Luận văn thạc sĩ -ngành Toán Giải Tích-Chuyên đề :Khảo sát phương trình sóng phi tuyến trong không gian Sobolev có trọng
Trang 1CHUaNG 2
" K ~ "
MQT SO KY HI~U,
Trang chuang nay chung toi trlnh bay cac khong gian Sobolev co trQng va cac tinh chilt v€ cac phep nhung compact giii'a cac khong gian ham co lien
quail; Cac khong gian ham LP(0, T; X), 1~ p ~ 00; Cac ky hi~u va cac bilt d~ng
thlic se duQc sli' dvng trang cac chuang sail cling duQc giai thi~u d chuang nay
11.1 Cae khong gian ham
f)~t Q = (0,1), ta bo qua dinh nghla cac khong gian ham thong dvng nhu
Cm(Q), Y(Q), Hm(Q), Wm,P(Q).
f)~t
Vo~{ u Iu: (0,1) -+ 111, do du'<)c,sao cho 1rl u(r)I' dr< -}, (2.1)
thl Vola khong gian Hilbert vai tich vo huang
I
(u, v) = fru(r)v(r)dr.
0
(2.2) f)~t
thl VI Ia khong gian Hilbert vai tich vo huang
cac d~o ham d day theo nghla phan bO'
Chufin tuang ling tren Vo' VI ky hi~u la 11.11va 11.1It
Ta co cac b6 d€ sail day v€ phep nhung giii'a cac khong gian Vo' VI,
Trang 2B6 d~ 2.1. VI nhung lien t~c va ndm trit mqt trang Vo.
B6 d~ 2.2. Ta d6ng nh{l't Vo WYi V~ (V~ la d(J'ingdu cua Vo).
Khi do ta co VI C Vo C V: ' vai cdc phep nhung lien t~c va ndm trit mqt.
Chung minh b6 d~ 2.1 va b6 d~ 2.2 du'QCtlm tha'y trong [3]
Chti thich 2.1 Chung ta ciing co thi dtnh nghfa khong gian VI nhu la day du
hod cua cl (Q) d6i vai chudn
1
(xem [1])
B6 d~ 2.3. Vai m9i v E c1 (Q), ta co
(i)
(ii)
IlvW::; IIvi W +v2(1),
Iv(1)1 ::=;K11IvI11,
(iii) Jrlv(r)1 ::=;K211vllpVrE[O,l],
. Kl ="h+J2, K2=~1+J5.
trangdo
Chung minh (i) Voi mQi v EC1(Q), ta co
1
r
Nhan hai ve cua (2.6) voi r r6i 1a'ytich phan d6i voi r tir 0 den 1, ta du'Qc
-v2(1) =IIvW +fS2V(S)vl (s)ds,
(2.7)
hay
1 v2(1r~21IvW - fs(lv(s)12+lv/(s)nds=llvW -11/ W.
0 V~y ta co (i)
1
v2(1)::=;21IvW +2 fslv(s)llv/(s)lds
0 ::=;211vW+21Ivll.llvl II::=;(A+2)llvW +lllviA W, VA >0.
Trang 3Chon A > 0 sao cho 1,+ 2= 1, do do A = v'2 -1.
V~y ta co (ii) vdi Kj = / 1,+2 = Jl+.Ji
Chung minh (iii) Ta co
Id
r Iv(r )12=v2(1)- rf-ds(s I v( s ) 12)ds
=v2(1)- fl v(s) 12ds - 2 fsv(s)vl (s)ds
:<:;(211vii' +2 IS21v(S)IIv'(S)IdS) +2IS'V(S)"V'(s)jdS
I
:5:211vW+2 f(s2+s)lv(s)llv/(s)lds
0
1
:5: 211 vW +4fsI v(s) II vi (s) I ds
0
,;211 vii' +2(rllvII' + ~ IIvIII'), Iiy>O.
ChQn r > 0 sao cho r +1 = r' dodo r = 2
V~y ta co (iii) vdi K2 = ~2r+2 = ~l+J5
B6 d~ 2.4 Phep nhung VI C Vo La compact. (xem [6])
Chu thich 2.2.
lim vir vCr) = 0, \iv E VI.
r->O+
(xem [1, B6 d~ 5.40, p.I28])
MiJt khdc, do Hl(t:,I) C Co([t:,I]), 0 < t: < 1, va
-rc: IIv IIHl(c,l)::;; IIV III' \iv E vI' 0 < t: < 1.
