1. Trang chủ
  2. » Luận Văn - Báo Cáo

Khảo sát phương trình sóng phi tuyến trong không gian Sobolev có trọng4

15 336 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 3,22 MB

Nội dung

Luận văn thạc sĩ -ngành Toán Giải Tích-Chuyên đề :Khảo sát phương trình sóng phi tuyến trong không gian Sobolev có trọng

Trang 1

CHUaNG 2

" K ~ "

MQT SO KY HI~U,

Trang chuang nay chung toi trlnh bay cac khong gian Sobolev co trQng va cac tinh chilt v€ cac phep nhung compact giii'a cac khong gian ham co lien

quail; Cac khong gian ham LP(0, T; X), 1~ p ~ 00; Cac ky hi~u va cac bilt d~ng

thlic se duQc sli' dvng trang cac chuang sail cling duQc giai thi~u d chuang nay

11.1 Cae khong gian ham

f)~t Q = (0,1), ta bo qua dinh nghla cac khong gian ham thong dvng nhu

Cm(Q), Y(Q), Hm(Q), Wm,P(Q).

f)~t

Vo~{ u Iu: (0,1) -+ 111, do du'<)c,sao cho 1rl u(r)I' dr< -}, (2.1)

thl Vola khong gian Hilbert vai tich vo huang

I

(u, v) = fru(r)v(r)dr.

0

(2.2) f)~t

thl VI Ia khong gian Hilbert vai tich vo huang

cac d~o ham d day theo nghla phan bO'

Chufin tuang ling tren Vo' VI ky hi~u la 11.11va 11.1It

Ta co cac b6 d€ sail day v€ phep nhung giii'a cac khong gian Vo' VI,

Trang 2

B6 d~ 2.1. VI nhung lien t~c va ndm trit mqt trang Vo.

B6 d~ 2.2. Ta d6ng nh{l't Vo WYi V~ (V~ la d(J'ingdu cua Vo).

Khi do ta co VI C Vo C V: ' vai cdc phep nhung lien t~c va ndm trit mqt.

Chung minh b6 d~ 2.1 va b6 d~ 2.2 du'QCtlm tha'y trong [3]

Chti thich 2.1 Chung ta ciing co thi dtnh nghfa khong gian VI nhu la day du

hod cua cl (Q) d6i vai chudn

1

(xem [1])

B6 d~ 2.3. Vai m9i v E c1 (Q), ta co

(i)

(ii)

IlvW::; IIvi W +v2(1),

Iv(1)1 ::=;K11IvI11,

(iii) Jrlv(r)1 ::=;K211vllpVrE[O,l],

. Kl ="h+J2, K2=~1+J5.

trangdo

Chung minh (i) Voi mQi v EC1(Q), ta co

1

r

Nhan hai ve cua (2.6) voi r r6i 1a'ytich phan d6i voi r tir 0 den 1, ta du'Qc

-v2(1) =IIvW +fS2V(S)vl (s)ds,

(2.7)

hay

1 v2(1r~21IvW - fs(lv(s)12+lv/(s)nds=llvW -11/ W.

0 V~y ta co (i)

1

v2(1)::=;21IvW +2 fslv(s)llv/(s)lds

0 ::=;211vW+21Ivll.llvl II::=;(A+2)llvW +lllviA W, VA >0.

Trang 3

Chon A > 0 sao cho 1,+ 2= 1, do do A = v'2 -1.

V~y ta co (ii) vdi Kj = / 1,+2 = Jl+.Ji

Chung minh (iii) Ta co

Id

r Iv(r )12=v2(1)- rf-ds(s I v( s ) 12)ds

=v2(1)- fl v(s) 12ds - 2 fsv(s)vl (s)ds

:<:;(211vii' +2 IS21v(S)IIv'(S)IdS) +2IS'V(S)"V'(s)jdS

I

:5:211vW+2 f(s2+s)lv(s)llv/(s)lds

0

1

:5: 211 vW +4fsI v(s) II vi (s) I ds

0

,;211 vii' +2(rllvII' + ~ IIvIII'), Iiy>O.

