Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 104 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
104
Dung lượng
4,49 MB
Nội dung
ĐỀ THI THỬ ĐẠI HỌC MÔN TON NĂM 2013-2014 Đ Số 1 A.PHẦN CHUNG CHO TẤT CẢ CC THÍ SINH (7 điểm): Câu I (2 điểm): Cho hàm số 3 2 2 3 3 3( 1)y x mx m x m m= − + − − + (1) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. Câu II (2 điểm): 1. Giải phương trình : 2 2 os3x.cosx+ 3(1 sin2x)=2 3 os (2 ) 4 c c x π + + 2. Giải phương trình : 2 2 1 2 2 1 2 2 2 2 log (5 2 ) log (5 2 ).log (5 2 ) log (2 5) log (2 1).log (5 2 ) x x x x x x x + − + − − = − + + − Câu III (1 điểm): Tính tích phân 6 0 tan( ) 4 os2x x I dx c π π − = ∫ Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SC và mặt phẳng (AMN). Chứng minh SC vuông góc với AI và tính thể tích khối chóp MBAI. Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức 2 2 2 3( ) 2P x y z xyz= + + − . B. PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2) 1.Theo chương trình chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng :3 4 4 0x y∆ − + = . Tìm trên ∆ hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15. 2. Trong không gian với hệ toạ độ Oxyz cho mặt cầu 2 2 2 ( ): 2 6 4 2 0S x y z x y z+ + − + − − = . Viết phương trình mặt phẳng (P) song song với giá của véc tơ (1;6;2)v r , vuông góc với mặt phẳng ( ) : 4 11 0x y z α + + − = và tiếp xúc với (S). Câu VIIa(1 điểm): Tìm hệ số của 4 x trong khai triển Niutơn của biểu thức : 2 10 (1 2 3 )P x x= + + 2.Theo chương trình nâng cao: Câu VIb (2 điểm): 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp 2 2 ( ): 1 9 4 x y E + = và hai điểm A(3;-2) , B(- 3;2) . Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. 2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu 2 2 2 ( ): 2 6 4 2 0S x y z x y z+ + − + − − = . Viết phương trình mặt phẳng (P) song song với giá của véc tơ (1;6;2)v r , vuông góc với mặt phẳng ( ) : 4 11 0x y z α + + − = và tiếp xúc với (S). Câu VIIb (1 điểm): Tìm số nguyên dương n sao cho thoả mãn 2 0 1 2 2 2 2 121 2 3 1 1 n n n n n n C C C C n n + + + + = + + ĐP N VÀ THANG ĐIỂM Câu Điểm I II 2. Ta có , 2 2 3 6 3( 1)y x mx m= − + − Để hàm số có cực trị thì PT , 0y = có 2 nghiệm phân biệt 2 2 2 1 0x mx m⇔ − + − = có 2 nhiệm phân biệt 1 0, m⇔ ∆ = > ∀ 05 Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B(m+1;-2-2m) 025 Theo giả thiết ta có 2 3 2 2 2 6 1 0 3 2 2 m OA OB m m m = − + = ⇔ + + = ⇔ = − − Vậy có 2 giá trị của m là 3 2 2m = − − và 3 2 2m = − + . 