Ta suy ra rling
vlrvl[c,ljECo([t:,I]), \it:, 0<t:<1.
Tu (2.8) va (2.10), ta kit LutJnrling
FrvE Co([O,I]), V'vE VI,
(2.8)
(2.9)
(2.10)
(2.11 )
Trang 4B6 d~ 2.5 Cho tru(Jc ~) > ọ EJ(it
I
ău, v) = frulvldr + hou(l)v(l), u, v Ẽ.
0
(2.12)
Thl ặ,.) la dqng song tuyén tinh d6'i xring, lien tl:lCtren VIx VI va cuiJng bric tren VI, nghla ia
(i) lău,v)1 ~clilulllllvllí VU,VEV"
(ii) collull~~ău,u), VUEV"
vJi Co= ~ min {l, ho}, CI = 1 + hoKI2.
~-Chung minh (i) Voi mQi u, v E VI, ta co
lău,v)I=lfrulvldr+hou(1)v(1) ~ frlulv/ldr+lhou(1)v(1)1
~llulllll/ II+hoK~ Ilull,llvll,~c,llull,llvll,
Chung minh (ii) Voi mQi u E VI, ta co
ău,u) = IIull12 +110I u(1)12
~ CO[II Ul W +(11 Ul 112+I u(1) 12)]+ ~ 110 Iu(1) 12
~ co(llul 112+lluI12)=co Ilull~.
Chli thich 2.3.
Tic btJ d€ 2.3 va btJ d€ 2.5 ta suy ra ba chudn sau tuang duang tren VI
~ăv,v),)llvIW+v2(1) vallvllp
va ta co
CoIlvll~~ ăv,v) ~ c,llvll~,
~ IIv IĨ~ II vi W +v2(1) ~ (1+K12) IIvIĨ,
(2.13)
(2.14 )
vJi mQi VEVỊ
Trang 5B6 d~ 2.6 T6n t(li c(/ sa tr1!cchudn Hilbert {WI}' j = 1,2, cua Vo g6m cac ham rieng WI tuang ling vai cac gia tri rieng Aj sao cho
{
0 < Al :::;~ :::; :::; Ạ :::;"', lim A I ' = +00,
ăWj'v) = Aj(Wj'v), 'VVEVÍ 'Vj=1,2,
(2.15)
huang tuang ling la ặ,.).
M(it khac, cac ham rieng WI thod bai loan gia tri bien
(
dwj
J
-Awj= ;dr r dr = AjWj' O<r<l,
I
dw,
lim-vr-d J <+00, - d J (l)+hOwj(1)=Ọ
I
\\
(2.16)
Toan tit A: VI + v/ du(fc xac dinh duy nhd'tbai b6 d~ Lax- Milgram, ngh'iala
ă u, v) = (Au, v), Vu, VE VI,
Chung minh b6 d€ 2.6 duQctill thffytrong [8, Binh ly 6.2.1, p.137]
B~t
(2.17)
V2 = {uIu E VI : Au E Vo},
thi V2 la khong gian Hilbert vai tich vo huang
(u,v) +(ul ,Vi)+(Au,Av),
(2.18)
(2.19)
va chũn tudng ung
I
Ch6 thich 2.4 Khang gian ham V2 tily thuQc vao hó
B6 d~ 2.8 Vai m6i u E V2, ta co
(ii) Ilullll:::;#IIAUII,
(iii) IIu 11;'(0) :; (211uII+J-z II Au II) IIu II,
Chung minh b6 d€ 2.7 va b6 d€ 2.8 duQc till thffy trong [2]
Trang 611.2 Khong gian ham U(O,T;X), l~p~oo
Cho x la khong gian Banach thlfc d6i vOi chu£n 11.llx.
Ky hi~u U(O,T;X), 1~ p ~ 00, Ia khong gian cac lOp tu'dng du'dng chua ham
T
u: (0, T) ~ X do du'Qc, sao cho IIi u(t) IIi dt < +00, voi 1 ~ p < 00,
0
hay
t6n t(;li M > 0 sao cho Ilu(t)1Ix~ M, a.e t E (0, T), voi p = 00.
Ta dinh nghla chu£n trong U (0,T;X), 1~ p ~00 nhu' sau
I
HI "".TX) =( piu(1) II: dt J' vol I:; p<00,
(2.21) va
IIU IILoo(o,T;X)=ess sup O<t<TIIu(t) Ilx
(2.22)
= inf{M > 0:11u(t) Ilx~ M,a.e.t E (O,T)}, voi P = 00.
Ta co cac b6 d~ sau day ma chung minh chung co th€ Hmthffytrong [4]
B6 d~ 2.10 GQi Xl la d{fi ng(iu cua X Ta co
1 1
vCfl - + - =, < P <00 .
H{fn mia, ntu X phdn XlJthi U (0, T; X) ciing phdn XlJ.
H{fn mia, cac khong gian L1(0, T; X) va L~(O,T;xl) khong phdn XlJ.
11.3 Phan b6 co ghi tri vectd
Dinh nghia 2.1 Cha x la khong gian Banach thl;tc.Mfjt phtin bo' co gia trj
trang X la mfjt anh XlJ tuytn link lien tf:lCtit D(O,T) vaa X T~p cac phtin b{f co gia trj trang X dur;c ky hifU la
DI(O,T;X) = L(D(O,T);X) = {f: D(O,T) ~ X, f tuye'n tinh, lien tl,lc}.
Trang 7Djnh nghia 2.2 Ta djnh nghla dC)oham : theo nghla phdn b5 cua f bili cong thac
Cae tinh eha't
(i) Cho v E U(O,T;X), (1< p < +00).
Ta lam tLtong zing veJi v m(jt anh xc) ~ : D(O, T) ~ X dLt(lc xac djnh nhLt sflu
T
(~,cp) = fv(t) cp(t)dt, VcpED(O,T).
0
(2.24)
(ii) Anh xq v H ~ la m(jt don anh, tuyen tinh lien t1;tCtit U(O,T;X) vao
D/ (0, T;X), do do ta co thi dbng nhd't Tv ==v
Ta co ke't qua sau day
B6 d~ 2.12 (Lions [4]) U(O,T;X) C D/ (O,T;X) vai phep nhung lien t1;tc.
11.4 D~o ham trong U (0, T;X)
Do b6 d6 2.12, voi fEU (0, T;X) ta co th€ coi f va do do df Ia cae phffn ttt cua
dt D/ (0, T;X) Ta co cae ke't qua sau day.
B6 d~ 2.13 (Lions [4])
(i) Neu f,f/ E L1(0,T;X) thi f bling hdu het vai m(jt ham lien t1;tCtit
[0,T] ~ x
(ii) Neu f,f E U(O,T;X) thi f bling hdu het vai mo.LhiUll lien~ tit
(~H.I<H.TLJNHIEt~
[0,T] ~ x
11.5 HQi !t,l trong U (0, T; X), 1 S P S00 \ 001205
(i) Urn ~ U trong LP (O,T;X) mC)nh neu IIurn - U tP(O,T;X)~ O (2.25)
(ii) Urn~U trang LP(O,T;X), (1<p<oo) yeu
neu
f(urn(t),g(t))dt ~ f(u(t),g(t))dt, Vg E LP!(O,T;X/),
(2.26)
Trang 8f(um(t),v)cp(t)dt + f(u(t), v) cp(t)dt, \lVEXI, cpELP/(O,T).
ne'u
f(um(t),g(t))dt ~ f(u(t), g(t)) dt, \lg E L1(0,T;X),
hay
f(um(t), v)cp(t)dt ~ f(u(t), v) cp(t)dt, \Iv E X, cpE L1(0,T).
11.6 B6 d~ v~ tinh compact cua Lions [4]
Cho 3 khong gian Banach XO,X,X1 vdi Xoc.X c.X1 sao cho XO,X1 la phan Xc;l
va phep nhung XoC.X la compact.
Voi 0< T < +00, 1< Pi < +00, i = 0,1 Ta d~t
WeT) ={ v E LPo(O,T;Xo) :/ E LP' (O,T;X1)}.
Ta trang bi cho W (T) bdi chu~n
(2.28)
IIvIIW(T)=II V IILPo(o,r;xo)+ II/ IILPl(o,r;x1). (2.29)
Khi do W(T) la khong gian Banach.
Ta co b6 d€ sail lien quail de'n phep nhung compact
B6 d~ 2.14 (B6 d€ v€ tinh compact cua Lions [4])
Phep nhung WeT) c.Uo (O,T;X) Lacompact.
(xem [4], trang 57)
11.7 B6 d~ v~ sf! hQi tQ ye'u trong Lq(Q), 1<q<oo
B6 d~ 2.15 (xem [4], trang 12) Cho Q La mQt tfjp mCt, hi chfjn cua ~n va
Gm, GELq(Q), l<q<+oo, saocho
(ii) Gm +G a.e (r,t) trong Q.
Khi do Gm~ G trong Lq(Q) ye'u.
Trang 911.8 MQt s6 bitt diing thuc thúCingdung
Bfl d~ 2.16 Vai mri X,YEIR., &>0, l~p<+oo, O<q~l, ta luon co
(i)
Ix+yIP';(I+s)'-llxIP +(1+ ~fl,y,P.
Dijc bift, ntu chrn £ = 1, ta du:(/c
(ii)
Ix+ YIP~2P-l(lxIP +lyIP),
Ix+ylq~lxlq +IYlq~i-q(lxl+IYIY,
(iii) Ilxlq-IYlql~lx-Ylq,
IlxlP-l x-I YIP-lyl ~p(lxl+IY Iy-llx-YI,
(iv)
(v) II X Iq-l x-I Y Iq-l y I ~ i-q I x- y Iq.
Chung minh (i).
Nh~n xet ding n€u x = 0, hõc Y = 0, hõc p = 1 (q = 1) thi (i)- (v) dung
Do do ta chi xet X,Y:;t:0,1 < p < +00,0 < q < 1.
Trúong h<jp 1 x> 0, Y> Ọ
Xet ham s6 Jet) = tP, t> 0, co III (t) = pep -1)tp-2 > 0, Vt > 0, nen I la ham 16i tren (0,+00) Do do ta co
(x+ f)' ~[Ẵ)+(I-A)C~A)J';ẴJ +(H)C~J, 1;10d <1.
Chon A = ~, ta thu dúdc (i)
Trúong h<jp 2 x,y:;t: Ọ
Taco Ix+YIP~(lxl+IYIY, apdl,mgtrúongh<jp l,taciingthudú<jc(i).
Chung minh (ii).
Ly lũn túdng tl! nhú (i), nen ta chi xet trúong h<jp x> O,y > Ọ
Xet ham s6
Ta co
I(t)=tq +(1-t)q, O<t<1.
II(t)=q[tq-l_(I-t)q-1J, II(t)=Õt= ~,
(2.30)
Trang 10II (t) > 0 voi 0 < t <!, va fl (t) < 0 voi ! < t < 1,
f(O) = f(l) = 1, f(lI 2) = i-q.
V~y ta co
l<f(t)<i-q, VtE(O,I).
ChQn t = ~ E (0,1), tu (2.30) va (2.31) ta thu duQc (ii)
x+y
(2.31)
Chung minh (iii).
Ap dl;lng (ii), ta co Ix Iq=1(x - y) + y Iq~ Ix - y Iq+ 1y Iq,
hay
TucJng tl!, ta cling co
Iylq -lxlq~lx-ylq.
Tu (2.32)va (2.33)ta thu duQc(iii).
(2.33)
IlxlP-l x-I YIP-lyl= IJ(x)- J(y)l= If~J(y+s(X-Y))dS0
1
=plx-yl flsx+(I-s)YIP-lds~p(lxl+IYlr1Ix-YI.
0
Chung minh (v).
Truong hQp 1 xy < O Ta co
Ilxlq-lx-lylq-l yl=lxlq+lylq,va Ix-Ylq=(lxl+IYlt.
Do do ap dt,mg(ii) ta thu duQc(iv)
Truong hQp 2 xy > O.
Ap dl;lng (iii), ta co
Ilxlq-l x-Iylq-l yl = Ilxlq -IYlql~lx-Ylq~21-q Ix-ylq.