ChQn r > 0 sao cho r +1 = r' dodo r = 2

V~y ta co (iii) vdi K2 = ~2r+2 = ~l+J5

B6 d~ 2.4 Phep nhung VI C Vo La compact. (xem [6])

Chu thich 2.2.

lim vir vCr) = 0, \iv E VI.

r->O+

(xem [1, B6 d~ 5.40, p.I28])

MiJt khdc, do Hl(t:,I) C Co([t:,I]), 0 < t: < 1, va

-rc: IIv IIHl(c,l)::;; IIV III' \iv E vI' 0 < t: < 1.

Ta suy ra rling

vlrvl[c,ljECo([t:,I]), \it:, 0<t:<1.

Tu (2.8) va (2.10), ta kit LutJnrling

FrvE Co([O,I]), V'vE VI,

(2.8)

(2.9)

(2.10)

(2.11 )

Trang 4

B6 d~ 2.5 Cho tru(Jc ~) > ọ EJ(it

I

ău, v) = frulvldr + hou(l)v(l), u, v Ẽ.

0

(2.12)

Thl ặ,.) la dqng song tuyén tinh d6'i xring, lien tl:lCtren VIx VI va cuiJng bric tren VI, nghla ia

(i) lău,v)1 ~clilulllllvllí VU,VEV"

(ii) collull~~ău,u), VUEV"

vJi Co= ~ min {l, ho}, CI = 1 + hoKI2.

~-Chung minh (i) Voi mQi u, v E VI, ta co

lău,v)I=lfrulvldr+hou(1)v(1) ~ frlulv/ldr+lhou(1)v(1)1

~llulllll/ II+hoK~ Ilull,llvll,~c,llull,llvll,

Chung minh (ii) Voi mQi u E VI, ta co

ău,u) = IIull12 +110I u(1)12

~ CO[II Ul W +(11 Ul 112+I u(1) 12)]+ ~ 110 Iu(1) 12

~ co(llul 112+lluI12)=co Ilull~.

Chli thich 2.3.

Tic btJ d€ 2.3 va btJ d€ 2.5 ta suy ra ba chudn sau tuang duang tren VI

~ăv,v),)llvIW+v2(1) vallvllp

va ta co

CoIlvll~~ ăv,v) ~ c,llvll~,

~ IIv IĨ~ II vi W +v2(1) ~ (1+K12) IIvIĨ,

(2.13)

(2.14 )

vJi mQi VEVỊ

Trang 5

B6 d~ 2.6 T6n t(li c(/ sa tr1!cchudn Hilbert {WI}' j = 1,2, cua Vo g6m cac ham rieng WI tuang ling vai cac gia tri rieng Aj sao cho

{

0 < Al :::;~ :::; :::; Ạ :::;"', lim A I ' = +00,

ăWj'v) = Aj(Wj'v), 'VVEVÍ 'Vj=1,2,

(2.15)

huang tuang ling la ặ,.).

M(it khac, cac ham rieng WI thod bai loan gia tri bien

(

dwj

J

-Awj= ;dr r dr = AjWj' O<r<l,

I

dw,

lim-vr-d J <+00, - d J (l)+hOwj(1)=Ọ

I

\\

(2.16)

Toan tit A: VI + v/ du(fc xac dinh duy nhd'tbai b6 d~ Lax- Milgram, ngh'iala

ă u, v) = (Au, v), Vu, VE VI,

Chung minh b6 d€ 2.6 duQctill thffytrong [8, Binh ly 6.2.1, p.137]

B~t

(2.17)

V2 = {uIu E VI : Au E Vo},

thi V2 la khong gian Hilbert vai tich vo huang

(u,v) +(ul ,Vi)+(Au,Av),

(2.18)

(2.19)

va chũn tudng ung

I

Ch6 thich 2.4 Khang gian ham V2 tily thuQc vao hó

B6 d~ 2.8 Vai m6i u E V2, ta co

(ii) Ilullll:::;#IIAUII,

(iii) IIu 11;'(0) :; (211uII+J-z II Au II) IIu II,

Chung minh b6 d€ 2.7 va b6 d€ 2.8 duQc till thffy trong [2]

Trang 6

11.2 Khong gian ham U(O,T;X), l~p~oo

Cho x la khong gian Banach thlfc d6i vOi chu£n 11.llx.

Ky hi~u U(O,T;X), 1~ p ~ 00, Ia khong gian cac lOp tu'dng du'dng chua ham

T

u: (0, T) ~ X do du'Qc, sao cho IIi u(t) IIi dt < +00, voi 1 ~ p < 00,

0

hay

t6n t(;li M > 0 sao cho Ilu(t)1Ix~ M, a.e t E (0, T), voi p = 00.

