Độ đo Radon và định lí biểu diễn Riesz

48 1.1K 3
Độ đo Radon và định lí biểu diễn Riesz

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Độ đo và phân tích Lebesgue là một trong những nội dung khá quan trong của giải tích

TRƯỜNG ĐẠI HỌC AN GIANG KHOA SƯ PHẠM KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC SƯ PHẠM CHUYÊN NGÀNH TOÁN ĐỀ TÀI:  GVHD : Ths. PHẠM THỊ THU HƯỜNG SVTH : NGUYỄN THỊ ANH ĐÀO CHUYÊN NGÀNH : GIẢI TÍCH An Giang, tháng 05 năm 2008 LỜI CẢM ƠN Quyển luận văn được hoàn thành là nhờ sự ủng hộ, động viên về mặt tinh thần của gia đình bạn bè, sự giúp đỡ nhiệt tình của quý thầy cô trong bộ môn Toán khoa Sư Phạm của trường. Các thầy cô đã chỉ dẫn cho tôi về hình thức trình bày quyển luận văn thế nào cho đúng đẹp, cho tôi những lời khuyên khi tôi cảm thấy khó khăn. Đặc biệt là cô Phạm Thị Thu Hường đã tận tình chỉ bảo, giải đáp những điều mà tôi thắc mắc cho tôi những ý kiến quý báo từ nội dung đến hình thức trình bày quyển luận văn này. Xin chân thành cảm ơn. Tôi cũng xin cảm ơn tất cả các thầy cô đã giảng dạy cho tôi trong suốt thời gian học tập tại trường. Nguyễn Thị Anh Đào  Khóa luận tốt nghiệp Nguyễn Thị Anh Đào GVHD Ths. Phạm Thị Thu Hường Trang 1 LỜI NÓI ĐẦU Độ đo tích phân Lebesgue là một trong những nội dung khá quan trọng của giải tích. Việc xây dựng độ đo xuất phát từ vấn đề: Trên đường thẳng, có những tập được gán một số không âm gọi là độ dài, chẳng hạn như độ dài đoạn thẳng. Nhưng cũng có những tập mà trực quan ta không biết được độ dài của nó xác định như thế nào, chẳng hạn như tập nh ững số hữu tỉ trong đoạn [0, 1]. Người ta đã xây dựng lý thuyết độ đo để có thể đo được những tập như thế. Về tích phân Riemann, tích phân này có một số hạn chế. Với tích phân này, nhiều vấn đề của giải tích đã không được giải quyết một cách thỏa đáng, chẳng hạn vấn đề qua giới hạn dưới dấu tích phân. Tuy nhiên những vấn đề kể trên đã được trình bày rõ trong một số giáo trình nên trong khuôn khổ của bản khoá luận này tôi không trình bày lại. Bạn đọc quan tâm có thể tham khảo “ Hàm Thực & Giải Tích Hàm ” của Hoàng Tụy. Trong bản khóa luận tôi trình bày về một độ đo mới mà với độ đo này thì độ đo của một tập Borel có thể được xấp xỉ bằng độ đo của các tập compact, đóđộ đo Radon. Đối với độ đo Radon ta có một tính chất khá thú vị, thể hiện ở định lý Lusin, ý nghĩa của định lý này là ta có thể xấp xỉ một hàm đo được bằng một hàm liên tục, điều này rất quan trọng trong việc tính tích phân của một hàm đo được. Tôi cũng trình