1. Trang chủ
  2. » Giáo án - Bài giảng

giao an tu chon co ban 11

11 266 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 164,6 KB

Nội dung

Nguy ễn Th ành Hi ếu – THPT Đ ầm H à T ự chọn 11cb 1 TIẾT 1 GIỚI HẠN CỦA DÃY SỐ A.MỤC TIÊU Củng cố cho học sinh các kiến thức § khái niệm giới hạn của dãy số , đònh nghóa giới hạn dãy số . § các đònh lý về giới hạn trình bày trong sgk. § khái niệm cấp số nhân lùi vô hạn và công thức tính tổng của nó. Nhận dạng cấp số nhân lùi vô hạn . B. TIẾN TRÌNH BÀI HỌC : HĐ 1 : Các phép toán Hoạt động của HS Hoạt động của GV HS nhắc lại Các phép toán n n n n nn n n n n n nn n vuvu vuvu ∞→∞→∞→ ∞→∞→∞→ = ± = ± lim.lim).(lim limlim)(lim 0lim; lim lim lim ≠= ∞→ ∞→ ∞→ ∞→ n n n n n n n n n v v u v u • * ;0;limlim Nnuuu nn n n n ∈∀≥= ∞→∞→ ĐL: 0lim = ∞→ n n q Với 1<q Phân tích : 7 3 31 7 52 3 lim 37 523 lim 2 2 2 2 = +− ++ = +− ++ ∞→∞→ n n n n nn nn nn BT1 : Dùng đònh nghóa giới hạn,chứng minh : b.) 1 1 1 lim = + − ∞→ n n n BT2 : Tìm các giới hạn : b.) n n nn − +− 3 3 2 126 lim e.) 2 lim 3 3 + + n nn Cho HS áp dụng vào BT : Học sinh p dụng vào VD : Tìm : 3 7 523 lim 2 2 + − ++ ∞→ n n nn n p dụng : 0lim = ∞→ n n q Với 1<q Và phân tích : ∞→ − =→         − − − = nKhi q u Sq q u q u S n n :; 1 . 11 111 1./áp dụng : 0 1 lim = n phân tích : 1 1 1 1 1 1 1 → + − = + − n n n n 2./tương tự hsinh phân tích : b./ 3 1 2 12 6 lim 2 126 lim 2 32 3 3 = − +− = − +− n nn nn nn e./hsinh phân tích : 1 2 1 1 1 lim 2 lim 3 2 3 3 = + + = + + n n n nn g./ Nguy ễ n Th ành Hi ế u – THPT Đ ầ m H à T ự ch ọ n 11cb 2 g.) )lim( 2 nnn −+ BT3 : a.) 2 321 lim 2 + + + + + n n hsinh biến đổi : nhân,chia LLH 2 1 lim)lim( 2 2 = ++ =−+ nnn n nnn 3./ a./p dụng : 2 )1( + = nn S TIẾT 2 : GIỚI HẠN CỦA HÀM SỐ A.MỤC TIÊU Củng cố cho HS các kiến thức khái niệm giới hạn của hàm số , đònh nghóa giới hạn 1bên . Biết các đònh lý về giới hạn trình bày trong sgk. 2. Về kỹ năng : Tính giới hạn 1bên , giới hạn của hàm số tại ±∞ . 1số giới hạn dạng 0 ; ; . 0 ∞ ∞ − ∞ ∞ B. TIẾN TRÌNH BÀI HỌC : Hoạt động của HS Hoạt động của GV 1./Đònh Nghóa : a./Ví Dụ : 1 1 )( 2 − − = x x xf b./Đònh Nghóa : Cho f(x)/K.Có thể Không Xđ tại Ka ∈ Ta nói : Lxf ax = → )(lim Nếu LxfaxaxKx n n n n nn =⇒=≠∈∀ ∞→∞→ )(limlim:; 2./các đònh lý : Đònh Lý 1 : Lxf ax = → )(lim là duy nhất Đònh Lý 2 : [ ] [ ] 0)(;)(lim)(lim 0)(lim; )(lim )(lim )( )( lim )(lim).(lim)().