1. Trang chủ
  2. » Giáo án - Bài giảng

11 Đề ôn thi Đại học của Math.VN 2011

13 216 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 208,77 KB

Nội dung

TUYỂN TẬP 11 ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2010 - 2011 c  http://www.math.vn Việt Nam - 2011 http://www.math.vn Mục lục 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 hungchng@yahoo.com 2 http://www.math.vn http://www.math.vn 1 DIỄN ĐÀN MATH.VN http://math.vn Đề thi số: 01 THI THỬ ĐẠI HỌC 2011 Môn thi: Toán Thời gian làm bài: 180 phút Câu I. (2 điểm) Cho hàm số y = 2x + 3 x + 1 (C) 1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2 Lập phương trình tiếp tuyến của đồ thị (C) tại những điểm thuộc đồ thị có khoảng cách đến đường thẳng 3x + 4y −2 = 0 bằng 2. Câu II. (2 điểm) 1 Giải phương trình: 2cos  2x + π 3  + 3tanx = 1+3tanx ·sin 2 x. 2 Giải phương trình: 3x 3 −6x 2 −3x −17 = 3 3  9(−3x 2 + 21x + 5) Câu III. (1 điểm) Tính giới hạn lim x→0 √ cos2x + 3  1 −2e sin 2 x ln(1 + x 2 ) Câu IV. (1 điểm) Cho hình chóp S.ABCD có đáy là hình thang vuông tại A, và D, AB = AD = a,CD = 2a. Cạnh bên SD vuông góc với mặt phẳng ABCD và SD = a. Gọi E là trung điểm của CD. Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp S.BCE. Câu V. (1 điểm) Cho tam giác ABC có ba cạnh a, b, c thỏa mãn điều kiện 1 a 2 + 1 + 1 b 2 + 1 + 1 c 2 + 1 = 2 Chứng minh rằng S ABC ≤ √ 3 8 . Câu VI. (2 điểm) 1 Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho ba điểm I(1; 1), J(−2; 2), K(2; −2). Tìm tọa độ các đỉnh của hình vuông ABCD sao cho I là tâm hình vuông, J thuộc cạnh AB, và K thuộc cạnh CD. 2 Trong không gian với hệ tọa độ vuông góc Oxyz cho ba điểm A(2; 3;1), B(−1;2; 0),C(1; 1;−2). Tìm tọa độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC. Câu VII. (1 điểm) Giải hệ phương trình  A 3 x −54C 2 x + x = 29 2log (x−6) y = ylog (3x−64) 2 . http://www.math.vn 3 hungchng@gmail.com http://www.math.vn 2 DIỄN ĐÀN MATH.VN http://math.vn Đề thi số: 02 THI THỬ ĐẠI HỌC 2011 Môn thi: Toán Thời gian làm bài: 180 phút Câu I. (2 điểm) Cho hàm số y = x 3 −3mx + 2, với m là tham số 1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số với m = 1. 2 Tìm các giá trị của m để đồ thị hàm số có hai điểm cực trị A, B sao cho IAB có diện tích bằng √ 18, trong đó I(1; 1). Câu II. (1 điểm) Giải phương trình 2 √ 2  sin  π 8 − x 2  cos  π 8 − 3x 2  −cosx  = 2sin 2x −3. Câu III. (1 điểm) Giải hệ phương trình sau trên R:  3 x =  8y 2 + 1 3 y = √ 8x 2 + 1. Câu IV. (1 điểm) Tính tích phân I =  2 1 x + lnx (1 + x) 2 dx. Câu V. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi và AB = BD = a, SA = a √ 3, SA ⊥ (ABCD). Gọi M là điểm trên cạnh SB sao cho BM = 2 3 SB, giả sử N là điểm di động trên cạnh AD. Tìm vị trí của điểm N để BN ⊥ DM và khi đó tính thể tích của khối tứ diện BDMN. Câu VI. (1 điểm) Cho a, b, c là độ dài ba cạnh của tam giác nhọn ABC. Chứng minh rằng a 3 cosA + b 3 cosB + c 3 cosC ≥ 12pR 2 , trong đó p là nửa chu vi và R là bán kính đường tròn ngoại tiếp ABC. Câu VII. (1 điểm) Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có phương trình đường cao AH : 3x +2y −1 = 0, phân giác trong CK : 2x −y + 5 = 0 và trung điểm M(2; −1) của cạnh AC. Tính chu vi và diện tích của của tam giác ABC . Câu VIII. (1 điểm) Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S) tâm I(1;−2; 1); bán kính R = 4 và đường thẳng (d) : x 2 = y −1 −2 = z + 1 −1 . Lập phương trình mặt phẳng (P) chứa (d) và cắt mặt cầu (S) theo một đường tròn có diện tích nhỏ nhất. Câu IX. (1 điểm) Cho tập A = {1, 2, 3, . . . , 2011} và n ∈ A, n ≤ 1006. Gọi B là tập con của A có n phần tử và B chứa ba số tự nhiên liên tiếp. Hỏi có bao nhiêu tập B như vậy ? hungchng@yahoo.com 4 http://www.math.vn http://www.math.vn 3 DIỄN ĐÀN MATH.VN http://math.vn Đề thi số: 03 THI THỬ ĐẠI HỌC 2011 Môn thi: Toán Thời gian làm bài: 180 phút Câu I. (2 điểm) Cho hàm số y = x 4 −2mx 2 + 2 (Cm) 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1 2 Tìm tất cả các giá trị của tham số m để đồ thị (Cm) có ba điểm cực trị tạo thành một tam giác có đường tròn ngoại tiếp đi qua điểm D  3 5 ; 9 5  . Câu II. (2 điểm) 1 Giải phương trình : sinx = 16cos 6 x + 2cos 4 x 54 −51cos 2 x . 2 Giải hệ phương trình:  x 2 + 2y 2 −3x + 2xy = 0 xy(x + y) + (x −1) 2 = 3y(1 −y) . Câu III. (1 điểm) Tính tích phân I =  1 2 0 ln(1 −x) 2x 2 −2x + 1 dx. Câu IV. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu của S trùng với trọng tâm tam giác ABD. Mặt bên (SAB) tạo với đáy một góc 60 o . Tính theo a thể tích của khối chóp S.ABCD. Câu V. (1 điểm) Cho số thực a, b, c ∈ [0;1]. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P = a 5 b 5 c 5 (3(ab + bc + ca)−8abc). Câu VI. (2 điểm) 1 Trong mặt phẳng Oxy cho điểm A(1; 4) và hai đường tròn (C 1 ) : (x −2) 2 + (y −5) 2 = 13, (C 2 ) : (x −1) 2 + (y −2) 2 = 25. Tìm trên hai đường tròn (C 1 ), (C 2 ) hai điểm M, N sao cho tam giác MAN vuông cân tại A. 2 Trong không gian với hệ tọa độ Ox yz, cho M (1; 2;3). Lập phương trình mặt phẳng đi qua M cắt ba tia Ox tại A, Oy tại B, Oz tại C sao cho thể tích tứ diện OABC nhỏ nhất. Câu VII. (1 điểm) Giải bất phương trình 4 x −2 x+2 ≤ x 2 −2x −3 http://www.math.vn 5 hungchng@gmail.com http://www.math.vn 4 DIỄN ĐÀN MATH.VN http://math.vn Đề thi số: 04 THI THỬ ĐẠI HỌC 2011 Môn thi: Toán Thời gian làm bài: 180 phút Câu I. (2 điểm) Cho hàm số y = −x 4 + 6x 2 −5. 1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2 Tìm các giá trị của m để phương trình (x 2 −5)|x 2 −1| = m có 6 nghiệm phân biệt. Câu II. (2 điểm) 1 Giải phương trình: x 3 −2x x 2 −1 − √ x 2 −1 = 2 √ 6 2 Giải hệ phương trình sau trên R:  14x 2 −21y 2 + 22x −39y = 0 35x 2 + 28y 2 + 111x −10y = 0. Câu III. (1 điểm) Tính tích phân I =  3 0  x 9 −x dx. Câu IV. (1 điểm) Cho khối lập phương ABCD.A  B  C  D  cạnh a. Gọi M là tr ung điểm của BC, điểm N chia đoạn CD theo tỷ số −2. Mặt phẳng (A  MN) chia khối lập phương thành hai phần. Tính thể tích mỗi phần. Câu V. (1 điểm) Cho các số dương a, b, c thỏa mãn (a + b + c)  1 a + 1 b + 1 c  = 16. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a 2 + 2b 2 ab . Câu VI. (2 điểm) 1 Trong mặt phẳng tọa độ Oxy cho tam giác ABC có B(4;0), cạnh AC qua O, phương trình trung trực AC là x + y −1 = 0, phương trình đường cao qua C là 5x + y −12 = 0. Tính diện tích tam giác ABC . 2 Cho tứ diện ABCD có A(−1; 1;6), B(−3;−2; −4),C(1;2;−1), D(2; −2;0). Tìm điểm M thuộc đường thẳng CD sao cho chu vi tam giác MAB nhỏ nhất. Tính giá trị nhỏ nhất đó. Câu VII. (1 điểm) Giải bất phương trình: 1 log √ 2 (x) ≥ 2 log 2 (5x −6) 2 hungchng@yahoo.com 6 http://www.math.vn http://www.math.vn 5 DIỄN ĐÀN MATH.VN http://math.vn Đề thi số: 05 THI THỬ ĐẠI HỌC 2011 Môn thi: Toán Thời gian làm bài: 180 phút PHẦN CHUNG (7,0 điểm) Cho tất cả thí sinh Câu I. (2 điểm) Cho hàm số y = x 3 + 6x 2 + 9x + 3 1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2 Tìm các giá trị của k để tồn tại 2 tiếp tuyến với (C) phân biệt nhau và có cùng hệ số góc k , đồng thời đường thẳng đi qua các tiếp điểm (của 2 tiếp tuyến đó với (C)) cắt các trục Ox, Oy tương ứng tại A và B sao cho OB = 2011.OA Câu II. (2 điểm) 1 Giải phương trình : 2 −sin 2 x cos2x + 4 cosx + 3 = 1 2 tan 2 x 2 2 Giải hệ phương trình :  x 3 + 2y 2 = x 2 y + 2xy 2  x 2 −2y −1 + 3  y 3 −14 = x −2 (x, y ∈R) Câu III. (1 điểm) Tính tích phân I =  3 −1  (x 2 −2x −2  2010  x −1) 2011 + 2012  sin 4 π x 2 dx Câu IV. (1 điểm) Cho hình chóp S.ABC có đáy là tam giác vuông tại A , BC = a và  ABC = 30 0 . Mặt phẳng (SBC) vuông góc với đáy, hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt phẳng đáy góc 60 o . Tính thể tích khối chóp S.ABC theo a. Câu V. (1 điểm) Cho các số dương x, y, z thoả mãn x + y + 1 = z Tìm giá trị lớn nhất của biểu thức F = x 3 y 3 (x + yz)(y + zx)(z +xy) 2 PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ làm một trong hai phần A hoặc B Phần A theo chương trình chuẩn Câu VIa. (2 điểm) 1 Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC biết 3 chân đường phân giác trong ứng với các đỉnh A, B,C lần lượt là A  (−1;−1), B  (3;2), C  (2;3) . Viết phương trình các đường thẳng chứa 3 cạnh của tam giác ABC. 2 Trong không gian với hệ toạ độ Oxyz cho hình chóp tam giác S.ABC có A; B thuộc trục hoành và phương trình hai đường phân giác ngoài của hai góc  BSC;  CSA lần lượt là: (l a ) : x −1 2 = y −2 3 = z −3 4 , (l b ) : x + 1 2 = y 2 = z + 3 6 Hãy viết phương trình đường phân giác trong (l ∗ c ) của góc  ASB Câu VIIa. (1 điểm) Tìm tập hợp các điểm biểu diễn số phức 2z + 3 −i biết |3z + i| 2 ≤ zz +9 Phần B theo chương trình nâng cao Câu VIb. (2 điểm) 1 Trong mặt phẳng với hệ toạ độ Oxy cho điểm A chạy trên Ox , điểm B chạy trên Oy sao cho đoạn AB luôn bằng a không đổi . Tìm tập hợp các điểm M trên đoạn AB sao cho MB = 2MA 2 Trong không gian với hệ toạ độ Oxyz cho tứ giác ABCD có A(1; 2;1), C(2;4; −1) . Hai đỉnh B, D thuộc đường thẳng x −1 1 = y −2 2 = z 3 sao cho BD = 4. Gọi I là giao điểm hai đường chéo của tứ giác và biết rằng dt(ABCD) = 2011dt(IAD). Tính khoảng cách từ D tới đường thẳng AC. Câu VIIb. (1 điểm) Cho 2 phương trình z 2 + mz + 2 = 0 và −z 2 + 2z + m = 0 . Tìm các giá trị thực của m để 2 phương trình đó có ít nhất một nghiệm phức chung. http://www.math.vn 7 hungchng@gmail.com http://www.math.vn 6 DIỄN ĐÀN MATH.VN http://math.vn Đề thi số: 06 THI THỬ ĐẠI HỌC 2011 Môn thi: Toán Thời gian làm bài: 180 phút PHẦN CHUNG (7,0 điểm) Cho tất cả thí sinh Câu I. (2 điểm) Cho hàm số: y = x + 3 x −1 . 1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2 Tìm điểm A trên đường thẳng x = 5 sao cho từ A ta có thể vẽ đến (C) hai tiếp tuyến mà hai tiếp điểm cùng với điểm B(1; 3) thẳng hàng. Câu II. (2 điểm) 1 Giải phương trình : √ 2cos  x 5 − π 12  − √ 6sin  x 5 − π 12  = 2sin  x 5 + 2π 3  −2sin  3x 5 + π 6  . 2 Giải phương trình sau trên tập số thực: x = 1 + 1 2 √ x 3 + x 2 −8x −2 + 3 √ x 3 −20. Câu III. (1 điểm) Tính tích phân: I = √ 5  0 dx  (9 −x 2 ) 3 Câu IV. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, đường cao SA = a, M là điểm thay đổi trên cạnh SB. Mặt phẳng (ADM) cắt SC tại điểm N. Ta kí hiệu V 1 ,V 2 lần lượt là thể tích các khối đa diện SADMN và MNADCB. Tìm vị trí của điểm M trên cạnh SB để V 1 V 2 = 5 4 . Câu V. (1 điểm) Cho ba số thực dương a, b, c có tích bằng 1. Chứng minh rằng: (a + b)(b + c)(c + a) ≥ 7 3  a + b + c + 3 7  . PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ làm một trong hai phần A hoặc B Phần A theo chương trình chuẩn Câu VIa. (2 điểm) 1 Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC với điểm A(2; 7), đường thẳng AB cắt trục Oy tại E sao cho −→ AE = 2 −→ EB. Biết rằng tam giác AEC cân tại A và có trọng tâm là G  2; 13 3  . Viết phương trình cạnh BC. 2 Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng: ∆ : x −5 13 = y −6 1 = z + 3 4 , ∆  : x −2 13 = y −3 1 = z + 3 4 . Gọi (α ) là mặt phẳng chứa hai đường thẳng trên. Tìm tọa độ hình chiếu vuông góc của điểm C(3; −4;−2) trên (α ). Câu VIIa. (1 điểm) Giải phương trình z 4 + 4 = 0 trên tập số phức. Phần B theo chương trình nâng cao Câu VIb. (2 điểm) 1 Trong mặt phẳng với hệ tọa độ Oxy gọi d  là đường thẳng đi qua điểm A(0; 1) và tạo với đường thẳng d : x + 2y + 3 = 0 một góc 45 o . Viết phương tr ình đường tròn có tâm nằm trên d  , tiếp xúc với d và có bán kính bằng 7 √ 5 . 2 Trong không gian với hệ tọa độ Oxyz cho tam giác ABC với A(1; 2;−1), B(2;−1; 3) và C(−4; 7;5). Gọi H là trực tâm của tam giác nói trên. Viết phương tr ình đường thẳng đi qua H và vuông góc với mặt phẳng (ABC). Câu VIIb. (1 điểm) Tìm m để phương trình: 2 log 2 (x −1) = 1 + log 2 (5 −mx) có đúng một nghiệm. hungchng@yahoo.com 8 http://www.math.vn http://www.math.vn 7 DIỄN ĐÀN MATH.VN http://math.vn Đề thi số: 07 THI THỬ ĐẠI HỌC 2011 Môn thi: Toán Thời gian làm bài: 180 phút PHẦN CHUNG (7 điểm) Cho tất cả thí sinh Câu I. (2 điểm) Cho hàm số y = x 3 −3x 2 + (m −6)x + m −2 (m là tham số) 1 Khảo sát và vẽ đồ thị khi m = 9 2 Tìm m để đồ thị hàm số có hai điểm cực trị và khoảng cách từ điểm A  3 2 ; 11 4  đến đường thẳng đi qua hai điểm cực trị lớn nhất. Câu II. (2 điểm) 1 Giải phương trình 4 sin 2 x + tanx+ √ 2(1 + tanx)sin3x = 1 2 Giải hệ phương trình  2  x + y 2 + y + 3 −3 √ y = √ x + 2 y 3 + y 2 −3y −5 = 3x −3 3 √ x + 2 Câu III. (1 điểm) Tính tích phân I =  3 1 ln(3 + x 2 )  x(4 −x) −2 dx Câu IV. (1 điểm) Cho hình chóp S.ABC có SA = SB = SC,  ASB =  ASC =  BSC = α nội tiếp trong mặt cầu bán kính bằng R, biết thể tích khối chóp S.ABC bằng 8 √ 3 27 R 3 . Tính α Câu V. (1 điểm) Cho các số thức a, b, c thỏa mãn 0 < a ≤b ≤ c và a 2 −1 a + b 2 −1 b + c 2 −1 c = 0. Tìm giá trị nhỏ nhất của biểu thức P = a+b 2011 + c 2012 PHẦN RIÊNG (3 điểm) Thí sinh chỉ làm một trong hai phần A hoặc B Phần A theo chương trình chuẩn Câu VIa. (2 điểm) 1 Trong hệ tọa độ Oxy cho đường tròn (C) : (x −1) 2 + (y −2) 2 = 4 và hai đường thẳng d 1 : mx + y −m −1 = 0, d 2 : x −my + m −1 = 0. Tìm m để mỗi đường thẳng d 1 , d 2 cắt (C) tại hai điểm phân biệt sao cho bốn giao điểm đó tạo thành một tứ giác có diện tích lớn nhất. 2 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) : (x +1) 2 +(y −1) 2 +(z +1) 2 = 16 9 và điểm A  0;0; 1 3  . Viết phương tr ình đường thẳng ∆ đi qua A vuông góc với đường thẳng chứa trục Oz và tiếp xúc với mặt cầu (S) Câu VIIa. (1 điểm) Cho số phức z thỏa mãn | z | 2 −2(z + z) −2(z −z)i −9 = 0 Tìm giá trị lớn nhất và giá trị nhỏ nhất của | z | Phần B theo chương trình nâng cao Câu VIb. (2 điểm) 1 Trong hệ tọa độ Oxy cho hai đường tròn (C 1 ) : x 2 + y 2 −2x −4y + 3 = 0, (C 2 ) : x 2 + y 2 −6x −8y + 20 = 0 và A(2; 2). Viết phương trình đường thẳng ∆ đi qua A và cắt mỗi đường tròn (C 1 ), (C 2 ) tại hai điểm phân biệt và  2 −d 2 1 +  5 −d 2 2 = √ 13 (d 1 , d 2 là khoảng cách từ tâm của các đường tròn (C 1 ), (C 2 )đến ∆ ) 2 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) : (x −1) 2 + (y −1) 2 + z 2 = 1. Gọi A là một điểm tùy ý trên đường thẳng ∆ : x −1 1 = y −1 −2 = z −1 1 . Từ A vẽ các tiếp tuyến AT 1 , AT 2 , AT 3 đến mặt cầu (S). Tìm tọa độ điểm A biết mp(T 1 T 2 T 3 ) tạo với ∆ một góc 30 o . Câu VIIb. (1 điểm) Cho số phức z = 0 thỏa  z z  3 +  z z  3 +  | z | 3 + 1 | z | 3  2 = 6 Tìm giá tr ị lớn nhất của P =     z + 1 z     http://www.math.vn 9 hungchng@gmail.com http://www.math.vn 8 DIỄN ĐÀN MATH.VN http://www.math.vn Đề thi số: 08 THI THỬ ĐẠI HỌC 2011 Môn thi: Toán Thời gian làm bài: 180 phút PHẦN CHUNG (7 điểm) Cho tất cả thí sinh Câu I. (2 điểm) Cho hàm số y = x 4 −2(m + 1)x 2 + 2m + 1, (C m ) (m là tham số). 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1. 2 Xác định m để đồ thị hàm số đã cho cắt trục hoành tại 4 điểm phân biệt A, B,C, D lần lượt có hoành độ x 1 , x 2 , x 3 , x 4 , (x 1 < x 2 < x 3 < x 4 ) sao cho tam giác ACK có diện tích bằng 4, với K(3; −2). Câu II. (2 điểm) 1 Giải phương trình:  2 − 1 sinx  sin  π 6 −2x  = 4sin x −1 − 1 2sinx . 2 Giải hệ phương trình:  (x −2)(2y −1) = x 3 + 20y −28 2( √ x + 2y + y) = x 2 + x . Câu III. (1 điểm) Tính tích phân I =  π 2 0 5cosx −4sinx (sinx+cosx) 7 dx Câu IV. (1 điểm) Cho hình lập phương ABCD.A  B  C  D  cạnh a. Trên các đoạn AD  , BD lần lượt lấy các điểm M, N sao cho AM = DN = x, (0 < x < a √ 2). Tìm x để MN là đoạn vuông góc chung của AD  và BD. Câu V. (1 điểm) Cho 3 số a, b, c ∈ [0;2] thoả mãn : a + b +c = 3. Tìm giá trị lớn nhất của M = a 2 + b 2 + c 2 ab + bc + ca . PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ làm một trong hai phần A hoặc B Phần A theo chương trình chuẩn Câu VIa. (2 điểm) 1 Cho ∆ABC có phương trình của trung tuyến xuất phát từ A và đường cao kẻ từ B lần lượt là: 2x −5y −1 = 0, x + 3y −4 = 0. Đường thẳng BC đi qua điểm K(4; −9). Lập phương trình đường tròn ngoại tiếp ∆ABC, biết rằng đỉnh C nằm trên đường thẳng d : x −y −6 = 0. 2 Trong không gian với hệ trục Oxyz, cho (P) : x +y−z + 1 = 0, d : x −2 1 = y −1 −1 = z −1 −3 . Gọi I là giao điểm của d và (P). Viết phương tr ình của đường thẳng ∆ nằm trong (P), vuông góc với d và cách điểm I một khoảng bằng 3 √ 2. Câu VIIa. (1 điểm) Cho số phức z sao cho:     z + i z −3i     = 1. Tìm các số phức z thoả mãn điều kiện: |z + 3i −2| = 4 Phần B theo chương trình nâng cao Câu VIb. (2 điểm) 1 Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết đường cao và trung tuyến xuất phát từ A lần lượt có phương trình: 6x −5y −7 = 0;x −4y + 2 = 0. Tính diện tích ∆ABC, biết rằng trọng tâm của tam giác thuộc trục hoành và đường cao xuất phát từ đỉnh B đi qua điểm E(1; −4). 2 Trong không gian toạ độ Oxyz, cho điểm M(2; 2;1), đường thẳng d : x −2 2 = y −2 1 = z −1 2 và mặt cầu (S) : x 2 + y 2 + z 2 + 4x −6y + m = 0. Xác định các giá trị của m để đường thẳng d cắt mặt cầu (S) tại 2 điểm phân biệt A, B sao cho −→ MA = 5 −→ MB. Câu VIIb. (1 điểm) Cho số phức z thoả mãn:     z −i z + 3i     = 1. Tìm số phức z sao cho z + 1 có một acgumen bằng − π 6 . hungchng@yahoo.com 10 http://www.math.vn [...]...http:/ /math.vn Đề thi số: 09 PHẦN CHUNG (7 điểm) Cho tất cả thí sinh th v THI THỬ ĐẠI HỌC 2 011 Môn thi: Toán Thời gian làm bài: 180 phút DIỄN ĐÀN MATH.VN n 9 Câu I (2 điểm) Cho hàm số y = x3 + (1 − 2m)x2 + (2 − m)x + m + 2 (1), m là tham số 1 Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số (1) với m = 2 2 Tìm tham số m để đồ thị của hàm số (1) có tiếp tuyến tạo với... 3 3 T = (1 + z)(1 + z2 )(1 + z3 ) (1 + z2 011 ) 12 http://www .math.vn THI THỬ ĐẠI HỌC 2 011 Môn thi: Toán Thời gian làm bài: 180 phút DIỄN ĐÀN MATH.VN th v http://www .math.vn Đề thi số: 11 n 11 PHẦN CHUNG (7 điểm) Cho tất cả thí sinh 2x − 2 x+2 1 Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số 2 Gọi I là giao điểm của hai tiệm cận Hãy tìm hai điểm A, B trên (C) sao cho IA = IB và AIB = 120◦ Câu I... giao tuyến là một đường tròn có bán kính r = 2 p:/ Câu VIIa (1 điểm) Một học sinh A ước muốn đỗ vào đại học và nếu chưa đỗ năm nay thì năm sau sẽ thi tiếp (thi bao giờ đỗ thì thôi) Biết rằng xác suất để học sinh A đỗ đại học trong một lần thi là 0, 2 011 Hãy tìm xác suất để học sinh A thi đỗ ở lần thi thứ 3 Phần B theo chương trình nâng cao htt Câu VIb (2 điểm) 1 Trong mặt phẳng với hệ tọa độ Oxy cho... = z + 8i là một số ảo thì số nào có modun lớn nhất ? z−6 Tính giá trị lớn nhất đó ? http://www .math.vn 11 hungchng@gmail.com http:/ /math.vn Đề thi số: 10 PHẦN CHUNG (7 điểm) Cho tất cả thí sinh th v THI THỬ ĐẠI HỌC 2 011 Môn thi: Toán Thời gian làm bài: 180 phút DIỄN ĐÀN MATH.VN n 10 Câu I (2 điểm) Cho hàm số y = x3 − 2x2 + (m − 1)x + 2m (m là tham số) 1 Khảo sát và vẽ đồ thị khi m = −3 2 Tìm m để từ... không gian với hệ tọa độ Oxyz, lập phương trình đường thẳng d đi qua điểm A(3; −2; 1) và cắt đường thẳng x−1 y+1 z−1 x−1 y−2 z+1 d : = = sao cho khoảng cách giữa đường thẳng d và đường thẳng d : = = lớn 1 2 −1 2 −1 2 nhất Câu VIIb (1 điểm) Cho số phức z = cos hungchng@yahoo.com 2π 2π + i sin Tính giá trị của biểu thức 3 3 T = (1 + z)(1 + z2 )(1 + z3 ) (1 + z2 011 ) 12 http://www .math.vn THI THỬ ĐẠI HỌC... tròn lớn Câu VIIb (1 điểm) Giả sử có 25 học sinh được chia làm hai nhóm sao cho nhóm có học sinh nhiều hơn thì số học sinh nam trong nhóm cũng nhiều hơn Chọn ngẫu nhiên mỗi nhóm một học sinh, biết rằng xác suất chọn được 2 học sinh nam là 0, 48 Tính xác xuất để chọn được một học sinh nam và một học sinh nữ http://www .math.vn 13 hungchng@gmail.com ... đáy ABC là tam giác vuông cân đỉnh A, AB = a 2 Gọi I là trung điểm của BC, hình chiếu → − − → vuông góc H của S lên mặt đáy (ABC) thỏa mãn: IA = −2IH, góc giữa SC và mặt đáy (ABC) bằng 60o Hãy tính thể tích khối chóp S.ABC và khoảng cách từ trung điểm K của SB tới (SAH) Cho x, y, z là ba số thực dương thay đổi và thỏa mãn: √x2 + y2 + z2 = 3 √ √ xy yz zx Tìm giá trị lớn nhất của biểu thức: P= √ √... ABCD là hình chữ nhật với AB = 2BC = 2a Mặt bên (SAD) vuông góc với√ đồng thời tam giác SAD cân tại S và có trực tâm H Biết rằng khoảng cách từ H đến mặt phẳng (SBC) đáy a 13 bằng Tính thể tích của khối chóp S.ABCD 26 Câu V (1 điểm) Cho a, b, c là các số thực không âm thỏa mãn a2 + b2 + c2 + ab + bc + ca = 6 Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = 3a + 4b + 5c PHẦN RIÊNG (3 điểm) Thí... M(− ; ) của cạnh 2 2 BC Tìm tọa độ các đỉnh của tam giác ABC x−1 y z+2 2 Trong không gian với hệ tọa độ Oxyz cho đường thẳng (d) : = = và hai mặt phẳng −1 −2 −2 (P) : x − y + z = 0, (Q) : x + y + 3z − 10 = 0 Lập phương trình mặt cầu (S) bán kính R = 5, tiếp xúc với đường thẳng (d) đồng thời cắt cả hai mặt phẳng (P) và (Q) theo giao tuyến là các đường tròn lớn Câu VIIb (1 điểm) Giả sử có 25 học sinh... trong CK của tam giác ABC Tìm tọa độ các đỉnh của tam giác ABC 2 Trong không gian hệ tọa độ Oxyz cho hai mặt phẳng (P) : x − 2y − z = 0, (Q) : x + y + 2z − 3 = 0 và đường thẳng y−3 z+5 x = Lập phương trình mặt cầu (S) có tâm nằm trên đường thẳng (d), tiếp xúc mặt phẳng (P) (d) : = 1 2 3 3 và cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính r = 2 p:/ Câu VIIa (1 điểm) Một học sinh A . của biểu thức T = (1 + z)(1 + z 2 )(1 + z 3 ) (1 + z 2 011 ). hungchng@yahoo.com 12 http://www .math. vn http://www .math. vn 11 DIỄN ĐÀN MATH. VN http://www .math. vn Đề thi số: 11 THI THỬ ĐẠI HỌC 2 011 Môn. ? Tính giá trị lớn nhất đó ? http://www .math. vn 11 hungchng@gmail.com http://www .math. vn 10 DIỄN ĐÀN MATH. VN http:/ /math. vn Đề thi số: 10 THI THỬ ĐẠI HỌC 2 011 Môn thi: Toán Thời gian làm bài: 180 phút PHẦN. ị lớn nhất của P =     z + 1 z     http://www .math. vn 9 hungchng@gmail.com http://www .math. vn 8 DIỄN ĐÀN MATH. VN http://www .math. vn Đề thi số: 08 THI THỬ ĐẠI HỌC 2 011 Môn thi: Toán Thời

Ngày đăng: 10/06/2015, 05:00

TỪ KHÓA LIÊN QUAN

w