bày về mối quan hệ giữa một độ đo Radon trên một không gian mêtric có một dãy vét cạn compact với một phiếm hàm tuyến tính dương trên không gian các hàm số thực liên tục có giá compact. M ột độ đo Radon sinh ra một phiếm hàm tuyến tính dương trên không gian các hàm số thực liên tục có giá compact, nhưng điều ngược lại có đúng không ? Điều này sẽ được khẳng định trong địnhbiểu diễn Riesz. Nội dung bản khoá luận gồm có 3 chương: Chương 1: KIẾN THỨC CHUẨN BỊ Chương này trình bày một số kiến thức cơ bản về độ đo tích phân Lebesgue gồm một số định nghĩa định lý làm cơ sở cho các chương sau. Do  Khóa luận tốt nghiệp Nguyễn Thị Anh Đào GVHD Ths. Phạm Thị Thu Hường Trang 2 đây không phải là nội dung chính nên một số kết quả không được chứng minh. Chương 2: ĐỘ ĐO RADON ĐỊNHBIỂU DIỄN RIESZ Đây là nội dung chính của bản luân văn. Chương này nói về định nghĩa độ đo Radon, một số tính chất của nó trình bày chứng minh chi tiết địnhbiểu diễn Riesz. Chương 3: MỘT ÁP DỤNG CỦA ĐỊNHBIỂU DIỄN RIESZ Đây là chương cuối, trình bày một áp dụng c ủa địnhbiểu diễn Riesz. Do nhiều nguyên nhân, một trong những nguyên nhân đó là lần đầu tiên tôi làm một bài nghiên cứu khoa học cũng hạn chế về thời gian, trình độ nên những thiếu sót chắc chắn không thể tránh khỏi. Rất mong nhận được ý kiến đóng góp từ quý thầy cô các bạn. An Giang, tháng 05 năm 2008 Sinh viên thực hiện Nguyễn Thị Anh Đào  Khóa luận tốt nghiệp Nguyễn Thị Anh Đào GVHD Ths. Phạm Thị Thu Hường Trang 3 MỤC LỤC LỜI NÓI ĐẦU 1 MỤC LỤC .3 CÁC KÝ HIỆU .4 Chương 1. KIẾN THỨC CHUẨN BỊ .5 1. ĐỘ ĐO .5 1.1. Đại số tập hợp .5 1.2. σ - Đại số tập hợp .5 1.3. Hàm tập hợp cộng tính 6 1.4. Độ đo có dấu .6 1.5. Độ đo dương 8 1.6. Không gian độ đo 9 1.7. Độ đo ngoài .9 2. TÍCH PHÂN LEBESGUE 12 2.1. Hàm số đo được 12 2.2. Tích phân Lebesgue 15 Chương 2. ĐỘ ĐO RADON ĐỊNHBIỂU DIỄN RIESZ 24 1. ĐỘ ĐO RADON .24 1.1. Định nghĩa .24 1.2. Một số tính chất của độ đo Radon .25 2. ĐỊNHBIỂU DIỄN RIESZ 32 2.1. Địnhbiểu diễn Riesz .33 2.2. Bổ đề .35 Chương 3. MỘT ÁP DỤNG CỦA ĐỊNHBIỂU DIỄN RIESZ .41 1. Định nghĩa 41 2. Định lý 41 3. Định lý 42 KẾT LUẬN .44 PHỤ LỤC 45 TÀI LIỆU THAM KHẢO .46  Khóa luận tốt nghiệp Nguyễn Thị Anh Đào GVHD Ths. Phạm Thị Thu Hường Trang 4 CÁC KÝ HIỆU (0, )r∆ : hình tròn mở tâm O bán kính r () C CX : không gian các hàm liên tục có giá compact trên X () C CD : không gian các hàm liên tục có giá compact trên miền D () C CD ∞ : không gian các hàm khả vi vô hạn lần, có giá compact trên miền D () 2 CD : lớp các hàm