Ta dinh nghla chu£n trong U (0,T;X), 1~ p ~00 nhu' sau

I

HI "".TX) =( piu(1) II: dt J' vol I:; p<00,

(2.21) va

IIU IILoo(o,T;X)=ess sup O<t<TIIu(t) Ilx

(2.22)

= inf{M > 0:11u(t) Ilx~ M,a.e.t E (O,T)}, voi P = 00.

Ta co cac b6 d~ sau day ma chung minh chung co th€ Hmthffytrong [4]

B6 d~ 2.10 GQi Xl la d{fi ng(iu cua X Ta co

1 1

vCfl - + - =, < P <00 .

H{fn mia, ntu X phdn XlJthi U (0, T; X) ciing phdn XlJ.

H{fn mia, cac khong gian L1(0, T; X) va L~(O,T;xl) khong phdn XlJ.

11.3 Phan b6 co ghi tri vectd

Dinh nghia 2.1 Cha x la khong gian Banach thl;tc.Mfjt phtin bo' co gia trj

trang X la mfjt anh XlJ tuytn link lien tf:lCtit D(O,T) vaa X T~p cac phtin b{f co gia trj trang X dur;c ky hifU la

DI(O,T;X) = L(D(O,T);X) = {f: D(O,T) ~ X, f tuye'n tinh, lien tl,lc}.

Trang 7

Djnh nghia 2.2 Ta djnh nghla dC)oham : theo nghla phdn b5 cua f bili cong thac

Cae tinh eha't

(i) Cho v E U(O,T;X), (1< p < +00).

Ta lam tLtong zing veJi v m(jt anh xc) ~ : D(O, T) ~ X dLt(lc xac djnh nhLt sflu

T

(~,cp) = fv(t) cp(t)dt, VcpED(O,T).

0

(2.24)

(ii) Anh xq v H ~ la m(jt don anh, tuyen tinh lien t1;tCtit U(O,T;X) vao

D/ (0, T;X), do do ta co thi dbng nhd't Tv ==v

Ta co ke't qua sau day

B6 d~ 2.12 (Lions [4]) U(O,T;X) C D/ (O,T;X) vai phep nhung lien t1;tc.

11.4 D~o ham trong U (0, T;X)

Do b6 d6 2.12, voi fEU (0, T;X) ta co th€ coi f va do do df Ia cae phffn ttt cua

dt D/ (0, T;X) Ta co cae ke't qua sau day.

B6 d~ 2.13 (Lions [4])

(i) Neu f,f/ E L1(0,T;X) thi f bling hdu het vai m(jt ham lien t1;tCtit

[0,T] ~ x

(ii) Neu f,f E U(O,T;X) thi f bling hdu het vai mo.LhiUll lien~ tit

(~H.I<H.TLJNHIEt~

[0,T] ~ x

11.5 HQi !t,l trong U (0, T; X), 1 S P S00 \ 001205

(i) Urn ~ U trong LP (O,T;X) mC)nh neu IIurn - U tP(O,T;X)~ O (2.25)

(ii) Urn~U trang LP(O,T;X), (1<p<oo) yeu

neu

f(urn(t),g(t))dt ~ f(u(t),g(t))dt, Vg E LP!(O,T;X/),

(2.26)

Trang 8

f(um(t),v)cp(t)dt + f(u(t), v) cp(t)dt, \lVEXI, cpELP/(O,T).

ne'u

f(um(t),g(t))dt ~ f(u(t), g(t)) dt, \lg E L1(0,T;X),

hay

f(um(t), v)cp(t)dt ~ f(u(t), v) cp(t)dt, \Iv E X, cpE L1(0,T).

11.6 B6 d~ v~ tinh compact cua Lions [4]

Cho 3 khong gian Banach XO,X,X1 vdi Xoc.X c.X1 sao cho XO,X1 la phan Xc;l

va phep nhung XoC.X la compact.

Voi 0< T < +00, 1< Pi < +00, i = 0,1 Ta d~t

WeT) ={ v E LPo(O,T;Xo) :/ E LP' (O,T;X1)}.