025 1. os4x+cos2x+ 3(1 sin 2 ) 3 1 os(4x+ ) 2 os4x+ 3 sin 4 os2x+ 3 sin 2 0 PT c x c c x c x π ⇔ + = + ÷ ⇔ + = 05 sin(4 ) sin(2 ) 0 6 6 18 3 2sin(3 ). osx=0 6 x= 2 x x x k x c k π π π π π π π ⇔ + + + = = − + ⇔ + ⇔ + Vậy PT có hai nghiệm 2 x k π π = + và 18 3 x k π π = − + . 05 2. ĐK : 1 5 2 2 0 x x − < < ≠ . Với ĐK trên PT đã cho tương đương với 2 2 2 2 2 2 2 2 log (5 2 ) log (5 2 ) 2log (5 2 ) 2log (5 2 )log (2 1) log (2 1) x x x x x x − − + = − + − + + 05 2 2 2 2 1 4 log (2 1) 1 1 log (5 2 ) 2log (2 1) 2 2 log (5 2 ) 0 2 x x x x x x x x − = + = − ⇔ − = + ⇔ = ∨ = − − = = 025 Kết hợp với ĐK trên PT đã cho có 3 nghiệm x=-1/4 , x=1/2 và x=2. 025 III IV 2 6 6 2 0 0 tan( ) tan 1 4 os2x (t anx+1) x x I dx dx c π π π − + = = − ∫ ∫ , 2 2 1 tan x cos 2x 1 tan x − = + 025 Đặt 2 2 1 t anx dt= (tan 1) cos t dx x dx x = ⇒ = + 0 0 1 6 3 x t x t π = ⇒ = = ⇒ = 05 Suy ra 1 1 3 3 2 0 0 1 1 3 ( 1) 1 2 dt I t t − = − = = + + ∫ . 025 Ta có ,( , ) ,( ) AM BC BC SA BC AB AM SB SA AB ⊥ ⊥ ⊥ ⊥ = AM SC ⇒ ⊥ (1) Tương tự ta có AN SC ⊥ (2) Từ (1) và (2) suy ra AI SC ⊥ 05 Vẽ IH song song với BC cắt SB tại H. Khi đó IH vuông góc với (AMB) Suy ra 1 . 3 ABMI ABM V S IH= Ta có 2 4 ABM a S = 2 2 2 2 2 2 2 . 1 1 1 2 3 3 3 IH SI SI SC SA a IH BC a BC SC SC SA AC a a = = = = = ⇒ = = + + Vậy 2 3 1 3 4 3 36 ABMI a a a V = = 05 Ta c ó: [ ] 2 3 ( ) 2( ) 2 3 9 2( ) 2 27 6 ( ) 2 ( 3) P x y z xy yz zx xyz xy yz zx xyz x y z yz x = + + − + + − = − + + − = − + − + 025 2 3 2 ( ) 27 6 (3 ) ( 3) 2 1 ( 15 27 27) 2 y z x x x x x x + ≥ − − − + = − + − + 025 VIa VIIa Xét hàm số 3 2 ( ) 15 27 27f x x x x= − + − + , với 0<x<3 , 2 1 ( ) 3 30 27 0 9 x f x x x x = = − + − = ⇔ = Từ bảng biến thiên suy ra MinP=7 1x y z⇔ = = = . 05 1. Gọi 3 4 16 3 ( ; ) (4 ; ) 4 4 a a A a B a + − ⇒ − . Khi đó diện tích tam giác ABC là 1 . ( ) 3 2 ABC S AB d C AB= → ∆ = . 05 Theo giả thiết ta có 2 2 4 6 3 5 (4 2 ) 25 0 2 a a AB a a = − = ⇔ − + = ⇔ ÷ = Vậy hai điểm cần tìm là A(0;1) và B(4;4). 05 2. Ta có mặt cầu (S) có tâm I(1;-3;2) và bán kính R=4 Véc tơ pháp tuyến của ( ) α là (1;4;1)n r 025 Vì ( ) ( )P α ⊥ và song song với giá của v r nên nhận véc tơ (2; 1;2) p n n v= ∧ = − uur r r làm vtpt. Do đó (P):2x-y+2z+m=0 025 Vì (P) tiếp xúc với (S) nên ( ( )) 4d I P→ = ⇔ 21 ( ( )) 4 3 m d I P m = − → = ⇔ = 025 Vậy có hai mặt phẳng : 2x-y+2z+3=0 và 2x-y+2z-21=0. 