1. Trang chủ
  2. » Luận Văn - Báo Cáo

TIỂU LUẬN môn TOÁN CHO vật lý

5 743 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 57,94 KB

Nội dung

Tiểu luận Toán cho vật lý Phạm Tùng Lâm - Lớp VLLT-VLT - ĐHSP Huế - K21 0.1 Hàm phức và toán tử Laplace - Phạm Tùng Lâm Bài tập 1 (Bài 58 (trang 94)) Tìm tổng các chuỗi sau trong miền |z| =1 b) ∞  n=1 z n n d) ∞  n=0 (−1) n+1 z n n Bài Giải b) Ta có: ∞  n=1 z n n = z + z 2 2 + z 3 3 + + z n n + = C 1 z + C 2 z 2 + C 3 z 3 + + C n z n + Xét: R = lim n→∞ C n C n+1 = lim n→∞ 1/n 1/(n +1) = lim n→∞ n +1 n = lim n→∞  1+ 1 n  =1 Suy ra chuỗi hội tụ tuyệt đối trong hình tròn |z| =1 Ta có: ∞  n=1 z n n = ∞  n=1   z  0 z n−1 dz   = z  0  ∞  n=1 z n−1  dz = z  0  z 0 1 − z  dz = z  0  1 1 − z  dz = − ln (1 − z)| z 0 = − ln (1 − z) Vậy: ∞  n=1 z n n = − ln (1 − z ) d) Tương tự bài trên, ta xét: R = lim n→∞ C n C n+1 = lim n→∞ (−1) n+1 n (−1) n+2 n+1 = lim n→∞ − (n +1) n = − lim n→∞ n +1 n = − lim n→∞  1+ 1 n  = −1 Vậy chuỗi hội tụ tuyệt đối trong hình tròn |z| =1 Ta có: ∞  n=0 (−1) n+1 . z n n =(−1) 0+1 . z 0 0 + ∞  n=1 (−1) n+1 . z n n = −∞ + ∞  n=1 (−1) n+1 . z n n = ∞  n=1 (−1) n+1 . z n n 1 Tiểu luận Toán cho vật lý Phạm Tùng Lâm - Lớp VLLT-VLT - ĐHSP Huế - K21 Ta lại có: ∞  n=1 (−1) n+1 . z n n = ∞  n=1 (−1) ( −1) n . z n n = ∞  n=1 (−z) n −n = ∞  n=1   z  0 (−z) n−1 dz   = z  0  ∞  n=1 (−z) n−1  dz = z  0  ( −z) 1 −1 1−(−z)  dz = z  0  1 1+z  dz = ln (1 + z)| z 0 = ln (1 + z) Vậy: ∞  n=0 (−1) n+1 . z n n =ln(1+z) Bài tập 2(Bài 77a (trang 147)) Nhờ hàm bước nhảy đơn vị biểu diễn dưới dạng công thức các hàm cho bằng đồ thị dưới đây và tìm ảnh của chúng: Hình 1: a) Bài Giải Từ đồ thị ta có: f (t)=        0(t<1) 3(1≤ t ≤ 4) 0(t>4) ta có: η ( t − 1) =  0(t<1) 1(t ≥ 1) và η ( t − 4) =  0(t<4) 1(t ≥ 4) Nên ta có: f (t)=3η (t − 1) − 3η (t − 4) 2 Tiểu luận Toán cho vật lý Phạm Tùng Lâm - Lớp VLLT-VLT - ĐHSP Huế - K21 ⇒ f (t) . = F (p)= 3 p .e −p − 3 p .e −4p = 3 p  e −p − e −4p  . Vậy ảnh cần tìm là: F (p)= 3 p .e −p − 3 p .e −4p = 3 p  e −p − e −4p  . Bài tập 3 Giải phương trình:        u tt = a 2 u xx 0 <x<l,t>0 u (0; t)=u (l; t)=0 u (x; 0) = 0; u t (x; 0) = sin  2π l x  Bài Giải Giả sử: u (x; t) . = U (x; p) u tt . = p 2 U (x; p) − pu (x;0)− u t (x;0)= p 2 U (x; p) − sin  2π l x  u (0; t) . = U (0; p)=0 u (l; t) . = U (l; p)=0 Phương trình vi phân gốc u tt = a 2 u xx trở thành phương trình ảnh sau: p 2 U (x; p) − sin  2π l x  = a 2 d 2 dx 2 U (x; p) ⇔ d 2 dx 2 U − p 2 a 2 U = − 1 a 2 sin  