Ta trang bi cho W (T) bdi chu~n

(2.28)

IIvIIW(T)=II V IILPo(o,r;xo)+ II/ IILPl(o,r;x1). (2.29)

Khi do W(T) la khong gian Banach.

Ta co b6 d€ sail lien quail de'n phep nhung compact

B6 d~ 2.14 (B6 d€ v€ tinh compact cua Lions [4])

Phep nhung WeT) c.Uo (O,T;X) Lacompact.

(xem [4], trang 57)

11.7 B6 d~ v~ sf! hQi tQ ye'u trong Lq(Q), 1<q<oo

B6 d~ 2.15 (xem [4], trang 12) Cho Q La mQt tfjp mCt, hi chfjn cua ~n va

Gm, GELq(Q), l<q<+oo, saocho

(ii) Gm +G a.e (r,t) trong Q.

Khi do Gm~ G trong Lq(Q) ye'u.

Trang 9

11.8 MQt s6 bitt diing thuc thúCingdung

Bfl d~ 2.16 Vai mri X,YEIR., &>0, l~p<+oo, O<q~l, ta luon co

(i)

Ix+yIP';(I+s)'-llxIP +(1+ ~fl,y,P.

Dijc bift, ntu chrn £ = 1, ta du:(/c

(ii)

Ix+ YIP~2P-l(lxIP +lyIP),

Ix+ylq~lxlq +IYlq~i-q(lxl+IYIY,

(iii) Ilxlq-IYlql~lx-Ylq,

IlxlP-l x-I YIP-lyl ~p(lxl+IY Iy-llx-YI,

(iv)

(v) II X Iq-l x-I Y Iq-l y I ~ i-q I x- y Iq.

Chung minh (i).

Nh~n xet ding n€u x = 0, hõc Y = 0, hõc p = 1 (q = 1) thi (i)- (v) dung

Do do ta chi xet X,Y:;t:0,1 < p < +00,0 < q < 1.

Trúong h<jp 1 x> 0, Y> Ọ

Xet ham s6 Jet) = tP, t> 0, co III (t) = pep -1)tp-2 > 0, Vt > 0, nen I la ham 16i tren (0,+00) Do do ta co

(x+ f)' ~[Ẵ)+(I-A)C~A)J';ẴJ +(H)C~J, 1;10d <1.

Chon A = ~, ta thu dúdc (i)

Trúong h<jp 2 x,y:;t: Ọ

Taco Ix+YIP~(lxl+IYIY, apdl,mgtrúongh<jp l,taciingthudú<jc(i).

Chung minh (ii).

Ly lũn túdng tl! nhú (i), nen ta chi xet trúong h<jp x> O,y > Ọ

Xet ham s6

Ta co

I(t)=tq +(1-t)q, O<t<1.

II(t)=q[tq-l_(I-t)q-1J, II(t)=Õt= ~,

(2.30)

Trang 10

II (t) > 0 voi 0 < t <!, va fl (t) < 0 voi ! < t < 1,

f(O) = f(l) = 1, f(lI 2) = i-q.

V~y ta co

l<f(t)<i-q, VtE(O,I).

ChQn t = ~ E (0,1), tu (2.30) va (2.31) ta thu duQc (ii)

x+y

(2.31)

Chung minh (iii).

Ap dl;lng (ii), ta co Ix Iq=1(x - y) + y Iq~ Ix - y Iq+ 1y Iq,

hay

TucJng tl!, ta cling co

Iylq -lxlq~lx-ylq.

Tu (2.32)va (2.33)ta thu duQc(iii).

(2.33)

IlxlP-l x-I YIP-lyl= IJ(x)- J(y)l= If~J(y+s(X-Y))dS0

1

=plx-yl flsx+(I-s)YIP-lds~p(lxl+IYlr1Ix-YI.

0

Chung minh (v).

Truong hQp 1 xy < O Ta co

Ilxlq-lx-lylq-l yl=lxlq+lylq,va Ix-Ylq=(lxl+IYlt.

Do do ap dt,mg(ii) ta thu duQc(iv)

Truong hQp 2 xy > O.

Ap dl;lng (iii), ta co

Ilxlq-l x-Iylq-l yl = Ilxlq -IYlql~lx-Ylq~21-q Ix-ylq.

