1. Trang chủ
  2. » Giáo án - Bài giảng

Ôn thi vào 10 (2010 -2011)

38 155 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 1,12 MB

Nội dung

Giáo án ôn thi vào lớp 10 Ngày 13/4/11 Tit 66: ễN TP (tit 2) I. MC TIấU. Kin thc: HS h thng hoỏ cỏc kin thc i s gm: + Rút gọn biểu thức + Hàm số bậc nhất + .Phơng trình bậc nhất Hệ phơng trình bậc nhất K nng: HS vn dng thnh tho h thc Viột vo gii toỏn, nm vng cỏc dng gii bi toỏn bng cỏch lp phng trỡnh. Thỏi : Tớnh cn thn trong tớnh toỏn, lm vic theo qui trỡnh. II. CHUN B CA THY V TRề. Thy: + Bng ph vit sn ni dung h thc Viột, phiu hc tp bi. Trũ: + Bng ph nhúm, bỳt d, mỏy tớnh b tỳi tớnh toỏn. III.TIN TRèNH TIT DY. 1. n nh t chc: (1) Kim tra s s HS. 2. Kim tra bi c: (trong quỏ trỡnh ụn tp) 3. Bi mi Gii thiu vo bi (1ph) Cỏc hot ng dy I Bài tập rút gọn B ài 1 : 1) Đơn giản biểu thức : P = 14 6 5 14 6 5+ + . 2) Cho biểu thức : Q = x 2 x 2 x 1 . x 1 x 2 x 1 x + + ữ ữ + + a) Rút gọn biểu thức Q. b) Tìm x để Q > - Q. c) Tìm số nguyên x để Q có giá trị nguyên. H ớng dẫn : 1. P = 6 2. a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : Q = 1 2 x . b) Q > - Q x > 1. c) x = { } 3;2 thì Q Z II hàm số bậc nhất Ví dụ : 1) Viết phơng trình đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4). 2) Tìm toạ độ giao điểm của đờng thẳng trên với trục tung và trục hoành. H ớng dẫn : 1) Gọi pt đờng thẳng cần tìm có dạng : y = ax + b. Do đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) ta có hệ pt : += += ba ba 4 2 = = 1 3 b a Vậy pt đờng thẳng cần tìm là y = 3x 1 1 Giáo án ôn thi vào lớp 10 2) Đồ thị cắt trục tung tại điểm có tung độ bằng -1 ; Đồ thị cắt trục hoành tại điểm có hoành độ bằng 3 1 . III Ph ơng trình bậc nhất một ần Hệ ph ơng trình bậc nhất 2 ẩn . A. kiến thức cần nhớ : 1. Phơng trình bậc nhất : ax + b = 0. Ph ơng pháp giải : + Nếu a 0 phơng trình có nghiệm duy nhất : x = b a . + Nếu a = 0 và b 0 phơng trình vô nghiệm. + Nếu a = 0 và b = 0 phơng trình có vô số nghiệm. 2. Hệ phơng trình bậc nhất hai ẩn : =+ =+ c'y b' x a' c by ax Ph ơng pháp giải : Sử dụng một trong các cách sau : +) Phơng pháp thế : Từ một trong hai phơng trình rút ra một ẩn theo ẩn kia , thế vào phơng trình thứ 2 ta đợc phơng trình bậc nhất 1 ẩn. +) Phơng pháp cộng đại số : - Quy đồng hệ số một ẩn nào đó (làm cho một ẩn nào đó của hệ có hệ số bằng nhau hoặc đối nhau). - Trừ hoặc