025 Ta có 10 10 2 10 2 10 10 0 0 0 (1 2 3 ) (2 3 ) ( 2 3 ) k k k k i k i i k i k k k i P x x C x x C C x − + = = = = + + = + = ∑ ∑ ∑ 05 Theo giả thiết ta có 4 0 1 2 0 10 4 3 2 , k i i i i i k k k k i k N + = = = = ≤ ≤ ≤ ⇔ ∨ ∨ = = = ∈ 025 Vậy hệ số của 4 x là: 4 4 3 1 2 2 2 2 10 10 3 10 2 2 2 3 3 8085C C C C C+ + = . 025 1. Ta có PT đường thẳng AB:2x+3y=0 Gọi C(x;y) với x>0,y>0.Khi đó ta có 2 2 1 9 4 x y + = và diện tích tam giác ABC là 1 85 85 . ( ) 2 3 3 2 13 3 4 2 13 ABC x y S AB d C AB x y= → = + = + 05 VIb VIIb 2 2 85 170 3 2 3 13 9 4 13 x y ≤ + = ÷ Dấu bằng xảy ra khi 2 2 2 1 3 9 4 2 2 3 2 x y x x y y + = = ⇔ = = . Vậy 3 2 ( ; 2) 2 C . 05 Xét khai triển 0 1 2 2 (1 ) n n n n n n n x C C x C x C x+ = + + + + Lấy tích phân 2 vế cân từ 0 đến 2 , ta được: 1 2 3 1 0 1 3 3 1 2 2 2 2 1 2 3 1 n n n n n n n C C C C n n + + − = + + + + + + 05 ⇔ 2 1 1 0 1 2 1 2 2 2 3 1 121 3 1 2 3 1 2( 1) 1 2( 1) 3 243 4 n n n n n n n n n C C C C n n n n n + + + − − + + + + = ⇔ = + + + + ⇔ = ⇔ = Vậy n=4. 05 ĐỀ THI THỬ ĐẠI HỌC MÔN TON NĂM 2012-2013 Đ Số 2 PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = x 3 – 3x 2 +2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Tìm điểm M thuộc đường thẳng y =3x-2 sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ nhất. Câu II (2 điểm) 1. Giải phương trình cos2x 2sin x 1 2sin x cos2x 0 + − − = 2. Giải bất phương trình ( ) 2 4x 3 x 3x 4 8x 6− − + ≥ − Câu III ( 1điểm)Tính tích phân 3 6 cotx I dx sinx.sin x 4 π π = π + ÷ ∫ Câu IV (1 điểm) Cho hình chóp S.ABC có mặt đáy (ABC) là tam giác đều cạnh a. Chân đường vuông góc hạ từ S xuống mặt phẳng (ABC) là một điểm thuộc BC. Tính khoảng cách giữa hai đường thẳng BC và SA biết SA=a và SA tạo với mặt phẳng đáy một góc bằng 30 0 . Câu V (1 điểm) Cho a,b, c dương và a 2 +b 2 +c 2 =3. Tìm giá trị nhỏ nhất của biểu thức 3 3 3 2 2 2 3 3 3 a b c P b c a = + + + + + PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a. (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : 2 2 x y 2x 8y 8 0+ + − − = . Viết phương trình đường thẳng song song với đường thẳng d: 3x+y-2=0 và cắt đường tròn theo một dây cung có độ dài bằng 6. 2. Cho ba điểm A(1;5;4), B(0;1;1), C(1;2;1). Tìm tọa độ điểm D thuộc đường thẳng AB sao cho độ dài đoạn thẳng CD nhỏ nhất. Câu VII.a (1 điểm) Tìm số phức z thoả mãn : z 2 i 2− + = . Biết phần ảo nhỏ hơn phần thực 3 đơn vị. B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1. Tính giá trị biểu thức: 2 4 6 100 100 100 100 100 4 8 12 200A C C C C= + + + + . 2. Cho hai đường thẳng có phương trình: 1 2 3 : 1 3 2 x z d y − + = + = 2 3 : 7 2 1 x t d y t z t = + = − = − Viết phương trình đường thẳng cắt d 1 và d 2 đồng thời đi qua điểm M(3;10;1). Câu VII.b (1 điểm) Giải phương trình sau trên tập phức: z 2 +3(1+i)z-6-13i=0 Hết ĐP N ĐỀ THI THỬ ĐẠI HỌC MÔN TON NĂM 2012-2013 PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu Nội dung Điểm I 1 Tập xác định: D=R ( ) ( ) 3 2 3 2 lim 3 2 lim 3 2 x x x x x x →−∞ →+∞ − + = −∞ − + = +∞ y’=3x 2 -6x=0 0 2 x x = ⇔ = Bảng biến thiên: x -∞ 0 2 + ∞ y’ + 0 - 0 + 2 + ∞ y -∞ -2 Hàm số đồng biến trên khoảng: (-∞;0) và (2; + ∞) Hàm số nghịch biến trên khoảng (0;2) f CĐ =f(0)=2; f CT =f(2)=-2 y’’=6x-6=0<=>x=1 khi x=1=>y=0 x=3=>y=2 x=-1=>y=-2 Đồ thị hàm số nhận điểm I(1;0) là tâm đối xứng. 0,25 đ 0,25 đ 0,5 đ 2 Gọi tọa độ điểm cực đại là A(0;2), điểm cực tiểu B(2;-2) Xét biểu thức P=3x-y-2 Thay tọa độ điểm A(0;2)=>P=-4<0, thay tọa độ điểm B(2;-2)=>P=6>0 Vậy 2 điểm cực đại và cực tiểu nằm về hai phía của đường thẳng y=3x-2, để MA+MB nhỏ nhất => 3 điểm A, M, B thẳng hàng Phương trình đường thẳng AB: y=-2x+2 Tọa độ điểm M là nghiệm của hệ: 4 3 2 5 2 2 2 5 x y x y x y = = − ⇔ = − + = => 4 2 ; 5 5 M ÷ 0,25 đ 0,25 đ 0,25 đ 0,25 đ II 1 Giải phương trình: cos2x 2sin x 1 2sin x cos2x 0 + − − = (1) ( ) ( ) ( ) ( ) ( ) 1 os2 1 2sin 1 2sin 0 os2 1 1 2sin 0 c x x x c x x ⇔ − − − = ⇔ − − = 0,5 đ Khi cos2x=1<=> x k π = , k Z∈ Khi 1 sinx 2 = ⇔ 2 6 x k π π = + hoặc 5 2 6 x k π π = + , k Z∈ 0,5 đ 2 Giải bất phương trình: ( ) 2 4x 3 x 3x 4 8x 6− − + ≥ − (1) (1) ( ) ( ) 2 4 3 3 4 2 0x x x⇔ − − + − ≥ Ta có: 4x-3=0<=>x=3/4 2 3 4 2x x− + − =0<=>x=0;x=3 Bảng xét dấu: x -∞ 0 ¾ 2 + ∞ 4x-3 - - 0 + + 2 3 4 2x x− + − + 0 - - 0 + Vế trái - 0 + 0 - 0 + Vậy bất phương trình có nghiệm: [ ) 3 0; 3; 4 x ∈ ∪ +∞ 0,25 đ 0,25 đ 0,25 đ 0,25 đ III Tính ( ) ( ) 3 3 6 6 3 2 6 cot cot 2 sinx sinx cos sin x sin 4 cot 2 sin x 1 cot x x I dx dx x x x dx x π π π π π π π = = + + ÷ = + ∫ ∫ ∫ Đặt 1+cotx=t 2 1 sin dx dt x ⇒ = − Khi 3 1 1 3; 6 3 3 x t x t π π + = ⇔ = + = ⇔ = Vậy ( ) 3 1 3 1 3 1 3 3 1 3 1 2 2 2 ln 2 ln 3 3 t I dt t t t + + + + − = = − = − ÷ ∫ 0,25 đ 0,25 đ 0,25 đ 0,25 đ IV Gọi chân đường vuông góc hạ từ S xuống BC là H. Xét ∆SHA(vuông tại H) 0 3 cos30 2 a AH SA= = Mà ∆ABC đều cạnh a, mà cạnh 0,25 đ H A C B S K [...]... ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Mơn thi : TỐN Câu I 2 điểm b) x +1 ( C ') Học sinh lập luận để suy từ đồ thị (C) sang đồ thị y = x −1 Học sinh tự vẽ hình x +1 x +1 = m bằng số giao điểm của đồ thị y = Số nghiệm của và y = m x −1 x −1 Câu II a) Suy ra đáp số m < −1; m > 1: phương trình có 2 nghiệm m = −1: phương trình có 1 nghiệm −1 < m ≤ 1: phương trình vơ nghiệm 2 điểm 1 2 4 4 Ta có sin... log 4 2 3 0.25 0.25 0.25 0,25 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Mơn thi : TỐN Đề số 5 A PHẦN DÀNH CHO TẤT CẢ THÍ SINH x +1 Câu I (2 điểm) Cho hàm số y = x −1 a) Khảo sát sự biến thi n và vẽ đồ thị ( C ) của hàm số b) Biện luận theo m số nghiệm của phương trình Câu II (2 điểm) ( x +1 = m x −1 ) 4 4 a) Tìm m để phương trình 2 sin x + cos x + cos 4 x + 2sin 2 x − m = 0 có nghiệm trên π 0; 2 ... 5 ) u ur u r uu u u u ur uu u r MN ⊥ nP ⇔ MN nP = 0 ⇒ t ' = 0 ⇒ N ( 5;0; −5 ) Trường hợp 2: t = 1 ⇒ M ( 3;0; 2 ) , N ( −1; −4;0 ) ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2013 -2014 Mơn thi : TỐN (ĐỀ 6) A Phần chung cho tất cả thí sinh: x −3 có đồ thị (C) 2−x a Khảo sát sự biến thi n và vẽ đồ thị (C) b Viết phương trình tiếp tuyến với (C) biết tiếp tuyến vng góc với y = - x + 2011 Câu 2: (3,0 điểm) 2 2 a Giải... + 1 = 0 ∆ = i 2 − 8 = −9 = 9i2 Căn bậc hai của ∆ là ±3i 1 Phương trình có hai nghiệm là z = i hay z = − i 2 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2013 -2014 Mơn thi : TỐN (ĐỀ 7) A PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 8 điểm) Câu 1: ( 2điểm) Cho hàm số y = 4x3 + mx2 – 3x 1 Khảo sát và vẽ đồ thị (C) hàm số khi m = 0 2 Tìm m để hàm số có hai cực trị tại x1 và x2 thỏa x1 = - 4x2 Câu 2: (2điểm) x − 2 y −... VT(*) *Kết luận : Các nghiệm của phương trình đã cho là x=1 và x = 6.b 1 ⇔ m = ±1 2 0.25 0.25 0.25 0.25 x = 2 − 2t * ∆1 có phương trình tham số y = −1 + t z = 3t x = 2 + s * ∆ 2 có phương trình tham số y = 5 + 3s z = s 8.b 1 8 *(C) có tâm O(0;0) , bán kính R=1 *(d) cắt (C) tại hai điểm phân biệt ⇔ d(O ;d) < 1 1 1 1 *Ta có SOAB = OAOB sin... BB '.BC = ⇒ VMBB ' C = AH S∆BB ' C = 2 2 3 12 Gọi I là tâm hình vng BCC’B’ (Học sinh tự vẽ hình) Ta có B ' C ⊥ MI ; B ' C ⊥ BC ' ⇒ B ' C ⊥ MB S∆BB ' C = Câu VIa (Học sinh tự vẽ hình) Gọi K là hình chi u của A trên d ⇒ K cố định; Gọi ( α ) là mặt phẳng bất kỳ chứa d và H là hình chi u của A trên ( α ) Trong tam giác vng AHK ta có AH ≤ AK Vậy AH max = AK ⇔ ( α ) là mặt phẳng qua K và vng góc với AK Gọi... log 3 (9x − 72) ≤ x 0.25 ⇔ 9x − 72 ≤ 3x 3x ≥ −8 ⇔ x ⇔x≤2 3 ≤ 9 *Kết luận tập nghiệm : T = (log 9 72; 2] 0.25 0.25 ĐỀ THI THỬ ĐẠI HỌC MƠN TOÁN NĂM 2012-2013 Đề Số 4 PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) Câu I ( 2,0 điểm): Cho hàm số y = 2x − 4 x +1 1 Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số 2 Tìm trên đồ thị (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(-3; 0) và N(-1;... 5i 0,25 đ 0,25 đ 0,25 đ 0,25 đ ĐỀ THI THỬ ĐẠI HỌC MƠN TOÁN NĂM 2012-2013 Đề Số 3 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (2 điểm) 2x − 1 x −1 2 Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm I(1;2) đến tiếp tuyến bằng 2 Câu II (2 điểm) 17π x π ) + 16 = 2 3.s inx cos x + 20sin 2 ( + ) 1) Giải phương trình sin(2x + 2 2 12 1 Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm... 3 u r x = 1 − 3t * ∆ có phương trình tham số và có vtcp u = (−3; 2) y = −2 + 2t *A thuộc ∆ ⇒ A (1 − 3t; −2 + 2t) u ur u uu r u ur u uu r AB u 1 1 ⇔ u = r *Ta có (AB; ∆ )=450 ⇔ cos(AB ; u) = 2 2 AB u 15 3 ∨t = − 13 13 32 4 22 32 *Các điểm cần tìm là A1 (− ; ), A2 ( ; − ) 13 13 13 13 ur u *(d) đi qua M 1 (0; −1;0) và có vtcp u1 = (1; −2; −3) ur u (d’) đi qua M 2 (0;1; 4) và có vtcp u2 = (1; 2;5)... (1; 2;5) ur ur u u u r uuuu u u ur *Ta có u1 ; u2 = ( −4; −8; 4) ≠ O , M 1M 2 = (0; 2; 4) ur ur u u u u u u u u ur Xét u1 ; u2 M 1M 2 = −16 + 14 = 0 (d) và (d’) đồng phẳng u r *Gọi (P) là mặt phẳng chứa (d) và (d’) => (P) có vtpt n = (1; 2; −1) và đi qua M1 nên có phương trình x + 2y − z + 2 = 0 *Dễ thấy điểm M(1;-1;1) thuộc mf(P) , từ đó ta có đpcm *Điều kiện :x>0 *TH1 : xét x=1 là . = Vậy n=4. 05 ĐỀ THI THỬ ĐẠI HỌC MÔN TON NĂM 2012-2013 Đ Số 2 PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = x 3 – 3x 2 +2 (1) 1. Khảo sát sự biến thi n và vẽ đồ. − 0,25 đ 0,25 đ 0,25 đ 0,25 đ ĐỀ THI THỬ ĐẠI HỌC MÔN TON NĂM 2012-2013 Đ Số 3 PHẦN CHUNG CHO TẤT CẢ CC THÍ SINH (7,0 điểm) Câu I (2 điểm) 1. Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm. VII.b (1 điểm) Giải phương trình sau trên tập phức: z 2 +3(1+i)z-6-13i=0 Hết ĐP N ĐỀ THI THỬ ĐẠI HỌC MÔN TON NĂM 2012-2013 PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu Nội dung Điểm I 1 Tập