(lim )(lim)(lim)()(lim ≥= ≠= = ± = ± →→ → → → → →→→ →→→ xfxfxf xg xg xf xg xf xgxfxgxf xgxfxgxf axax ax ax ax ax axaxax axaxax Lấy dãy 1→ n x 21 1 1 )( 2 →+= − − = n n n n x x x xf f(x) không xđ tại x = 1 Từ đó dẫn Hsinh đến đònh nghóa • Các đònh lý trên vận dụng từ ĐN và các đl giới hạn dãy số Hsinh vận dụng ĐN và các ĐL qua các VD Chứng Minh : 1./ ax ax = → lim Hiển nhiên do : ax n =lim 2.,/ kk ax ax = → lim Phân tích : k kk k aaaaaxxxxx =→=  3./ 1)1(lim 2 )1)(2( lim 2 23 lim 22 2 2 =−= − −− = − +− →→→ x x xx x xx xxx 4./ f(x) không xđ tại x = 3 Nguy ễ n Th ành Hi ế u – THPT Đ ầ m H à T ự ch ọ n 11cb 3 Đònh Lý 3 : Kxhxfxg /)();();( )()()( xhxfxg ≤ ≤ Nếu : LxfLxhxg axaxax =⇒== →→→ )(lim)(lim)(lim Đònh Lý 4 : x đủ gần a và )0)((;0)( < > xfxf Và Lxf ax = → )(lim Thì : )0(;0 ≤ ≥ LL Tìm 33 21 lim 3 − −+ → x x x Hsinh nhân,chia biểu thức liên hợp : 2 1 )21(3 33 lim 33 21 lim 33 = ++ + = − −+ →→ x x x x xx Nguy ễ n Th ành Hi ế u – THPT Đ ầ m H à T ự ch ọ n 11cb 4 TIẾT 3 : BÀI TẬP 1./Trọng Tâm : Vận dụng ĐN giới hạn của hàm số,các tính chất vào giải BT Hoạt động của GV Hoạt động của HS GV cho HS thực hiện các BT BT1 : Tìm d./ 3 152 lim 2 3 − −+ → x xx x g./ 1 1 lim 23 1 − −+− → x xxx x BT2 : a./ h xhx h 33 0 2)(2 lim −+ → BT3 : h xhx h −+ →0 lim (x > 0 ) BT4 : a./ x xxx x 11 lim 2 0 ++−+ → BT nậng cao : x x x 3 11 lim 3 0 −− → 1./Hsinh nhận xét dạng vô đònh : 0 0 Phân tích : 8)5(lim 3 )5)(3( lim 3 152 lim 33 2 3 =+= − +− = − −+ →→→ x x xx x xx xxx 2)1(lim 1 )1)(1( lim 1 1 lim 2 1 2 1 23 1 =+ = − +− = − −+− → →→ x x xx x xxx x xx 2./Hsinh nhận xét : h là biến , x là hằng Khử dạng vô đònh p dụng : [ ] [ ] 222 2233 6)()(2 )()(22)(2 xxhxxhx h xhxxhxh h xhx →++++= ++++ = −+ Khi 0 → h 3./Hsinh nhân chia BT liên hợp của xhx −+ 4./PP nhân ,chia BT liên hợp : BTLH của ba ± là ba ∓ BTLH của 33 ba ± là )( 33 3 2 baba + ∓ TIẾT 4 : HÀM SỐ LIÊN TỤC A.MỤC TIÊU Củng cố cho HS các kiến thức : khái niệm hàm số liên tục (tại 1điểm,trên 1khoảng). Biết các đònh lý về hàm đa thức , phân thức hữu tỷ liên tục trên từng tập xác đònh của chúng . D. TIẾN TRÌNH BÀI HỌC : HĐ1 : n tập lại kiến thức Hoạt động của GV Hoạt động của HS Nguy ễn Th ành Hi ếu – THPT Đ ầm H à T ự chọn 11cb 5 1./Hàm số liên tục tại 1 điểm : cho hs nhắc lại ĐN hàm số liên tục tại 1 điểm a./Đònh Nghóa : f(x)/(a;b). f(x) liên tục tại );( 0 bax ∈ nếu : )()(lim 0 0 xfxf xx = → )()(lim)(lim 0 0 xfxfxf x xx xx ==⇔ −+ → → y 1 O x Hệ Quả : : f(x) liên tục trên [a;b] và 0)().