1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lý thuyết điều khiển mờ

98 468 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 98
Dung lượng 1,06 MB

Nội dung

Chng 4 : iu khin m Hc kì 1 nm hc 2005-2006 Chng 4 IU KHIN M Khái nim v logic m đc giáo s L.A Zadeh đa ra ln đu tiên nm 1965, ti trng i hc Berkeley, bang California - M. T đó lý thuyt m đã đc phát trin và ng dng rng rãi. Nm 1970 ti trng Mary Queen, London – Anh, Ebrahim Mamdani đã dùng logic m đ điu khin mt máy hi nc mà ông không th điu khin đc bng k thut c đin. Ti c Hann Zimmermann đã dùng logic m cho các h ra quyt đnh. Ti Nht logic m đc ng dng vào nhà máy x lý nc ca Fuji Electronic vào 1983, h thng xe đin ngm ca Hitachi vào 1987. Lý thuyt m ra đi  M, ng dng đu tiên  Anh nhng phát trin mnh m nht là  Nht. Trong lnh vc T đng hoá logic m ngày càng đc ng dng rng rãi. Nó thc s hu dng vi các đi tng phc tp mà ta cha bit rõ hàm truyn, logic m có th gii quyt các vn đ mà điu khin kinh đin không làm đc. 4.1. Khái nim c bn  hiu rõ khái nim “M” là gì ta hãy thc hin phép so sánh sau : Trong toán hc ph thông ta đã hc khá nhiu v tp hp, ví d nh tp các s thc R, tp các s nguyên t P={2,3,5, }… Nhng tp hp nh vy đc gi là tp hp kinh đin hay tp rõ, tính “RÕ”  đây đc hiu là vi mt tp xác đnh S cha n phn t thì ng vi phn t x ta xác đnh đc mt giá tr y=S(x). Gi ta xét phát biu thông thng v tc đ mt chic xe môtô : chm, trung bình, hi nhanh, rt nhanh. Phát biu “CHM”  đây không đc ch rõ là bao nhiêu km/h, nh vy t “CHM” có min giá tr là mt khong nào đó, ví d 5km/h – 20km/h chng hn. Tp hp L={chm, trung bình, hi nhanh, rt nhanh} nh vy đc gi là mt tp các bin ngôn ng. Vi mi thành phn ngôn ng x k ca phát biu trên nu nó nhn đc mt kh nng μ (x k ) thì tp hp F gm các cp (x, μ (x k )) đc gi là tp m. 4.1.1. nh ngha tp m Tp m F xác đnh trên tp kinh đin B là mt tp mà mi phn t ca nó là mt cp giá tr (x, μ F (x)), vi x ∈ X và μ F (x) là mt ánh x : PGS.TS Nguyn Th Phng Hà http://www.khvt.com μ F (x) : B → [0 1] trong đó : μ F gi là hàm thuc , B gi là tp nn. 4.1.2. Các thut ng trong logic m •  cao tp m F là giá tr h = Sup μ F (x), trong đó sup μ F (x) ch giá tr nh nht trong tt c các chn trên ca hàm μ F (x). • Min xác đnh ca tp m F, ký hiu là S là tp con tho mãn : S = Supp μ F (x) = { x ∈ B | μ F (x) > 0 } • Min tin cy ca tp m F, ký hiu là T là tp con tho mãn : T = { x ∈ B | μ F (x) = 1 } • Các dng hàm thuc (membership function) trong logic m Có rt nhiu dng hàm thuc nh : Gaussian, PI-shape, S-shape, Sigmoidal, Z-shape … 0 0.2 0.4 0.6 0.8 1 trapmf gbellmf trimf gaussmf gauss2mf smf 0 0.2 0.4 0.6 0.8 1 zmf psigmf dsigmf pimf sigmf Hình 4.1: μ 1 min tin cy MX  Chng 4 : iu khin m Trang 3 4.1.3. Bin ngôn ng Bin ngôn ng là phn t ch đo trong các h thng dùng logic m.  