V~y b6 d€ 2.16 dff duQc chung minh
Cac bc1td~ng thuc thong dl;lngdudi day co th€ tlm thc1ytrong cac sach va duQc phat bi€u bdi cac b6 d€ sail
Trang 11B6 d~ 2.17 (Bit d~ng thuc Young) Cho a, b ~ 0, E:> 0, p,/ > 1,l+~ = 1,
ta co
ab<-E:P- a P +-E:-PI b p .
B6 d~ 2.18 (Bit d~ng thuc Cauchy) Cho a,b ~ 0, E:> 0, ta co
(2.34)
~
B6 d~ 2.19 (Bit d~ng thuc Gronwall) Gid sa f, g : [O,T]~ R, la cac ham khd
rich, khong am tren [0,T] va thod ba't dang thac
t
f(t)5,C+ jf(T)g(T)dT, a.e tE[O,T],
0
trang doC la hang so' khong am.
Khi do ta co
1(1)'; C exp lfg(T) dT J, a.e t E [O,T], noi rieng, khi C = 0 thi f(t) = 0, a.e t E [O,T].
(2.36)
11.9 Dinh ly Schauder va djnh ly Ascoli
Dinh ly Schauder Cho K la mQt t(ip lbi, dong trang khong gian Banach X va T: K +K la anh xt;llien tf:lC,compact Khi do T co dilm bat dQngtrang K.
Dinh ly Ascoli Cho x la mQt t(ip compact trang khong gian dinh chuiln
(E,II.II)va A la mQtt(ip con cua Co(X,IR).
Khi do A la mQtt(ip compact trang Co(X,IR)ntu va chi ntu A co hai tinh cha't
(i) A bi ch(in tang diim, nghla fa: vai m6i x E X, t(ip {lex) If E A} bi ch(in trang
JR.,
(ii) A lien tf:lCdbng b(ic, nghla la
V E:> 0, :J17> 0: Vx,Y E x, IIx- yII < 17 ~ If(x) - fey) I< E:, Vf E A.
11.10 M(}t s6 ky hi~u
Ta dung cae ky hit;:u u(t), ul(t) = Ut(t),UII(t)= Utt(t),ur(t), urr(t) Hin luQt d€ chI
u(r,t), -(r,t),at ~(r,t),at -(r,t),ar arz(r,t); QT= Qx(O,T).
Trang 12Sail day la b6 d€ v€ cac bfft d~ng thuc trong Va' V, duejc sa d\mg nhi€u l~n trong chuang 3 va chuang 4
B6 d~ 2.20 Cho trU(1ca E[1,3),ta co cac beltdang thac sau
(i) III u la-l u II:::;K(a) IIu II~' vu E v"
(ii)
,
Jlu(r)12a-2 dr:::;K,(a)llull~a-2, vu E V"
a
(iii) VR > 0, :3KR(a)> 0 saD cho
III u,la-' u, -I u2Ia-, u211:::;JKR(a) IIu, -u2111'
Vu" U2 E VI' IIU, II,:::; R, IIu211,:::; R,
trang do cac hdng srI K(a), K,(a) va KR(a) lan lu(/t xuitt hifn trong (i), (ii) va
(iii) co c6ng thac Cf:lthi duai day
1
1, ne'u a = 1,
(
2a )
a;, 3a-'
1
1 < <
- _2 ' neu - a - _
2 '
K ( a ) - -a
K,2a-2 + (a -1) 82a (K(a» a , ne'u "2 < a < 3,
va
1, ne'u a = 1,
KR(a)=~2a2R2a-2K;K,(a), ne'u I<a:::;~,
a2(2R)2a-2 K;K,(a), ne'u ~< a < 3.
Chuyrdng F;(u)=lula-'uEVo' VUE V, vai O<a<1.
Chung minh (i).
Truong hejp 1 a = 1 Ta co
11F;(u)W=llull:::; Ilull,
Truong hejp2 1< a < 3 Ta co
Trang 13IIFJu)W= Jrlu(r)12a dr
0
(2.37)
="21 u(l) 12a - a Jr21 u(r) 12a-2 u(r) ur(r)dr
0
::;; -'-llull~a + a Jr2Iu(r)12a-l (Frlur(r)l)dr "
}(2a
(
1
J
1 ::;;-t-Ilull~a+ allurll fr3Iu(r)14a-2dr
Di,it P = a+1 > 1,P = I -a+1 > 1, thl,1- + /1 =1
Ta co
Jr3Iu(r)14a-2 dr= Jr2Iu(r)14a-4 [Frlu(r)1r dr
(2.38)
[
2
J
::;;}(~llull~Jr2Iu(r)14a-4dr= }(~llull~Jri rPlul4a-4 dr
(
1
J
;I
(
1
J
~
::;;}(~llull~ fr2 dr jr2Iu(r)12a+2dr
,; Killull;( ty(frlu(r)I'" (""lu(r)l)' dr)'
,; K;lIull;(tY (K;lIull; )* Orlu<r)!'" dr)'
(
1 )
::;; }(211u111 p 3 11~(u)IIP
Tu (2.37) va (2.38) ta du'Qc
1
11F;(U)W::;;}(rIlull~a+allulll(}(21Iulll r+~ (~)2PI 11F;(u)ll~ (2.39)
[
1
]
2~~1
::;; t-Ilull~a+ ~p &allulll(}(2I1ulll) p (3) p +2j;IIF;(u)W.
Trang 14Tn (2.39) ta chQn &> 0 sao cho &2p= p hay &=p2P , ta duQc
2p
II F;(uJII' :5K,'" II ull;" +2pp-r[ap;; II uII,(K, IIull,)"~ G)';' r'
\
a-3 a+1 a-I J
]2 K:~-llIull;a.
a+l a+l
Dodo
[
aB
]
Chung minh (ii).
Truong hQp 1 1~ a ~ ~ Ta co
flu(r) 12a-2dr = frl-a (.Jrl u(r) I) a- dr
~K;a-2 II u II;a-2 frl-adr0 = 2-a2 II u II;a-2.
Truonghd p 2 i < a < 3 Bat
p = > 1, p = - > 1, thl - + / = 1
Ta co
flu(r) 12a-2 dr = Iu(l) 12a-2 - 2(a -1) fr Iu(r) 12a-4 u(r) uJr)dr
I
~ KI2a-21Iull;a-2+ 2(a-l) f.Jr1 u(r) 12a-3 (v'"rlur(r)l)dr
0
(2.40)
I
,; K,'.-'lIull;a-'+ 2(a-1Jllu,1I (fr,u(r)l'"-" dr )'
(
I
J
frlu(r)14a~6dr= frl rPlu(r)14a-6 dr
(2.41 )
,; Ordr J? Or 1u(r) I'" drr ~ 2;: IIFMII~.
Trang 15Tli (2.40) va (2.41) ta thu duQc
flu(r)12a-2dr::; KI2a-21Iull~a-2+ (a-I) 2 2/ IlulllllF;(u)IIP
0
::; KI2a-21Iull~a-2+ (a-I) 22a Ilulll(K(a)lIullnp
[
a-I 2a-3
]
/
::; KI2a-2+(a-I)82a(K(a))a- lIull~a-2
V~y (ii) dii duQc chung minh
Chung minh (iii).
Truong hQp 1 a = 1 Ta co
II F; (ul) - F; (u2) 112=IIul -u2 112::; II ul -u2 II~
Truong hQp 2 1 < a ::;%
Ap dlJng (ii) va b6 d~ 2.16, ta duQC
1
IIF;(u1)-F;(u2) W= Ir 1F;(uI(r))-F;(u2(r)) Idr
0 I
::; fr(al~(r)-U2(r)I(luI(r)1 +lu2(r)lr-lf dr
0
I
::;aK21Iul-u2111 luI(r)I+lu2(r)1 dr
0
I
::;a2K~ IluI-U211~ f(luI(r)12a-2 +lu2(r)12a-2)dr
0
::;a2K~KI(a)(lluIII12a-2 +llu21112a-2)lluI-U211~
::; 2a2R2a-2K~KI(a)11 ul -u211~
Truong hQp 3 % < a < 30 Ta co
I
11F;(uI)-F;(U2)1I ~aK21Iul-u2111 lul(r)I+lu2(r)1 dr
0
I
::; 22a-3 a2 K~ II UI - U2 II~ f( IUI (r) 12a-2 +IU2(r) 12a-2) dr
0 2
( )2a-2 2
2
::;a 2R K2KI(a) UI-U2 10 V~y (iii) dii duQc chung minh