( < bfaf thì 0)(:);( = ∈ ∃ cfbac y a f(b) x b f(a) GV cho VD : Chứng minh PT 01)( 5 =−+= xxxf có nghiệm trên (- 1;1) Từ đònh nghóa ,Hsinh nêu các yếu tố để 1 hàm số liên tục tại 1 điểm : Thực hiện VD : a./Xét tính liên tục tại 1 0 =x      = ≠ − − = 1 1 1 1 )( 2 xa x x x xf f(x)/R 2)1(lim 1 1 lim )1( 1 2 1 =+= − − = →→ x x x af xx Để f liên tục tại 1 0 =x thì a = 2 b./    ≤ >+ = 0 01 )( 2 xx xx xf Hsinh nhận xét : ⇒ ≠ = = −+ − + →→ → → )(lim)(lim 0)(lim 1)(lim 00 0 0 xfxf xf xf xx x x gián đoạn tại 0 0 =x Hsinh kiểm chứng : Hs f(x) liên tục trên [-1;1] 03)1().1( < − = − ff từ đó KL : PT có ít nhất 1 nghiệm thuộc (-1;1) Nguy ễn Th ành Hi ếu – THPT Đ ầm H à T ự chọn 11cb 6 TIẾT 5 : BÀI TẬP 1./Trọng Tâm : Vận dụng ĐN hàm so liên tục và các tính chất vào giải BT Hoạt động của GV Hoạt động của HS GV cho BT BT1 : tìm các điểm gián đoạn c./ x x xx xf 2 65 )( 2 2 − +− = d./ x tgx xf =)( e./      = ≠ − − = 48 4 4 16 )( 2 x x x x xf BT2 : Tìm f(0) ? để f(x) liên tục tại x = 0 a./ x xx xf 2 )( 2 − = BT3 : Tìm a ? để f(x) liên tục với mọi x Vẽ đồ thò    > ≤ = 23 2 )( 2 x xax xf BT4 : CMR PT sau có ít nhất 2 nghiệm trên (-1;1) 0324 24 =−−+ xxx Hsinh nêu các dấu hiệu nhận biết 1 hàm số gián đoạn tại 1 điểm có 0 xx = Xảy ra ít nhất 1 trong dấu hiệu : - Không xác đònh tại 0 x - Không có )(lim 0 xf xx→ - )()(lim 0 0 xfxf xx ≠ → 1./a./Hàm số x x xx xf 2 65 )( 2 2 − +− = không xđ tại 2;0 = = xx nên gián đoạn tại 2;0 = = xx vì f(x) là hàm hữu tỉ nên liên tục trên TXĐ { } 2;0\RD = e./Nhận xét : 8)4()(lim 4 == → fxf x Vậy f(x) liên tục trên R 2./ 2 2 lim 2 0 −= − → x xx x Vậy để f(x) liên tục tại x = 0 thì f(0) = -2 3./ afxf x 4)2()(lim 2 == − → 3)(lim 2 = + → xf x . Để hs LT tại x = 2 thì 4 3 34 =⇔= aa 4./Hsinh nhận xét : 012)3.(4)0().1( < − = − = − ff 062).3()1().0( < − = − = ff Nguy ễn Th ành Hi ếu – THPT Đ ầm H à T ự chọn 11cb 7 TIẾT 6 : VECTƠ TRONG KHÔNG GIAN I. MỤC TIÊU Củng cố cho học sinh các kiến thức + các đònh nghóa, vectơ trong không gian, hai vectơ bằng nhau, vectơ không, độ dài vectơ. + các phép toán về vectơ, công trừ các vectơ, nhân vectơ với một số thực. + đònh nghóa ba vectơ không đồng phẳng, điều kiện để ba vectơ đồng phẳng. + đònh nghóa tích vô hướng của hai vectơ, vận dụng tích vô hướng của hai vectơ để giải các bài toán yếu tố hình học không gian. Hoạt động 1: Điều kiện đồng phẳng của ba vectơ .Hoạt dộng của giáo viên Hoạt động của học sinh + Yêu cầu học sinh Điều kiện đồng phẳng của ba vectơ a  không song song với b  . a,b,c    đồng phẳng khi c ma nb = +    , m, n không đồng thời bằng không và duy nhất. OC mOA nOB c ma nb = + ⇔ = +       Vì a,b   không cùng thuộc một phương nên m, n được xác đònh duy nhất. GV cho VD : cho tứ diện ABCD .gọi M,N,P,Q lần lượt là trung điểm AB,AC,CD,BD .a.) Chứng minh