đây các thành phn ngôn ng ca cùng mt ng cnh đc kt hp li vi nhau.  minh ho v hàm thuc và bin ngôn ng ta xét ví d sau : Xét tc đ ca mt chic xe môtô, ta có th phát biu xe đang chy: - Rt chm (VS) - Chm (S) - Trung bình (M) - Nhanh (F) - Rt nhanh (VF) Nhng phát biu nh vy gi là bin ngôn ng ca tp m. Gi x là giá tr ca bin tc đ, ví d x =10km/h, x = 60km/h … Hàm thuc tng ng ca các bin ngôn ng trên đc ký hiu là : μ VS (x), μ S (x), μ M (x), μ F (x), μ VF (x) Nh vy bin tc đ có hai min giá tr : - Min các giá tr ngôn ng : N = { rt chm, chm, trung bình, nhanh, rt nhanh } - Min các giá tr vt lý : V = { x∈B | x ≥ 0 } Bin tc đ đc xác đnh trên min ngôn ng N đc gi là bin ngôn ng. Vi mi x∈B ta có hàm thuc : x → μ X = { μ VS (x), μ S (x), μ M (x), μ F (x), μ VF (x) } Ví d hàm thuc ti giá tr rõ x=65km/h là : μ X (65) = { 0;0;0.75;0.25;0 } VS S M F VF 0 20 40 60 65 80 100 tc đ μ 1 0.75 0.25 Hình 4.2: PGS.TS Nguyn Th Phng Hà http://www.khvt.com 4.1.4. Các phép toán trên tp m Cho X,Y là hai tp m trên không gian nn B, có các hàm thuc tng ng là μ X , μ Y , khi đó : - Phép hp hai tp m : X∪Y + Theo lut Max μ X ∪ Y (b) = Max{ μ X (b) , μ Y (b) } + Theo lut Sum μ X ∪ Y (b) = Min{ 1, μ X (b) + μ Y (b) } + Tng trc tip μ X ∪ Y (b) = μ X (b) + μ Y (b) - μ X (b). μ Y (b) - Phép giao hai tp m : X∩Y + Theo lut Min μ X ∪ Y (b) = Min{ μ X (b) , μ Y (b) } + Theo lut Lukasiewicz μ X ∪ Y (b) = Max{0, μ X (b)+ μ Y (b)-1} + Theo lut Prod μ X ∪ Y (b) = μ X (b). μ Y (b) - Phép bù tp m : c X μ (b) = 1- μ X (b) 4.1.5. Lut hp thành 1. Mnh đ hp thành Ví d điu khin mc nc trong bn cha, ta quan tâm đn 2 yu t : + Mc nc trong bn L = {rt thp, thp, va} + Góc m van ng dn G = {đóng, nh, ln} Ta có th suy din cách thc điu khin nh th này : Nu mc nc = rt thp Thì góc m van = ln Nu mc nc = thp Thì góc m van = nh Nu mc nc = va Thì góc m van = đóng Trong ví d trên ta thy có cu trúc chung là “Nu A thì B” . Cu trúc này gi là mnh đ hp thành, A là mnh đ điu kin, C = A ⇒ B là mnh đ kt lun. nh lý Mamdani : “ ph thuc ca kt lun không đc ln hn đ ph thuc điu kin” Nu h thng có nhiu đu vào và nhiu đu ra thì mnh đ suy din có dng tng quát nh sau : If N = n i and M = m i and … Then R = r i and K = k i and …. 2. Lut hp thành m Lut hp thành là tên gi chung ca mô hình biu din mt hay nhiu hàm thuc cho mt hay nhiu mnh đ hp thành. Chng 4 : iu khin m Trang 5 Các lut hp thành c bn + Lut Max – Min + Lut Max – Prod + Lut Sum – Min + Lut Sum – Prod a. Thut toán xây dng mnh đ hp thành cho h SISO Lut m cho h SISO có dng “If A Then B” Chia hàm thuc μ A (x) thành n đim x i , i = 1,2,…,n Chia hàm thuc μ B (y) thành m đim y j , j = 1,2,…,m Xây dng ma trn quan h m R R= ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ),( )1,( ),2( )1,2( ),1( )1,1( ymxnyxn ymxyx ymxyx RR RR RR μμ μμ μμ = ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ rnmrn mrr mrr 1 2 21 1 11 Hàm thuc μ B’ (y) đu ra ng vi giá tr rõ đu vào x k có giá tr μ B’ (y) = a T .R , vi a T = { 0,0,0,…,0,1,0….,0,0 }. S 1 ng vi v trí th k. Trong trng hp đu vào là giá tr m A’ thì μ B’ (y) là : μ B’ (y) = { l 1 ,l 2 ,l 3 ,…,l m } vi l k =maxmin{a i ,r ik }. b. Thut toán xây dng mnh đ hp thành cho h MISO Lut m cho h MISO có dng : “If cd 1 = A 1 and cd 2 = A 2 and … Then rs = B” Các bc xây dng lut hp thành R : • Ri rc các hàm thuc μ A1 (x 1 ), μ A2 (x 2 ), … , μ An (x n ), μ B (y) • Xác đnh đ tho mãn H cho tng véct giá tr rõ đu vào x={c 1 ,c 2 ,…,c n } trong đó c i là mt trong các đim mu ca μ Ai (x i ). T đó suy ra H = Min{ μ A1 (c 1 ), μ A2 (c 2 ), …, μ An (c n ) } • Lp ma trn R gm các hàm thuc giá tr m đu ra cho tng véct giá tr m đu vào: μ B’ (y) = Min{ H, μ B (y) } hoc μ B’ (y) = H. μ B (y) PGS.TS Nguyn Th Phng Hà http://www.khvt.com 4.1.6. Gii m Gii m là quá trình xác đnh giá tr rõ  đu ra t hàm thuc μ B’ (y) ca tp m B’. Có 2 phng pháp gii m : 1. Phng pháp cc đi Các bc thc hin : - Xác đnh min cha giá tr y’, y’ là giá tr mà ti đó μ B’ (y) đt Max G = { y ∈ Y | μ B’ (y) = H } - Xác đnh y’ theo mt trong 3 cách sau : + Nguyên lý trung bình + Nguyên lý cn trái + Nguyên lý cn phi • Nguyên lý trung bình : y’ = 2 21 yy + • Nguyên lý cn trái : chn y’ = y1 • Nguyên lý cn phi : chn y’ = y2 2. Phng pháp trng tâm im y’ đc xác đnh là hoành đ ca đim trng tâm min đc bao bi trc hoành và đng μ B’ (y). Công thc xác đnh : y’ = ∫ ∫ S S (y)dy )( μ μ dyyy trong đó S là min xác đnh ca tp m B’ y1 y2 y μ H G Hình 4.3: Chng 4 : iu khin m Trang 7 ♦Phng pháp trng tâm cho lut Sum-Min Gi s có m lut điu khin đc trin khai, ký hiu các giá tr m đu ra ca lut điu khin th k là μ B’k (y) thì vi quy tc Sum-Min hàm thuc s là μ B’ (y) = ∑ = m k kB y 1 ' )( μ , và y’ đc xác đnh : y’ = () ∑ ∑ ∑ ∫ ∑ ∫ ∑ ∫ ∑ = = = = = = = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ m k k m k k m k yB m k kB S m k kB S m k kB A M dyy dyyy dyy dyyy 1 1 1 S ' 1 ' 1 ' 1 ' )( )( )( )( μ μ μ μ (4.1) trong đó M i = ∫ S ' )( dyyy kB μ và A i = ∫ S ' )( dyy kB μ i=1,2,…,m Xét riêng cho trng hp các hàm thuc dng hình thang nh hình trên : M k = )3333( 6 12 222 1 2 2 ambmabmm H ++−+− A k = 2 H (2m 2 – 2m 1 + a + b) Chú ý hai công thc trên có th áp dng c cho lut Max-Min ♦ Phng pháp đ cao T công thc (4.1), nu các hàm thuc có dng Singleton thì ta đc: y’ = ∑ ∑ = = m k k m k kk H Hy 1 1 vi H k = μ B’k (y k ) ây là công thc gii m theo phng pháp đ cao. y m1 m2 a b μ H PGS.TS Nguyn Th Phng Hà