V~y b6 d€ 2.16 dff duQc chung minh

Cac bc1td~ng thuc thong dl;lngdudi day co th€ tlm thc1ytrong cac sach va duQc phat bi€u bdi cac b6 d€ sail

Trang 11

B6 d~ 2.17 (Bit d~ng thuc Young) Cho a, b ~ 0, E:> 0, p,/ > 1,l+~ = 1,

ta co

ab<-E:P- a P +-E:-PI b p .

B6 d~ 2.18 (Bit d~ng thuc Cauchy) Cho a,b ~ 0, E:> 0, ta co

(2.34)

~

B6 d~ 2.19 (Bit d~ng thuc Gronwall) Gid sa f, g : [O,T]~ R, la cac ham khd

rich, khong am tren [0,T] va thod ba't dang thac

t

f(t)5,C+ jf(T)g(T)dT, a.e tE[O,T],

0

trang doC la hang so' khong am.

Khi do ta co

1(1)'; C exp lfg(T) dT J, a.e t E [O,T], noi rieng, khi C = 0 thi f(t) = 0, a.e t E [O,T].

(2.36)

11.9 Dinh ly Schauder va djnh ly Ascoli

Dinh ly Schauder Cho K la mQt t(ip lbi, dong trang khong gian Banach X va T: K +K la anh xt;llien tf:lC,compact Khi do T co dilm bat dQngtrang K.

Dinh ly Ascoli Cho x la mQt t(ip compact trang khong gian dinh chuiln

(E,II.II)va A la mQtt(ip con cua Co(X,IR).

Khi do A la mQtt(ip compact trang Co(X,IR)ntu va chi ntu A co hai tinh cha't

(i) A bi ch(in tang diim, nghla fa: vai m6i x E X, t(ip {lex) If E A} bi ch(in trang

JR.,

(ii) A lien tf:lCdbng b(ic, nghla la

V E:> 0, :J17> 0: Vx,Y E x, IIx- yII < 17 ~ If(x) - fey) I< E:, Vf E A.

11.10 M(}t s6 ky hi~u

Ta dung cae ky hit;:u u(t), ul(t) = Ut(t),UII(t)= Utt(t),ur(t), urr(t) Hin luQt d€ chI

u(r,t), -(r,t),at ~(r,t),at -(r,t),ar arz(r,t); QT= Qx(O,T).

Trang 12

Sail day la b6 d€ v€ cac bfft d~ng thuc trong Va' V, duejc sa d\mg nhi€u l~n trong chuang 3 va chuang 4

B6 d~ 2.20 Cho trU(1ca E[1,3),ta co cac beltdang thac sau

(i) III u la-l u II:::;K(a) IIu II~' vu E v"

(ii)

,

Jlu(r)12a-2 dr:::;K,(a)llull~a-2, vu E V"

a

(iii) VR > 0, :3KR(a)> 0 saD cho

III u,la-' u, -I u2Ia-, u211:::;JKR(a) IIu, -u2111'

Vu" U2 E VI' IIU, II,:::; R, IIu211,:::; R,

trang do cac hdng srI K(a), K,(a) va KR(a) lan lu(/t xuitt hifn trong (i), (ii) va

(iii) co c6ng thac Cf:lthi duai day

1

1, ne'u a = 1,

(

2a )

a;, 3a-'

1

1 < <

- _2 ' neu - a - _

2 '

K ( a ) - -a

K,2a-2 + (a -1) 82a (K(a» a , ne'u "2 < a < 3,

va

1, ne'u a = 1,

KR(a)=~2a2R2a-2K;K,(a), ne'u I<a:::;~,

a2(2R)2a-2 K;K,(a), ne'u ~< a < 3.

Chuyrdng F;(u)=lula-'uEVo' VUE V, vai O<a<1.

Chung minh (i).

Truong hejp 1 a = 1 Ta co

11F;(u)W=llull:::; Ilull,

Truong hejp2 1< a < 3 Ta co

Trang 13

IIFJu)W= Jrlu(r)12a dr

0

(2.37)

="21 u(l) 12a - a Jr21 u(r) 12a-2 u(r) ur(r)dr

0

::;; -'-llull~a + a Jr2Iu(r)12a-l (Frlur(r)l)dr "

}(2a

(

1

J

1 ::;;-t-Ilull~a+ allurll fr3Iu(r)14a-2dr

Di,it P = a+1 > 1,P = I -a+1 > 1, thl,1- + /1 =1

Ta co

Jr3Iu(r)14a-2 dr= Jr2Iu(r)14a-4 [Frlu(r)1r dr

(2.38)

[

2

J

::;;}(~llull~Jr2Iu(r)14a-4dr= }(~llull~Jri rPlul4a-4 dr

(

1

J

;I

(

1

J

~

::;;}(~llull~ fr2 dr jr2Iu(r)12a+2dr

,; Killull;( ty(frlu(r)I'" (""lu(r)l)' dr)'

,; K;lIull;(tY (K;lIull; )* Orlu<r)!'" dr)'

(

1 )

::;; }(211u111 p 3 11~(u)IIP

Tu (2.37) va (2.38) ta du'Qc

1

11F;(U)W::;;}(rIlull~a+allulll(}(21Iulll r+~ (~)2PI 11F;(u)ll~ (2.39)

[

1

]

2~~1

::;; t-Ilull~a+ ~p &allulll(}(2I1ulll) p (3) p +2j;IIF;(u)W.

Trang 14

Tn (2.39) ta chQn &> 0 sao cho &2p= p hay &=p2P , ta duQc

2p

II F;(uJII' :5K,'" II ull;" +2pp-r[ap;; II uII,(K, IIull,)"~ G)';' r'

\

a-3 a+1 a-I J

]2 K:~-llIull;a.

a+l a+l

Dodo

[

aB

]

Chung minh (ii).

Truong hQp 1 1~ a ~ ~ Ta co

flu(r) 12a-2dr = frl-a (.Jrl u(r) I) a- dr

~K;a-2 II u II;a-2 frl-adr0 = 2-a2 II u II;a-2.

Truonghd p 2 i < a < 3 Bat

p = > 1, p = - > 1, thl - + / = 1

Ta co

flu(r) 12a-2 dr = Iu(l) 12a-2 - 2(a -1) fr Iu(r) 12a-4 u(r) uJr)dr

I

~ KI2a-21Iull;a-2+ 2(a-l) f.Jr1 u(r) 12a-3 (v'"rlur(r)l)dr

0

(2.40)

I

,; K,'.-'lIull;a-'+ 2(a-1Jllu,1I (fr,u(r)l'"-" dr )'

(

I

J

frlu(r)14a~6dr= frl rPlu(r)14a-6 dr

(2.41 )

,; Ordr J? Or 1u(r) I'" drr ~ 2;: IIFMII~.

Trang 15

Tli (2.40) va (2.41) ta thu duQc

flu(r)12a-2dr::; KI2a-21Iull~a-2+ (a-I) 2 2/ IlulllllF;(u)IIP

0

::; KI2a-21Iull~a-2+ (a-I) 22a Ilulll(K(a)lIullnp

[

a-I 2a-3

]

/

::; KI2a-2+(a-I)82a(K(a))a- lIull~a-2

V~y (ii) dii duQc chung minh

Chung minh (iii).

Truong hQp 1 a = 1 Ta co

II F; (ul) - F; (u2) 112=IIul -u2 112::; II ul -u2 II~

Truong hQp 2 1 < a ::;%

Ap dlJng (ii) va b6 d~ 2.16, ta duQC

1

IIF;(u1)-F;(u2) W= Ir 1F;(uI(r))-F;(u2(r)) Idr

0 I

::; fr(al~(r)-U2(r)I(luI(r)1 +lu2(r)lr-lf dr

0

I

::;aK21Iul-u2111 luI(r)I+lu2(r)1 dr

0

I

::;a2K~ IluI-U211~ f(luI(r)12a-2 +lu2(r)12a-2)dr

0

::;a2K~KI(a)(lluIII12a-2 +llu21112a-2)lluI-U211~

::; 2a2R2a-2K~KI(a)11 ul -u211~

Truong hQp 3 % < a < 30 Ta co

I

11F;(uI)-F;(U2)1I ~aK21Iul-u2111 lul(r)I+lu2(r)1 dr

0

I

::; 22a-3 a2 K~ II UI - U2 II~ f( IUI (r) 12a-2 +IU2(r) 12a-2) dr

0 2

( )2a-2 2

2

::;a 2R K2KI(a) UI-U2 10 V~y (iii) dii duQc chung minh

Ngày đăng: 10/04/2013, 16:06

TỪ KHÓA LIÊN QUAN

w