có đạo hàm đến cấp 2 liên tục trên miền D C ∞ : lớp các hàm khả vi vô hạn lần () A x χ : hàm đặc trưng của A dA : độ đo Lebesgue hai chiều u∆ : toán tử Laplace của hàm u B(X) : σ - đại số Borel K : lớp các tập compact supp φ : giá của hàm φ , () { } supp : 0xX x φφ = ∈≠  Khóa luận tốt nghiệp Nguyễn Thị Anh Đào GVHD Ths. Phạm Thị Thu Hường Trang 5 Chương 1 KIẾN THỨC CHUẨN BỊ 1. ĐỘ ĐO 1.1. Đại số tập hợp 1.1.1. Định nghĩa Cho X là một tập hợp tùy ý khác rỗng, một lớp C các tập con của X thỏa mãn các điều kiện sau được gọi là một đại số tập hợp : a) X ∈ C b) A ∈ C ⇒ A C = X\A ∈ C c) , ∈ A B C ⇒∪ ∈ A B C 1.1.2. Bổ đề C là một đại số tập hợp khi chỉ khi C thỏa mãn các điều kiện a), b) c’) với c’) , A B ∈ C ⇒∩A B ∈ C 1.2. σ - Đại số tập hợp 1.2.1. Định nghĩa Cho X là một tập khác rỗng . Một họ F các tập con của X được gọi là σ - đại số tập hợp nếu nó thỏa mãn các điều kiện sau: a) X ∈ F b) A ∈ F ⇒ A C = X \ A ∈ F c) A n ∈ F , n = 1, 2,… 1= ∞ ⇒ U n n A ∈ F Ta thấy nếu F là σ - đại số tập hợp thì F cũng là một đại số tập hợp. Tương tự như đối với đại số tập hợp ta có bổ đề sau: 1.2.2. Bổ đề F là σ - đại số các tập con của X khi chỉ khi F thỏa mãn các điều kiện a), b) c’) với c’) A n ∈ F , n = 1, 2,… 1= ∞ ⇒ I n n A ∈ F  Khóa luận tốt nghiệp Nguyễn Thị Anh Đào GVHD Ths. Phạm Thị Thu Hường Trang 6 1.3. Hàm tập hợp cộng tính 1.3.1. Hàm tập hợp Định nghĩa. Ta gọi hàm tập hợp ( gọi tắt là hàm tập) là một ánh xạ xác định trên một họ nào đó các tập hợp nhận giá trị trong không gian các số thực  hoặc phức  hoặc trong không gian các số thực mở rộng { } ;= ∪−∞+∞ . Riêng trong trường hợp cuối ta quy ước tập giá trị của ánh xạ chỉ chứa nhiều nhất một trong hai giá trị −∞ hoặc +∞ . 1.3.2. Hàm tập hợp cộng tính Định nghĩa. Hàm tập µ xác định trên một họ các tập con M chứa tập rỗng được gọi là cộng tính nếu nó thỏa mãn : a) () 0 µ ∅ = b) A, B ∈ M, A ∩ B = ∅ ⇒ µ (A ∪ B) = µ (A) + µ (B) 1.3.3. Hàm tập hợp σ - cộng tính Định nghĩa. Hàm tập µ xác định trên một họ các tập con M chứa tập rỗng được gọi là σ - cộng tính nếu nó thỏa mãn : a) ( ) 0 µ ∅= b) A i ∈ M (i=1,2….), A i ∩ A j = ∅ , 1= ∞ U i i A ∈ M ⇒ () 1 1 ii i i AA µµ ∞ ∞ = = ⎛⎞ = ⎜⎟ ⎝⎠ ∑U 1.4. Độ đo có dấu 1.4.1. Biến phân toàn phần của một hàm tập hợp Định nghĩa. Cho µ là một hàm tập xác định trên đại số C các tập con của X, E ∈ C. Ta gọi biến phân toàn phần của µ trên E là số ( ) ,vE µ , được định nghĩa nhờ công thức: () () 1 ,sup µµ = = ∑ n i i vE E Ở đây cận trên được lấy theo tất cả các họ hữu hạn { } , 1,2, ., i Ei n = ⊆ C rời nhau từng đôi một, i EE⊆ . 