2π l x  (1) Nghiệm của phương trình trên có dạng U = U 1 + U 2 (2) Trong đó: U 1 là nghiệm của phương trình thuần nhất tương ứng U 2 là nghiệm riêng của phương trình (1) - Nghiệm của phương trình thuần nhất: d 2 dx 2 U − p 2 a 2 U =0 có dạng: U 1 = C 1 . exp  p a x  + C 2 exp  − p a x  - Nghiệm riêng U 2 của phương trình (1) có dạng: U 2 = C 3 . sin  2π l x  + C 4 . cos  2π l x  (3) 3 Tiểu luận Toán cho vật lý Phạm Tùng Lâm - Lớp VLLT-VLT - ĐHSP Huế - K21 Ta có: d dx U 2 = C 3 . 2π l . cos  2π l x  − C 4 . 2π l . sin  2π l x  ⇒ d 2 dx 2 U 2 = −C 3 .  2π l  2 . sin  2π l x  − C 4 .  2π l  2 . cos  2π l x  (4) Thế (3) và (4) vào (1) ta có: −C 3 .  2π l  2 . sin  2π l x  −C 4 .  2π l  2 . cos  2π l x  − p 2 a 2  C 3 . sin  2π l x  + C 4 . cos  2π l x  = − 1 a 2 sin  2π l x  ⇔ C 3 . sin  2π l x  .  −  2π l  2 − p 2 a 2  + C 4 . cos  2π l x  .  −  2π l  2 − p 2 a 2  = − 1 a 2 sin  2π l x  Ta cân bằng hệ số 2 vế, ta có:    C 3 = 1 a 2 . 1 ( 2π l ) 2 + p 2 a 2 = 1 ( 2πa l ) 2 +p 2 C 4 =0 Thế C 3 và C 4 vào biểu thức U 2 ta có: U 2 = 1  2πa l  2 + p 2 . sin  2π l x  Thế U 2 và U 1 vào biểu thức U = U 1 + U 2 ta có: U = C 1 . exp  p a x  + C 2 . exp  − p a x  + 1  2πa l  2 + p 2 . sin  2π l x  áp dụng điều kiện biên: U (0; p)=U (l; p)=0ta có:  C 1 + C 2 =0 C 1 . exp  p a l  + C 2 . exp  − p a l  =0 có định thức:      11 exp  p a l  exp  − p a l       = exp  − p a l  − exp  p a l  =0 nên hệ phương trình này chỉ có nghiệm tầm thường là C 1 = C 2 =0 Vậy nghiệm của phương trình ảnh thỏa mãn điều kiện bài toán là: U (x; p)= 1  2πa l  2 + p 2 . sin  2π l x  4 Tiểu luận Toán cho vật lý Phạm Tùng Lâm - Lớp VLLT-VLT - ĐHSP Huế - K21 Ta chuyển hàm trên vè hàm gốc, ta có: U (x; p) . = u (x; t)= l 2πa . sin  2π l t  . sin  2π l x  Vậy hàm nghiệm của bài toán có dạng: u (x; t)= l 2πa . sin  2π l t  . sin  2π l x  . 5 . Tiểu luận Toán cho vật lý Phạm Tùng Lâm - Lớp VLLT-VLT - ĐHSP Huế - K21 0.1 Hàm phức và toán tử Laplace - Phạm Tùng Lâm Bài tập 1 (Bài 58 (trang. C 2 =0 Vậy nghiệm của phương trình ảnh thỏa mãn điều kiện bài toán là: U (x; p)= 1  2πa l  2 + p 2 . sin  2π l x  4 Tiểu luận Toán cho vật lý Phạm Tùng Lâm - Lớp VLLT-VLT - ĐHSP Huế - K21 Ta chuyển. ≥ 1) và η ( t − 4) =  0(t<4) 1(t ≥ 4) Nên ta có: f (t)=3η (t − 1) − 3η (t − 4) 2 Tiểu luận Toán cho vật lý Phạm Tùng Lâm - Lớp VLLT-VLT - ĐHSP Huế - K21 ⇒ f (t) . = F (p)= 3 p .e −p − 3 p .e −4p = 3 p  e −p −

Ngày đăng: 26/05/2015, 20:36

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w