http://www.khvt.com 4.1.7. Mô hình m Tagaki-Sugeno Mô hình m mà ta nói đn trong các phn trc là mô hình Mamdani. u đim ca mô hình Mamdani là đn gin, d thc hin nhng kh nng mô t h thng không tt. Trong k thut điu khin ngi ta thng s dng mô hình m Tagaki-Sugeno (TS). Tagaki-Sugeno đa ra mô hình m s dng c không gian trng thái m ln mô t linh hot h thng. Theo Tagaki/Sugeno thì mt vùng m LX k đc mô t bi lut : R sk : If x = LX k Then uxBxxAx kk )()( += $ (4.2) Lut này có ngha là: nu véct trng thái x nm trong vùng LX k thì h thng đc mô t bi phng trình vi phân cc b uxBxxAx kk )()( += $ . Nu toàn b các lut ca h thng đc xây dng thì có th mô t toàn b trng thái ca h trong toàn cc. Trong (4.2) ma trn A(x k ) và B(x k ) là nhng ma trn hng ca h thng  trng tâm ca min LX k đc xác đnh t các chng trình nhn dng. T đó rút ra đc : ∑ += ))()(( uxBxxAwx kk k $ (4.3) vi w k (x) ∈ [0 , 1] là đ tho mãn đã chun hoá ca x* đi vi vùng m LX k Lut điu khin tng ng vi (4.2) s là : R ck : If x = LX k Then u = K(x k )x Và lut điu khin cho toàn b không gian trng thái có dng: ∑ = = N k k k xxKwu 1 )( (4.4) T (4.2) và (4.3) ta có phng trình đng hc cho h kín: xxKxBxAxwxwx lkk l k ))()()()(()( += ∑ $ Ví d : Mt h TS gm hai lut điu khin vi hai đu vào x 1 ,x 2 và đu ra y. R 1 : If x 1 = BIG and x 2 = MEDIUM Then y 1 = x 1 -3x 2 R 2 : If x 1 = SMALL and x 2 = BIG Then y 2 = 4+2x 1 u vào rõ đo đc là x 1 * = 4 và x 2 * = 60. T hình bên di ta xác đnh đc : LX BIG (x 1 *) = 0.3 và LX BIG (x 2 *) = 0.35 LX SMALL (x 1 *) = 0.7 và LX MEDIUM (x 2 *) = 0.75 Chng 4 : iu khin m Trang 9 T đó xác đnh đc : Min(0.3 ; 0.75)=0.3 và Min(0.35 ; 0.7)=0.35 y 1 = 4-3×60 = -176 và y 2 = 4+2×4 = 12 Nh vy hai thành phn R 1 và R 2 là (0.3 ; -176) và (0.35 ; 12). Theo phng pháp tng trng s trung bình ta có: 77.74 35.03.0 1235.0)176(3.0 −= + × + − × =y 4.2. B điu khin m 4.2.1. Cu trúc mt b điu khin m Mt b điu khin m gm 3 khâu c bn: + Khâu m hoá + Thc hin lut hp thành + Khâu gii m Xét b điu khin m MISO sau, vi véct đu vào X = [ ] T n uuu 21 0.7 1 0.3 1 0.75 0 60 100 0 4 10 0.35 X y ’ R 1 If … Then… R n If … Then … H 1 H n Hình 4.4: PGS.TS Nguyn Th Phng Hà http://www.khvt.com 4.2.2. Nguyên lý điu khin m ♦ Các bc thit k h thng điu khin m. + Giao din đu vào gm các khâu: m hóa và các khâu hiu chnh nh t l, tích phân, vi phân … + Thip b hp thành : s trin khai lut hp thành R + Giao din đu ra gm : khâu gii m và các khâu giao din trc tip vi đi tng. 4.2.3. Thit k b điu khin m • Các bc thit k: B1 : nh ngha tt c các bin ngôn ng vào/ra. B2 : Xác đnh các tp m cho tng bin vào/ra (m hoá). + Min giá tr vt lý ca các bin ngôn ng. + S lng tp m. + Xác đnh hàm thuc. + Ri rc hoá tp m. B3 : Xây dng lut hp thành. B4 : Chn thit b hp thành. B5 : Gii m và ti u hoá. Hình 4.5: e μ B y’ lut điu khin Giao din đu vào Giao din đu ra Thit b hp thành X e u y BKM  IT   NG THIT B O [...]... lý thông tin không nh l ng nh l ng và nh ch c ch n tính L u gi tri th c Trong n ron và tr ng s Trong lu t h p thành c a t ng ng ghép n i và hàm thu c n ron Kh n ng c p nh t và Thông qua quá trình h c Không có nâng cao ki n th c Tính nh y c m v i Th p Cao nh ng thay i c a mô hình T ó ng i ta ã i n vi c k t h p m ng n ron và i u khi n m thành b i u khi n m - n ron có u i m v t tr i Vào M ng n ron X lý. .. c phát tri n nhanh chóng và ng d ng trong nhi u l nh v c khác nhau nh t i u hàm, x lý nh, bài toán hành trình ng i bán hàng, nh n d ng h th ng và i u khi n Thu t toán di truy n c ng nh các thu t toán ti n hóa nói chung, hình thành d a trên quan ni m cho r ng, quá trình ti n hóa t nhiên là quá trình hoàn h o nh t, h p lý nh t và t nó ã mang tính t i u Quan ni m này có th xem nh m t tiên úng, không ch... ra là tín hi u y c xác nh: n y(t) = f ( wk x k (t ) ), k 1 trong ó là ng ng kích ho t n ron, wk là các tr ng s , f là hàm kích ho t Trang 25 PGS.TS Nguy n Th Ph ng Hà 4.5.2 C u trúc m ng n ron Nguyên lý c u t o c a m t m ng n ron là bao g m nhi u l p, m i l p bao g m nhi u n ron có cùng m t ch c n ng Sau ây là các d ng liên k t m ng c b n: a) M ng truy n th ng (Feedforward Neural Networks) x1 y x2... H m lai H m lai (Fuzzy Hybrid) là m t h th ng i u khi n t ng trong ó thi t b i u khi n bao g m: ph n i u khi n kinh i n và ph n h m 4.4.1 Các d ng h m lai ph bi n: 1 H m lai không thích nghi B ti n X lý m B IT K NG Hình 4.8 2 H m lai cascade u B KM + B K KINH I N x u y IT NG Hình 4.9 3 Công t c m i u khi n h th ng theo ki u chuy n i khâu i u khi n có tham s òi h i thi t b i u khi n ph i ch a ng t t... ron http://www.khvt.com Ch ng 4 : i u khi n m 4.5.6 Thu t toán di truy n (GA) Gi i thi u Thu t toán di truy n là thu t toán t i u ng u nhiên d a trên c ch ch n l c t nhiên và ti n hóa di truy n Nguyên lý c b n c a thu t toán di truy n ã c Holland gi i thi u vào n m 1962 C s toán h c ã c phát tri n t cu i nh ng n m 1960 và ã c gi i thi u trong quy n sách u tiên c a Holland, Adaptive in Natural and Artificial... khâu i u khi n có tham s phù h p v i i t ng B x i u khi n n B KM B i u khi n 1 it u Hình 4.10 http://www.khvt.com ng y Ch ng 4 : i u khi n m 4.4.2 Ví d minh ho Hãy xét s khác bi t khi s d ng b ti n x lý m i u khi n i t ng K g m khâu ch t n i ti p v i khâu G ( s ) Ch n B K PI v i s (1 0.2 s ) tham s KP = 10, TI = 0.3sec it x E DE B m + x KR 1 TI s ng - u u S d ng Simulink k t h p v i toolbox FIS Editor

Ngày đăng: 17/06/2015, 10:29

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w