cộng vế với vế để khử ẩn đó. - Giải ra một ẩn, suy ra ẩn thứ hai. B. Ví dụ minh họa : Ví dụ 1 : Giải các phơng trình sau đây : a) 2 2 x x 1 -x x = + + ĐS : ĐKXĐ : x 1 ; x - 2. S = { } 4 . b) 1 x x 1 - 2x 3 3 ++ = 2 Giải : ĐKXĐ : 1 x x 3 ++ 0. (*) Khi đó : 1 x x 1 - 2x 3 3 ++ = 2 2x = - 3 x = 2 3 Với x = 2 3 thay vào (* ) ta có ( 2 3 ) 3 + 2 3 + 1 0 Vậy x = 2 3 là nghiệm. Ví dụ 2 : Giải và biện luận phơng trình theo m : (m 2)x + m 2 4 = 0 (1) + Nếu m 2 thì (1) x = - (m + 2). + Nếu m = 2 thì (1) vô nghiệm. 4. Hớng dẫn về nhà: Về nhà làm các bài tập sau: B ài 1: Cho biểu thức P = 1 x x 1 x x + + a) Rút gọn biểu thức sau P. b) Tính giá trị của biểu thức P khi x = 1 2 . B ài 2 : Cho hàm số y = (m 2)x + m + 3. 1) Tìm điều kiện của m để hàm số luôn nghịch biến. 2) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. 2 Gi¸o ¸n «n thi vµo líp 10 3) T×m m ®Ĩ ®å thÞ cđa hµm sè trªn vµ c¸c ®å thÞ cđa c¸c hµm sè y = -x + 2 ; y = 2x – 1 ®ång quy. B µi 3 : Gi¶i hƯ ph¬ng tr×nh: a) 2x 3y 5 3x 4y 2 − = −   − + =  b) x 4y 6 4x 3y 5 + =   − =  c) 2x y 3 5 y 4x − =   + =  d) x y 1 x y 5 − =   + =  Ngµy 14/4/11 Tiết 66: ƠN TẬP (tiết 2) I. MỤC TIÊU. − Kiến thức: HS hệ thống hố các kiến thức đại số 9 gồm: + Giải bài tốn bằng cách lập phương trình. Kỹ năng: HS vận dụng thành thạo hệ thức Viét vào giải tốn, nắm vững các dạng giải bài tốn bằng cách lập phương trình. − Thái độ: Tính cẩn thận trong tính tốn, làm việc theo qui trình. II. CHUẨN BỊ CỦA THẦY VÀ TRỊ. − Thầy: + Bảng phụ viết sẵn nội dung hệ thức Viét, phiếu học tập đề bài. − Trò: + Bảng phụ nhóm, bút dạ, máy tính bỏ túi để tính tốn. III.TIẾN TRÌNH TIẾT DẠY. 1. Ổn định tổ chức: (1’) Kiểm tra sĩ số HS. 2. Kiểm tra bài cũ: (trong q trình ơn tập) 3. Bài mới Giới thiệu vào bài (1ph)  Các hoạt động dạy Gi¶I bµi to¸n b»ng c¸ch lËp ph ¬ng tr×nh B µi 1 (trang 23): Một ôtô và một xe đạp chuyển động đi từ 2 đầu một đoạn đường sau 3 giờ thì gặp nhau. Nếu đi cùng chiều và xuất phát tại một điểm thì sau 1 giờ hai xe cách nhau 28 km. Tính vận tốc của mỗi xe. HD : Vận tốc xe đạp : 12 km/h . Vận tốc ôtô : 40 km/h. B µi 2 : (trang 24): Một ôtô đi từ A dự đònh đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h thì sẽ đến B lúc 2 giờ chiều. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B lúc 11 giờ trưa. Tính độ quảng đường AB và thời diểm xuất phát tại A. Đáp số : AB = 350 km, xuất phát tại A lúc 4giờ sáng. B µi 3 : (trang 24): Hai vòi nước cùng chảy vào một cài bể nước cạn, sau 5 4 4 giờ thì đầy bể. Nếu lúc đầu chỉ mở vòi thứ nhất, sau 9 giờ mở vòi thứ hai thì sau 5 6 giờ nữa mới nay bể . Nếu một mình vòi thứ hai chảy bao lâu sẽ nay bể. Đáp số : 8 giờ. B µi 4 : (trang 24): Biết rằng m gam kg nước giảm t 0 C thì tỏa nhiệt lượng Q = mt (kcal). Hỏi phải dùng bao nhiêu lít 100 0 C và bao nhiêu lít 20 0 C để được hỗn hợp 10 lít 40 0 C. Hường dãn : 3 Gi¸o ¸n «n thi vµo líp 10 Ta có hệ pt :    =+ =+ 400 20y 100x 10 y x ⇔    = = 7,5 y 2,5 x Vậy cần 2,5 lít nước sôi và 75 lít nước 20 0 C. 4. Bµi tËp vỊ nhµ: B µi 1 : Hai « t« khëi hµnh cïng mét lóc ®i tõ A ®Õn B c¸ch nhau 300 km . ¤ t« thø nhÊt mçi giê ch¹y nhanh h¬n « t« thø hai 10 km nªn ®Õn B sím h¬n « t« thø hai 1 giê . TÝnh vËn tèc mçi xe « t« . B µi 12 : Mét « t« dù ®Þnh ®i tõ A ®Õn B víi vËn tèc 50 km/h. Sau khi ®i ®ỵc 2/3 qu·ng ®êng víi vËn tèc ®ã, v× ®êng khã ®i nªn ngêi l¸i xe ph¶i gi¶m vËn tèc mçi giê 10 km trªn qu·ng ®êng cßn l¹i. Do ®ã « t« ®Õn B chËm 30 phót so víi dù ®Þnh. TÝnh qu·ng ®êng AB. B µi 2 : Hai vßi níc cïng ch¶y vµo bĨ th× sau 4 giê 48 phót th× ®Çy. Nðu ch¶y cïng mét thêi gian nh nhau th× lỵng níc cđa vßi II b»ng 2/3 l¬ng níc cđa vßi I ch¶y ®ỵc. Hái mçi vßi ch¶y riªng th× sau bao l©u ®Çy bĨ. B µi 3 : Mét « t« dù ®Þnh ®i tõ A ®Ịn B trong mét thêi gian nhÊt ®Þnh . NÕu xe ch¹y víi vËn tèc 35 km/h th× ®Õn chËm mÊt 2 giê . NÕu xe ch¹y víi vËn tèc 50 km/h th× ®Õn sím h¬n 1 giê . TÝnh qu·ng ®êng AB vµ thêi gian dù ®Þnh ®i lóc ®Çu . B µi 4 : Qu·ng ®êng AB dµi 180 km. Cïng mét lóc hai «t« khëi hµnh tõ A ®Ĩ ®Õn B. Do vËn tèc cđa «t« thø nhÊt h¬n vËn tèc cđa «t« thø hai lµ 15 km/h nªn «t« thø nhÊt ®Õn sím h¬n «t« thø hai 2h. TÝnh vËn tèc cđa mçi «t«? H íng dÉn : a) §KX§ : x > 0 ; x ≠ 1. BiĨu thøc rót gän : P = x x − + 1 1 . b) Víi x = 1 2 th× P = - 3 – 2 2 . B µi 3 : Cho biĨu thøc : A = 1 1 1 1 + − − − + x x x xx a) Rót gän biĨu thøc sau A. b) TÝnh gi¸ trÞ cđa biĨu thøc A khi x = 4 1 c) T×m x ®Ĩ A < 0. d) T×m x ®Ĩ A = A. H íng dÉn : a) §KX§ : x ≥ 0, x ≠ 1. BiĨu thøc rót gän : A = 1−x x . b) Víi x = 4 1 th× A = - 1. c) Víi 0 ≤ x < 1 th× A < 0. 