1.4.2. Biến phân trên, biến phân dưới Định nghĩa. Giả sử µ là hàm tập cộng tính với giá trị thực. Ta gọi biến phân trên µ + biến phân dưới µ − là những hàm tập được xác định lần lượt bởi các đẳng thức sau:  Khóa luận tốt nghiệp Nguyễn Thị Anh Đào GVHD Ths. Phạm Thị Thu Hường Trang 7 () ()() () 1 , 2 EvEE µµµ + =+ () ()() () 1 , 2 EvEE µµµ − =− 1.4.3. Định lý phân tích Jordan Nếu µ là hàm tập hợp cộng tính ( tương ứng σ - cộng tính) bị chặn xác định trên một đại số C thì với mọi E ∈ C: () () { sup : , EFFEF µµ + =⊆∈ C } () () { inf : , EFFEF µµ − =− ⊆ ∈ C } Các hàm µ + , µ − là cộng tính ( tương ứng σ - cộng tính) không âm. () () ( ) EEE µµ µ +− =− , ( ) ( ) ( ) ,, vE E EE µµ µ +− = +∈ C Chứng minh Chỉ cần xét trường hợp cộng tính, vì trường hợp σ - cộng tính là tương tự. Nếu , ,FEEF⊆∈ C thì: ( ) ( ) ( ) ( ) 2\ FFEEF µ µµµ = +− ( ) ( ) ( ) \EF EF µµ µ ≤+ + ( ) ( ) ( ) ,2 Ev E E µµµ + ≤+ = Do đó: () ( ) sup FE FE µµ + ⊆ ≤ Mặt khác với mọi 0 ε > bao giờ cũng tìm được một họ hữu hạn các tập rời nhau từng đôi một { } : i Ei I∈⊆ C sao cho: i iI EE ∈ = U () ( ) , i iI vE E µεµ ∈ −< ∑ Suy ra: () ( ) ( ) 2, EvEE µ εµ µ ε + −= + − ( ) ( ) i iI EE µµ ∈ ≤+ ∑ ( ) ( ) ii iI iI EE µµ +− ∈∈ =− ∑∑ ii iI iI EE µµ +− ∈∈ ⎡ ⎤ ⎛⎞⎛⎞ ++ ⎢ ⎥ ⎜⎟⎜⎟ ⎢ ⎥ ⎝⎠⎝⎠ ⎣ ⎦ UU () 22sup i FE iI EF µµ + ⊆ ∈ ⎛⎞ =≤ ⎜⎟ ⎝⎠ U Vì ε nhỏ tuỳ ý, ta có: ( ) ( ) sup FE EF µµ + ⊆ ≤ Vậy () () sup FE EF µµ + ⊆ = Từ hai đẳng thức định nghĩa hàm µ + µ − ta có ( ) µµ + − =− do đó () ( ) inf FE EF µµ − ⊆ =− Cuối cùng cũng từ hai đẳng thức định nghĩa hàm µ + µ − ta có  Khóa luận tốt nghiệp Nguyễn Thị Anh Đào GVHD Ths. Phạm Thị Thu Hường Trang 8 () () ( ) EEE µµ µ +− =− , ( ) ( ) ( ) ,, vE E EE µµ µ +− = +∈ C. 1.4.4. Độ đo có dấu Định nghĩa. Cho C là một đại số các tập con của X . Hàm tập µ xác định trên C được gọi là một độ đo có dấu nếu nó là σ - cộng tính. 1.5. Độ đo dương 1.5.1. Độ đo dương Định nghĩa. Độ đo µ được gọi là độ đo dương nếu µ ( A ) ≥ 0 với mọi A ∈ C. Trên cơ sở định lý phân tích Jordan bằng cách biểu diễn độ đo giá trị phức µ dưới dạng Re Imi µµ µ =+ viêc nghiên cứu độ đo với giá trị thực hoặc phức được đưa về việc nghiên cứu độ đo dương. Vì vậy từ đây trở về sau khi nói đến độ đo là ta xét độ đo dương. 1.5.2. Độ đo hữu hạn Định nghĩa. Độ đo µ được gọi là độ đo hữu hạn nếu ( ) X µ < +∞ 1.5.3. Độ đo σ - hữu hạn Định nghĩa. Độ đo µ được gọi là độ đo σ − hữu hạn nếu X có thể biễu diễn dưới dạng: 1 n n XA ∞ = = U với n A ∈ C , ( ) µ < +∞ n A 1.5.4. Các tính chất cơ bản của độ đo dương Giả sử µ là độ đo dương trên đại số C . Khi đó: 1) A, B ∈ C , B ⊆ A ⇒ µ (B) ≤ µ (A) 2) A, B ∈ C , B ⊆ A , µ (B) < + ∞ ⇒ µ (A\B)= µ (A) - µ (B). 