f(t)'Wj)qy(t)dt, Vi, VqyED(O,T).

0

(3.82)

Tu (3.82) ta thu duQc(3.7)

D€ chung minh u la nghi<%myeu cua bai tmin (3.1) - (3.4) ta con ph,U chung minh u(O)=u(p ui (O)=u]'

a) Chung minh u(O)=uo'

f

urn(t)=uOrn+ urn(s)ds.

0

(3.83)

Nhan (3.83) voi r Wi r6i l§y tich phan theo r tu 0 den 1, ta duQc

t (urn(t),wJ = (uorn,wi)+ f(u~(s),wJ)ds.

0

(3.84)

L§y tich phan theo t tu 0 den T trang (3.84), ta duQc

f(urn(t),Wj) dt = T(uorn,wj)+ f(u~(s),(T-s)wj)ds.

(3.85)

Qua gioi h(;ln khi m ~ 00 trang (3.85) bdi (3.10), (3.65) va (3.66) ta duQc

f(u(t),Wi)dt = T(uo,wj)+ f(u\s),(T-s)wj)ds, Vi=1,2,

(3.86)

Trang (3.85) thay Urn bdi u, ta duQc

f(u(t),wi)dt = T(u(O),Wj)+ f(UI(S),(T-s)wj)ds, Vj=1,2,

(3.87)

So sanh (3.86) va (3.87) ta duQc

(u(O),v) = (uo,v), Vv E VI' nghla la u(O)= UO'

Trang 16

b) Chungminhul(O)=Ul'

Tit (3.10), (3.66), (3.67) va ly lu~n tu'dng tv nhu' ph:1n a) ta cling thu du'Qc

Ul (0) = Ul '

M~it khac tU (3.67), (3.79) va gia thi€t (Hz), ta suy ra rflng

Au = f -uti -F(u,ut) E LZCO,T;Vo), nghla Ia u E Lz(O,T;Vz)'

V~y sv t6n t<;linghi<%mdu'Qc chung minh

Bu'O'c4 Chung minh sl! duy nha't nghi~m

Gia sa Up Uz la hai nghi<%my€u cua bai toan (3.1) -(3.4) nhu'trong dinh ly 1

Khi do w=Ul - Uz la nghi<%my€u cua bai toan

(Wll(t), v) + a( wet),v) + h(t) Wi(l,t)v(1)

+( F( Ul(t),u{ (t))- F( uz(t),ui(I)), v) = 0, \Iv E VI' a.e.t E (O,T),

WE LOO(O,T;V1)nLz(O,T;Vz)'

wi E LOO(0,T;V1), Wll E LOO(O,T;Vo), w(1,.) E W1,OO(O,T),

(3.88)

ra+lw E LOO(O,T;La+l(Q)), r,B+lwl E L,B+l(Qr),

w(r,O) = wi (r,O) = 0,

VI WiELOO(O,T;V1),nenl1y v=wl, tit (3.88) ta du'Qc

t

t

=- f( F(Ul(T),U{ (T))- F( uz(T),ui(T)), wi (T)}dT.

0

(3.89)

f)~t

t

O"(t)=IIwi (t) W +a( w(t), w(t)) + 2 fh(T) IWi (1, T)IzdT.

0

(3.90)

Tit (3.89) ta suy ra

t

O"(t)=-2 f\F(Ul(T),U{ (T)) - F( uz(T),ui(T)), Wi (T) }dT

0

t

=-2 f(~(Ul(T)) -~(Uz(T)),WI(T))dT

0

(3.91)

t

-2 f(lu{(T)I,B-l U{(T) -lui(T)I,B-l Ui(T))(U{(T)-ui(T))dT

0

Trang 17

~ -2 f\F; (Ul ( T») - F; (uz ( T) ), Wi ( T ))d T

0

~ fllF;(u,(T») -F;(Uz(T»)W dT + fiiwl(T)W dr.

Ap d\:mg b6 d€ 2.20.iii ta duQc

IIF; (UI(t») - F; (uz U») III ~ KR (a)11 wU) II~~ KR(a) aU),

trong d6 R =~nII Ui IIC (O,T;VI).

Til (3.91) va (3.92), ta thu duQc

aU)~

(

1+ KR(a)

] fa(T)dT.

(3.93)

Ap dt,mg b6 d€ Gronwall vao (3.93), ta duQc

aU) = 0, nghla 1a UI= uz.

V~y dinh 1y 1 dff duQc chung minh

Ngày đăng: 10/04/2013, 16:08

TỪ KHÓA LIÊN QUAN

w