4 Giáo án ôn thi vào lớp 10 d) Với x > 1 thì A = A. B ài 4 : Cho biểu thức : A = 1 1 3 1 a 3 a 3 a + ữ ữ + a) Rút gọn biểu thức sau A. b) Xác định a để biểu thức A > 2 1 . H ớng dẫn : a) ĐKXĐ : a > 0 và a 9. Biểu thức rút gọn : A = 3 2 +a . b) Với 0 < a < 1 thì biểu thức A > 2 1 . B ài 5 : Cho biểu thức: A = 2 2 x 1 x 1 x 4x 1 x 2003 . x 1 x 1 x 1 x + + + ữ + . 1) Tìm điều kiện đối với x để biểu thức có nghĩa. 2) Rút gọn A. 3) Với x Z ? để A Z ? H ớng dẫn : a) ĐKXĐ : x 0 ; x 1. b) Biểu thức rút gọn : A = x x 2003+ với x 0 ; x 1. c) x = - 2003 ; 2003 thì A Z . B ài 6 : Cho biểu thức: A = ( ) 2 x 2 x 1 x x 1 x x 1 : x 1 x x x x + + ữ ữ + . a) Rút gọn A. b) Tìm x để A < 0. c) Tìm x nguyên để A có giá trị nguyên. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 1 + x x . b) Với 0 < x < 1 thì A < 0. c) x = { } 9;4 thì A Z. B ài 7 : Cho biểu thức: A = x 2 x 1 x 1 : 2 x x 1 x x 1 1 x + + + ữ ữ + + a) Rút gọn biểu thức A. b) Chứng minh rằng: 0 < A < 2. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 2 ++ xx b) Ta xét hai trờng hợp : +) A > 0 1 2 ++ xx > 0 luôn đúng với x > 0 ; x 1 (1) 5 Giáo án ôn thi vào lớp 10 +) A < 2 1 2 ++ xx < 2 2( 1++ xx ) > 2 xx + > 0 đúng vì theo gt thì x > 0. (2) Từ (1) và (2) suy ra 0 < A < 2(đpcm). B ài 8 : Cho biểu thức: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9. H ớng dẫn : a) ĐKXĐ : a 0, a 4. Biểu thức rút gọn : P = 2 4 a b) Ta thấy a = 9 ĐKXĐ . Suy ra P = 4 B ài 9 : Cho biểu thức: N = a a a a 1 1 a 1 a 1 + + ữ ữ ữ ữ + 1) Rút gọn biểu thức N. 2) Tìm giá trị của a để N = -2004. H ớng dẫn : a) ĐKXĐ : a 0, a 1. Biểu thức rút gọn : N = 1 a . b) Ta thấy a = - 2004 ĐKXĐ . Suy ra N = 2005. B ài 10 : Cho biểu thức 3x 3x 1x x2 3x2x 19x26xx P + + + + = a. Rút gọn P. b. Tính giá trị của P khi 347x = c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó. H ớng dẫn : a ) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : 3x 16x P + + = b) Ta thấy 347x = ĐKXĐ . Suy ra 22 33103 P + = c) P min =4 khi x=4. B ài 11 : Cho biểu thức + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a. Rút gọn P. b. Tìm x để 2 1 P < c. Tìm giá trị nhỏ nhất của P. H ớng dẫn : a. ) ĐKXĐ : x 0, x 9. Biểu thức rút gọn : 3x 3 P + = b. Với 9x0 < thì 2 1 P < c. P min = -1 khi x = 0 6 Gi¸o ¸n «n thi vµo líp 10 Bµi 12: Cho A= 1 1 1 4 . 1 1 a a a a a a a   + −   − + +  ÷  ÷  ÷ − +     víi x>0 ,x ≠ 1 a. Rót gän A b. TÝnh A víi a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ − − ( KQ : A= 4a ) Bµi 13: Cho A= 3 9 3 2 1 : 9 6 2 3 x x x x x x x x x x     − − − − − + −  ÷  ÷  ÷  ÷ − + − − +     víi x ≥ 0 , x ≠ 9, x ≠ 4 . a. Rót gän A. b. x= ? Th× A < 1. c. T×m x Z ∈ ®Ó A Z∈ (KQ : A= 3 2x − ) Bµi 14: Cho A = 15 11 3 2 2 3 2 3 1 3 x x x x x x x − − + + − + − − + víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m GTLN cña A. c. T×m x ®Ó A = 1 2 d. CMR : A 2 3 ≤ . (KQ: A = 2 5 3 x x − + ) Bµi 15: Cho A = 2 1 1 1 1 1 x x x x x x x + + + + − + + − víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. T×m GTLN cña A . ( KQ : A = 1 x x x+ + ) Bµi 16: Cho A = 1 3 2 1 1 1x x x x x − + + + − + víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. CMR : 0 1A≤ ≤ ( KQ : A = 1 x x x− + ) Bµi 17: Cho A = 5 25 3 5 1 : 25 2 15 5 3 x x x x x x x x x x     − − + − − − +  ÷  ÷  ÷  ÷ − + − + −     a. Rót gän A. b. T×m x Z ∈ ®Ó A Z∈ ( KQ : A = 5 3x + ) Bµi 18: Cho A = 2 9 3 2 1 5 6 2 3 a a a a a a a − + + − − − + − − víi a ≥ 0 , a ≠ 9 , a ≠ 4. a. Rót gän A. 7 Gi¸o ¸n «n thi vµo líp 10 b. T×m a ®Ó A < 1 c. T×m a Z∈ ®Ó A Z∈ ( KQ : A = 1 3 a a + − ) Bµi 19: Cho A= 7 1 2 2 2 : 4 4 2 2 2 x x x x x x x x x x     − + + − + − −  ÷  ÷  ÷  ÷ − − − − +     víi x > 0 , x ≠ 4. a. Rót gän A. b. So s¸nh A víi 1 A ( KQ : A = 9 6 x x + ) Bµi20: Cho A = ( ) 2 3 3 : x y xy x y x y y x x y x y   − + − −  ÷ +  ÷ − − +   víi x ≥ 0 , y ≥ 0, x y≠ a. Rót gän A. b. CMR : A ≥ 0 ( KQ : A = xy x xy y− + ) Bµi 21 : Cho A = 1 1 1 1 1 . 1 1 x x x x x x x x x x x x x x   − + + −   − + − +  ÷  ÷  ÷ − + − +     Víi x > 0 , x ≠ 1. a. Rót gän A. b. T×m x ®Ó A = 6 ( KQ : A = ( ) 2 1x x x + + ) Bµi 22 : Cho A = ( ) 4 3 2 : 2 2 2 x x x x x x x x     − +  ÷ + −  ÷  ÷  ÷ − − −     víi x > 0 , x ≠ 4. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 1 x− ) Bµi 23 : Cho A= 1 1 1 1 1 : 1 1 1 1 2x x x x x     + − +  ÷  ÷ − + − +     víi x > 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 3 2 x ) Bµi 24 : Cho A= 3 2 1 1 4 : 1 1 1 1 x x x x x x   + +   − −  ÷  ÷  ÷ − + +   −   víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z ∈ ®Ó A Z∈ (KQ: A = 3 x x − ) Bµi 25: Cho A= 1 2 2 1 2 : 1 1 1 1 x x x x x x x x   −   − −  ÷  ÷  ÷ − + − + − −     víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z∈ ®Ó A Z∈ 8 Gi¸o ¸n «n thi vµo líp 10 c. T×m x ®Ó A ®¹t GTNN . (KQ: A = 1 1 x x − + ) Bµi 26 : Cho A = 2 3 3 2 2 : 1 9 3 3 3 x x x x x x x x     + − + − −  ÷  ÷  ÷  ÷ − + − −     víi x ≥ 0 , x ≠ 9 . a. Rót gän A. b. T×m x ®Ó A < - 1 2 ( KQ : A = 3 3a − + ) Bµi 27 : Cho A = 1 1 8 3 1 : 1 1 1 1 1 x x x x x x x x x x     + − − − − − −  ÷  ÷  ÷  ÷ − − − + −     víi x ≥ 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 4 4 x x + ) c . CMR : A 1≤ Bµi 28 : Cho A = 1 1 1 : 1 2 1 x x x x x x +   +  ÷ − − − +   víi x > 0 , x ≠ 1. a. Rót gän A (KQ: A = 1x x − ) b.So s¸nh A víi 1 Bµi 29 : Cho A = 1 1 8 3 2 : 1 9 1 3 1 3 1 3 1 x x x x x x x     − − − + −  ÷  ÷  ÷  ÷ − − + +     Víi 1 0, 9 x x≥ ≠ a. Rót gän A. b. T×m x ®Ó A = 6 5 c. T×m x ®Ó A < 1. ( KQ : A = 3 1 x x x + − ) Bµi30 : Cho A = 2 2 2 2 1 . 1 2 2 1 x x x x x x x   − + − + −  ÷  ÷ − + +   víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. CMR nÕu 0 < x < 1 th× A > 0 c. TÝnh A khi x =3+2 2 d. T×m GTLN cña A (KQ: A = (1 )x x− ) Bµi 31 : Cho A = 2 1 1 : 2 1 1 1 x x x x x x x x   + − + +  ÷  ÷ − + + −   víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. CMR nÕu x ≥ 0 , x ≠ 1 th× A > 0 , (KQ: A = 2 1x x+ + ) 9 Giáo án ôn thi vào lớp 10 Bài 32 : Cho A = 4 1 2 1 : 1 1 1 x x x x x + ữ + với x > 0 , x 1, x 4. a. Rút gọn b. Tìm x để A = 1 2 Bài 33 : Cho A = 1 2 3 3 2 : 1 1 1 1 x x x x x x x x + + + ữ ữ ữ + với x 0 , x 1. a. Rút gọn A. b. Tính A khi x= 0,36 c. Tìm x Z để A Z Bài 34 : Cho A= 3 2 2 1 : 1 2 3 5 6 x x x x x x x x x + + + + + ữ ữ ữ ữ + + với x 0 , x 9 , x 4. a. Rút gọn A. b. Tìm x Z để A Z c. Tìm x để A < 0 (KQ: A = 2 1 x x + ) Bài tập về hàm số bậc nhất B ài 1 : 1) Viết phơng trình đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4). 2) Tìm toạ độ giao điểm của đờng thẳng trên với trục tung và trục hoành. H ớng dẫn : 1) Gọi pt đờng thẳng cần tìm có dạng : y = ax + b. Do đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) ta có hệ pt : += += ba ba 4 2 = = 1 3 b a Vậy pt đờng thẳng cần tìm là y = 3x 1 2) Đồ thị cắt trục tung tại điểm có tung độ bằng -1 ; Đồ thị cắt trục hoành tại điểm có hoành độ bằng 3 1 . B ài 2 : Cho hàm số y = (m 2)x + m + 3. 1) Tìm điều kiện của m để hàm số luôn nghịch biến. 2) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. 3) Tìm m để đồ thị của hàm số trên và các đồ thị của các hàm số y = -x + 2 ; y = 2x 1 đồng quy. H ớng dẫn : 1) Hàm số y = (m 2)x + m + 3 m 2 < 0 m < 2. 2) Do đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. Suy ra : x= 3 ; y = 0 10 [...]... 100 x + 20y = 400 Gi¸o ¸n «n thi vµo líp 10 x = 2,5 ⇔   y = 7,5 Vậy cần 2,5 lít nước sôi và 75 lít nước 200C Bµi 14 : Khi thêm 200g axít vào dung dòch axít thì dung dòch mới có nồng độ 50% Lại thêm 300g nước vào dung dòch mới được dung dòch axít có nồng độ 40% Tính nồng độ axít trong dung dòch ban đầu Hường dãn :Gọi x khối axit ban đầu, y là khối lượng dung dòch ban đầu  ( x + 200)  y + 200 100 %... chảy vào một cài bể nước cạn, sau 4 giờ thì đầy bể 5 6 Nếu lúc đầu chỉ mở vòi thứ nhất, sau 9 giờ mở vòi thứ hai thì sau giờ nữa mới nay bể Nếu 5 một mình vòi thứ hai chảy bao lâu sẽ nay bể Đáp số : 8 giờ Bµi 13 : (trang 24): Biết rằng m gam kg nước giảm t0C thì tỏa nhiệt lượng Q = mt (kcal) Hỏi phải dùng bao nhiêu lít 100 0C và bao nhiêu lít 200C để được hỗn hợp 10 lít 400C Hường dãn : 14 x + y = 10. .. Thay m = - 9 vµo c«ng trøc tÝnh tÝch hai nghiƯm 4 22 Gi¸o ¸n «n thi vµo líp 10 9 − −3 m−3 21 21 21 7 x1x2 = => x2 = : x1 = :3= = 4 = 9 m 9 9 9 9 − 4 Bµi 10: Cho ph¬ng tr×nh : x2 + 2kx + 2 – 5k = 0 (1) víi k lµ tham sè 1.T×m k ®Ĩ ph¬ng tr×nh (1) cã nghiƯm kÐp 2 Tim k ®Ĩ ph¬ng tr×nh (1) cã 2 nghiƯm x1 , x2 tho¶ m·n ®iỊu kiƯn : x12 + x22 = 10 Gi¶i 1.Ph¬ng tr×nh (1) cã nghiƯm kÐp ⇔ ∆/ = 0 ⇔ k2 – (2 – 5k)... có hệ pt :   y = 100 0  ( x + 200) 100 % = 40%  y + 500  Vậy nồng độ phần trăm của dung dòch axít ban đầu là 40% Ph¬ng tr×nh bËc hai ®Þnh lý viet vµ øng dơng A.Kiến thức cần ghi nhớ 1 Để biện luận sự có nghiệm của phương trình : ax 2 + bx + c = 0 (1) trong đó a,b ,c phụ thuộc tham số m,ta xét 2 trường hợp a)Nếu a= 0 khi đó ta tìm được một vài giá trị nào đó của m ,thay giá trị đó vào (1).Phương trình... cã ®êng kÝnh 20m , xt ph¸t cïng mét nóc tõ cïng mét ®iĨm NÕu chóng chun ®éng ngỵc chiỊu nhau th× cø 2 gi©y l¹i gỈp nhau NÕu chóng chun ®éng cïng chiỊu nhauth× cø sau 10 gi©y l¹i gỈp nhua TÝnh vËn tèc cđa mçi vËt 25 Gi¸o ¸n «n thi vµo líp 10 Bµi 17 : Th¸ng thø nhÊt hai tỉ s¶n xt ®ỵc 800 s¶n phÈm Sang th¸ng thø hai tỉ 1 vỵt 15%.tỉ 2 vỵt 20% Do ®ã ci th¸ng c¶ hai tỉ x¶n xt ®ùoc 945 s¶n phÈm TÝnh xem trong... m T×m ®iĨm cè ®Þnh Êy 3) T×m m ®Ĩ ®å thÞ cđa hµm sè c¾t trơc hoµnh t¹i ®iĨm cã hoµnh ®é x = 2 − 1 Híng dÉn : 1) m = 2 2) Gäi ®iĨm cè ®Þnh mµ ®å thÞ lu«n ®i qua lµ M(x0 ;y0) Ta cã 11 Gi¸o ¸n «n thi vµo líp 10 −1   x0 = 2  y0 = (2m – 1)x0 + m - 3 ⇔ (2x0 + 1)m - x0 - y0 - 3 = 0 ⇔  y = − 5  0 2  −1 − 5 VËy víi mäi m th× ®å thÞ lu«n ®i qua ®iĨm cè ®Þnh ( ; ) 2 2 Bài 6 : T×m gi¸ trÞ cđa k ®Ĩ c¸c... ®©y : x x a) §S : §KX§ : x ≠ 1 ; x ≠ - 2 S = { 4 } + =2 x -1 x + 2 2x 3 - 1 b) 3 =2 x + x +1 Gi¶i : §KX§ : x 3 + x + 1 ≠ 0 (*) −3 2x 3 - 1 Khi ®ã : 3 = 2 ⇔ 2x = - 3 ⇔ x = 2 x + x +1 12 Gi¸o ¸n «n thi vµo líp 10 −3 3 −3 −3 Víi ⇔ x = thay vµo (* ) ta cã ( ) + +1≠0 2 2 2 −3 VËy x = lµ nghiƯm 2 VÝ dơ 2 : Gi¶i vµ biƯn ln ph¬ng tr×nh theo m : (m – 2)x + m2 – 4 = 0 (1) + NÕu m ≠ 2 th× (1) ⇔ x = - (m + 2) +... x1x2 = a Đảo l¹i: Nếu có hai số x1,x2 mà x1 + x2 = S và x1x2 = p thì hai số đó là nghiệm (nếu cã ) cđa ph¬ng tr×nh bËc 2: x2 – S x + p = 0 3.DÊu cđa nghiƯm sè cđa ph¬ng tr×nh bËc hai 15 Gi¸o ¸n «n thi vµo líp 10 Cho ph¬ng tr×nh bËc hai ax2 + bx + c = 0 (a ≠ 0) Gäi x1 ,x2 lµ c¸c nghiƯm cđa ph¬ng tr×nh Ta cã c¸c kÕt qu¶ sau: x1 vµ x2 tr¸i dÊu( x1 < 0 < x2 ) ⇔ p < 0 ∆ ≥ 0  Hai nghiƯm cïng d¬ng( x1 > 0... c¸c gi¸ trÞ cđa tham sè rót ra tõ ®iỊu kiƯn cho tríc ph¶i tho¶ m·n ®iỊu kiƯn ∆ ≥ 0 ) d)T×m ®iỊu kiƯn cđa tham sè ®Ĩ ph¬ng tr×nh bËc hai cã mét nghiƯm x = x1 cho tríc T×m nghiƯm thø 2 16 Gi¸o ¸n «n thi vµo líp 10 C¸ch gi¶i: • T×m ®iỊu kiƯn ®Ĩ ph¬ng tr×nh cã nghiƯm x= x1 cho tríc cã hai c¸ch lµm +) C¸ch 1:- LËp ®iỊu kiƯn ®Ĩ ph¬ng tr×nh bËc 2 ®· cho cã 2 nghiƯm: ∆ ≥ 0 (hc ∆/ ≥ 0 ) (*) - Thay x = x1 vµo ph¬ng... thø 2 +) C¸ch 3: thay gi¸ trÞ cđa tham sè t×m ®ỵc vµo c«ng thøc tÝch hai nghiƯm ,tõ ®ã t×m ®ỵc nghiƯm thø 2 B Bµi tËp ¸p dơng Bµi 1: Gi¶i vµ biƯn ln ph¬ng tr×nh : x2 – 2(m + 1) +2m +10 = 0 Gi¶i Ta cã ∆/ = (m + 1)2 – 2m + 10 = m2 – 9 + NÕu ∆/ > 0 ⇔ m2 – 9 > 0 ⇔ m < - 3 hc m > 3 Ph¬ng tr×nh ®· cho cã 2 nghiƯm ph©n biƯt: x1 = m + 1 - m 2 − 9 x2 = m + 1 + m 2 − 9 + NÕu ∆/ = 0 ⇔ m = ± 3 - Víi m =3 th× ph¬ng . Hỏi phải dùng bao nhiêu lít 100 0 C và bao nhiêu lít 20 0 C để được hỗn hợp 10 lít 40 0 C. Hường dãn : 3 Gi¸o ¸n «n thi vµo líp 10 Ta có hệ pt :    =+ =+ 400 20y 100 x 10 y x ⇔    = = 7,5. hàm số cắt trục hoành tại điểm có hoành độ bằng 3. Suy ra : x= 3 ; y = 0 10 Giáo án ôn thi vào lớp 10 Thay x= 3 ; y = 0 vào hàm số y = (m 2)x + m + 3, ta đợc m = 4 3 . 3) Giao điểm của hai đồ. Hỏi phải dùng bao nhiêu lít 100 0 C và bao nhiêu lít 20 0 C để được hỗn hợp 10 lít 40 0 C. Hường dãn : 14 Gi¸o ¸n «n thi vµo líp 10 Ta có hệ pt :    =+ =+ 400 20y 100 x 10 y x ⇔    = = 7,5

Ngày đăng: 08/06/2015, 17:00

TỪ KHÓA LIÊN QUAN

w