3) A i ∈ C ( i=1, 2,…, n), A ∈ C , A ⊆ 1 i i A = ∞ U ⇒ ( ) A µ ≤ 1 () µ = ∞ ∑ i i A 4) A i ∈ C (i=1, 2,…, n), A i ∩ A j = ∅ ∀ i ≠ j, A ∈ C , 1 = ∞ U i i A ⊆ A ⇒ 1 () µ = ∞ ∑ i i A () µ ≤ A Chứng minh 1) Vì BA ⊆ nên (\)A AB B=∪ do đó ( ) ( )()() \A AB B B µ µµµ = +≥ . 2) Nếu () B µ <∞ thì từ ( ) ( ) ( ) \ AABB µµ µ = + có thể suy ra: () () ( ) \ AB AB µµµ − = . [...]... Nguyễn Thị Anh Đào Chương 2 ĐỘ ĐO RADON ĐỊNHBIỂU DIỄN RIESZ 1 ĐỘ ĐO RADON 1.1 Định nghĩa 1.1.2 Độ đo xác suất Định nghĩa Cho không gian mêtric X, C là đại số các tập con của X Độ đo µ được gọi là độ đo xác suất nếu: µ : C → [ 0,1] µ ( ∅ ) = 0, µ ( X ) = 1 1.1.2 Không gian xác suất Định nghĩa Cho X là một không gian mêtric, F là σ − đại số các tập con của X, µ là một độ đo xác suất trên F Khi... gọi là không gian xác suất 1.1.3 Độ đo Borel Định nghĩa Cho không gian mêtric X Độ đo µ xác định trên σ − đại số Borel B(X) được gọi là độ đo Borel 1.1.4 Độ đo Radon Định nghĩa Cho không gian tôpô tách Hausdorff X Một độ đo Borel µ trên X được gọi là độ đo Radon nếu: i) µ ( K ) < +∞ với mọi K compact, K ⊆ X ii) µ ( B ) = sup {µ ( K ) : K compact, K ⊆ B} , ∀ B ∈ B(X) Độ đo µ được gọi là chặt nếu: µ (... chất của độ đo Radon 1.2.1 ĐịnhĐộ đo hữu hạn µ là độ đo Radon khi chỉ khi µ là độ đo chính quy chặt trên không gian tôpô X tách Hausdorff GVHD Ths Phạm Thị Thu Hường Trang 25 Khóa luận tốt nghiệp Nguyễn Thị Anh Đào Chứng minh ( ⇒ ) µ là độ đo Radon nên theo định nghĩa: µ ( B ) = sup {µ ( K ) : K compact, K ⊆ B} , ∀B ∈ B(X) K compact trong không gian X tách Hausdorff nên K đóng Vậy µ là độ đo chính... * ( ∅ ) = 0 ∀{ Ai } ⊆ P(X) c) µ * ( A) ≥ 0, ∀A ⊆ X 1.7.2 Định lý Caratheodory Cho µ * là một độ đo ngoài trên X L là lớp tất cả các tập con A của X sao cho µ * ( E ) = µ * ( E ∩ A ) + µ * ( E \ A ) , với mọi E ⊆ X Khi ấy L là một σ - đại số hàm µ = µ * / L (thu hẹp của µ * trên L) là một độ đo trên L Độ đo µ gọi là độ đo cảm sinh bởi độ đo ngoài µ * Các tập A ⊆ X thoả điều kiện µ * ( E ) = µ... tính do đó µ là một độ đo 2 TÍCH PHÂN LEBESGUE 2.1 Hàm số đo được 2.1.1 Hàm đo được Định nghĩa Cho (X, F, µ ) là một không gian độ đo, Y là một không gian tách Hausdorff Ta nói rằng hàm f : X → Y là đo được ( theo độ đo µ ) nếu nó thoả mãn các điều kiện sau: a) f −1 ( G ) ∈ F với mọi tập mở G ⊆ Y b) f có ảnh