MNPQ là hình bình hành. b.)Phân tích MN  theo các vectơ BC,AD   . GV: Vậy trong mặt phẳng (OCXX’), hãy phân tích OX  theo hai vectơ OX'  và OC  , sự phân tích đó là duy nhất. + Trong mặt phẳng (AOBX’), hãy phân tích OX'  theo các vectơ OA,OB   OX'  = m OA nOB +   , m, n được xác đònh duy nhất. – Ví dụ minh họa + Cho ABCD là hình thoi, IB = IA và KB = KF. Chứng minh rằng: a. FH,IK,BG    đồng phẳng. b. Phân tích BG  theo các vectơ FH,IK   HS: . Chứng minh MN,BC,AD    đồng phẳng. Gợi ý: Dựa vào đònh nghóa ( BC,AD   song song với mặt phẳng (MNPQ)) Hình 3.7 HS: Ghi giả thiết, kết luận và vẽ hình Gợi ý: Xét trong mặt phẳng (MNPQ). Phân tích vectơ MN  , MP  . So sánh MQ,AD   và MP,BC   HS: Nêu cách chứng minh + Nêu cách giải + So sánh BD,FH   và DG,IK   BG FH IK ⇒ = +    HS: Nêu cách giải Phân tích AI  theo các vectơ AB,AD   ( ) 1 AI AB AD 2 1 1 AM AB AD AE 2 2 ⇒ = + = + +       TIẾT 7 : LUYỆN TẬP I. MỤC TIÊU Vận dụng các kiến thức trọng tâm vào giải bài tập II. NỘI DUNG VÀ TIẾN TRÌNH LÊN LỚP. Nguy ễn Th ành Hi ếu – THPT Đ ầm H à T ự chọn 11cb 8 .Hoạt dộng của giáo viên Hoạt động của học sinh Cho BT : BT Cho tứ diên ABCD .Gọi M,N lần lượt là trung điểm AB,CD , AB=AC=AD= a. 0 ^^ 60== DABCAB Chứng minh : CDABa ⊥.) ABMNa ⊥.) GV : gọi 1 hs nhắc lại quy tắc 3 điểm Tích vô hướng của 2 vécto ĐK vuông góc ? HS : vẽ hình Xác đònh các đường “ - - - -“ A M B D N C a.) 0 2 2 ).(. 22 =−= −= aa ACADABCDAB CDAB ⊥⇔ b.)p dụng quy tắc 3 điểm : ( ) ( ) CNDNBCADMBMAMN CNBCMBMN DNADMAMN +++++= −−−−−−−−−−−−− ++= ++= 2 )(2 ABACADBCADMN −+=+=⇔ 2 2 ABABACABADBCADABMN −+=+=⇔ 0 2 2 2 2 22 =−+=⇔ a aa ABMN ⇔ ABMN ⊥ Nguy ễn Th ành Hi ếu – THPT Đ ầm H à T ự chọn 11cb 9 TIẾT 8 : QUAN HỆ VUÔNG GÓC I. MỤC TIÊU Củng cố cho học sinh các kiến thức + các đònh nghóa + các đònh lý về điều kiện đường thẳng vuông góc đường thẳng. đường thẳng vuông góc mặt phẳng + vận dụng vào giải các bài toán yếu tố hình học không gian. Hoạt động 1: Điều kiện đường thẳng vuông góc đường thẳng. đường thẳng vuông góc mặt phẳng .Hoạt dộng của giáo viên Hoạt động của học sinh GV cho BT : Cho hình chóp S.ABC có đáy ABC là tam giác vng tại A, AB=a, AC=2a. SA=2a và SA vng góc mp(ABC). M là 1 điểm nằm trên đoạn AB 1. Chứng minh AC ⊥ SM. 2. Tính góc giữa SA và (SBC) 3. Mặt phẳng (α) qua M và (P) ⊥ AB. Tìm thiết diện mặt phẳng (α) cắt hình chóp, thiết diện là hình gì? S P A C M N B HS vẽ hình,chỉ rõ các đường khuất Câu 1: - Chứng minh được AC ⊥ (SAB) - Suy ra AC ⊥ SM Câu 2: - Gọi I là hình chiếu của A lên BC chứng minh BC ⊥ (SIA) 1đ - Gọi H là hình chiếu của A lên SI chứng minh AH ⊥ (SBC) và suy ra góc  ASI là góc cần tìm 1đ - Tính đúng Câu 3: - Chứng minh (α)//(SAC) - Tìm đúng thiết diện - Kết luận (α)=(MNP) Nguy ễn Th ành Hi ếu – THPT Đ ầm H à T ự chọn 11cb 10 TIẾT 9 : QUAN HỆ VUÔNG GÓC (TT) I. MỤC TIÊU + vận dụng vào giải các bài toán hình học không gian. .Hoạt dộng của giáo viên Hoạt động của học sinh GV cho 2 câu trắc nghiệm ôn tập : 1. Trong khơng gian , với 3 đường thẳng a, b, c tuỳ ý. Xét 3 mệnh đề: (I): N ếu a // b và a ⊥ c thì b ⊥ c. (II): N ếu a ⊥ c và b ⊥ c thì a // b. (III): N ếu a ⊥ c và b ⊥ c và c ⊥ a thì a, b, c đồng quy tại 1 điểm. Số mệnh đề đúng là: A. 1 B. 2 C. 3 D. 0 2. Cho 2 mặt phẳng α, β phân biệt và đường thẳng a ⊥ α. Xét 3 mệnh đề: (I): N ếu a // β thì α ⊥ β (II): N ếu α // β thì a ⊥ β. (III): N ếu α ⊥ β thì a // β. Hiệu số giữa số mệnh đề đúng và số mệnh đề sai là: A. 1 B. -1 C. 3 d. -3 GV cho BT : Cho hình chóp SABCD có đáy ABCD là hình vng c ạnh a, mặt bên SAB là tam giác đ ều và SC = a 2 . Gọi H và K l ần lượt là trung điểm của AB và AD. a. Ch ứng minh SH ⊥ (ABCD) b. Chứng minh AC ⊥ SK c. Ch ứng minh CK ⊥ SD 1. Hình vẽ a . ( 2 điểm) cm mp (SAB) ⊥ BC nên SH ⊥ BC Mặt khác SH ⊥ AB ( ∆ SAB đ ều) nên suy ra SH ⊥ (ABCD) a. ( 2 điểm ) cm AC ⊥ (SHK) nên SK ⊥ AC a.( 1 điểm ) CK ⊥ SH và CK ⊥ HD nên CK ⊥ (SHD) TIẾT 11 : Các quy tắc tính ®¹o hµm I)Mơc tiªu: I)Mơc tiªu: I)Mơc tiªu: I)Mơc tiªu: 1)KiÕn thøc: củng cố các quy tắc tính đạo hàm A S B H K C D [...]...Nguy n Thnh Hi u THPT m H T ch n 11cb ' u 2) Kỹ năng: cuỷng co tính đạo hàm (uv ) vaứ = ? v ' Hoạt động 1 : Xây dựng đạo hàm của hàm số hữu tỉ ' u Vấn đáp: Nhắc lại = ? v Trả lời mong đợi: ' Vấn đáp: Thử cho biết đạo hàm của hàm số y= ax + b... Củng cố: Cách tính đạo hàm của hàm số hữu tỉ 2 x +1 a) y ' = (với x 1 ) = 2 x 1 ( x 1) ' x2 x + 1 x2 + 4x 1 b) y ' = (với x 2 ) = 2 (2 x) 2 x Nhận xét kết quả hoạt động của các nhóm 11 . Với 1<q Và phân tích : ∞→ − =→         − − − = nKhi q u Sq q u q u S n n :; 1 . 11 111 1./áp dụng : 0 1 lim = n phân tích : 1 1 1 1 1 1 1 → + − = + − n n n n 2./tương tự. THPT Đ ầm H à T ự chọn 11cb 7 TIẾT 6 : VECTƠ TRONG KHÔNG GIAN I. MỤC TIÊU Củng cố cho học sinh các kiến thức + các đònh nghóa, vectơ trong không gian, hai vectơ bằng nhau, vectơ. Th ành Hi ếu – THPT Đ ầm H à T ự chọn 11cb 10 TIẾT 9 : QUAN HỆ VUÔNG GÓC (TT) I. MỤC TIÊU + vận dụng vào giải các bài toán hình học không gian. .Hoạt dộng của giáo viên Hoạt động của

Ngày đăng: 05/06/2015, 05:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w