hầu khả ly, tức là tồn tại một tập đếm được H ⊆ Y một tập N ⊆ X có độ đo 0, sao cho f ( X... \ A 2.1.6 Hội tụ theo độ đo Định nghĩa Cho f, fn , (n = 1, 2, …) là các hàm đo được trên A ∈ F Ta nói µ → rằng dãy hàm { f n } hội tụ theo độ đo µ đến f ký hiệu f n ⎯⎯ f nếu với { } mọi số ε > 0 ta có: lim µ x ∈ A : f n ( x ) − f ( x ) ≥ ε = 0 n →∞ 2.1.7 Định lý Egorov Cho một dãy hàm số f n đo được , hữu hạn hầu khắp nơi hội tụ hầu khắp nơi trên một tập đo được A có độ đo µ ( A ) < ∞ Với mỗi... X n = U Bnj Kε = I X n Ta thấy rằng Kε là tập đóng hoàn toàn bị chặn Do X là không gian đủ nên Kε là tập compact Hơn nữa ta có: ∞ ∞ n =1 n =1 µ ( X \ Kε ) ≤ ∑ µ ( X \ X n ) < ∑ ε 2n =ε Suy ra µ là độ đo chặt Theo mệnh đề 1.2.4 µ là một độ đo xác suất trên không gian mêtric nên µ là độ đo chính quy Do đó theo định lý 1.2.1 thì µ là độ đo Radon trên X 1.2.6 Họ có hướng tăng ( giảm ) Định nghĩa Một... X Phiếm hàm tuyến tính này là xác định dương theo nghĩa Λ (φ ) ≥ 0 với mọi φ ≥0 Như vậy mỗi độ đo Radon µ trên X sinh ra một phiếm hàm tuyến tính trên Cc(X) Vậy với Λ là một phiếm hàm tuyến tính xác định dương trên Cc(X), liệu có tồn tại hay không một độ đo Radon µ trên X thoả mãn: Λ (φ ) = ∫ φ d µ ? X Định lý sau đây sẽ trả lời cho điều này: 2.1 Địnhbiểu diễn Riesz Giả sử X là một không gian mêtric... Thị Anh Đào ⇒ µ là độ đo τ - trơn 1.2.9 Định lý Lusin Giả sử µ là độ đo xác suất Radon trong không gian tôpô hoàn toàn chính quy X f : X → là hàm số đo được ( theo Borel ) Khi đó, ∀ε > 0 , ∃Kε ∈ K sao cho µ ( X \ Kε ) < ε f |Kε liên tục Chứng minh Giả sử { f n } là dãy hàm bậc thang đo được trên X hội tụ tới f Theo định lý Egorov, ∀ε > 0 , ∃Aε ∈ B(X) sao cho µ ( X \ Aε ) < ε f n hội tụ đều... =1 i cho n → +∞ ta được bất đẳng thức cần chứng minh 1.6 Không gian độ đo Định nghĩa Cho X là một không gian mêtric, F là σ − đại số các tập con của X, µ là một độ đo trên F thì bộ ba (X, F, µ ) được gọi là không gian độ đo 1.7 Độ đo ngoài 1.7.1 Định nghĩa Cho X là một tập hợp khác rỗng Hàm tập µ * : P(X) → + được gọi là một độ đo ngoài nếu: GVHD Ths Phạm Thị Thu Hường Trang 9 Khóa luận tốt nghiệp . một độ đo mới mà với độ đo này thì độ đo của một tập Borel có thể được xấp xỉ bằng độ đo của các tập compact, đó là độ đo Radon. Đối với độ đo Radon. cứu độ đo dương. Vì vậy từ đây trở về sau khi nói đến độ đo là ta xét độ đo dương. 1.5.2. Độ đo hữu hạn Định nghĩa. Độ đo µ được gọi là độ đo hữu

Ngày đăng: 10/04/2013, 11:16

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan