Mạng đường trục Bắc – Nam nước ta sử dụng mạng Ring cáp quang SDH 20 Gbps. Các mạng liên tỉnh sử dụng các hệ thống cáp quang SDH với dung lượng 622 Mbps và 2,5 Mbps.
Trang 1LỜI CẢM ƠN
Suốt trong thời gian học tập vừa qua, được sự quan tâm, giúp đỡ của trường Đại học Bách Khoa, khoa Điện Tử Viễn Thông, nay em đã hoàn thành khoá học của mình Em xin gửi lời cảm ơn chân thành đến:
- Quý thầy cô trong khoa Điện Tử Viễn Thông đã tận tình chỉ bảo em trong suốt quá trình học tập
- Quý thầy cô ở các khoa có liên quan đã cung cấp cho em những kiến thức cần thiết cho một sinh viên
- Trường Đại học Bách Khoa đã tạo điều kiện cho em học tập trong suốt thời gian qua
Đặc biệt, em xin gửi lời cảm ơn chân thành và sâu sắc đến thầy NGUYỄN TẤN HƯNG đã tận tình hướng dẫn và giúp đỡ em trong suốt thời gian thực hiện đồ
Trang 2LỜI CAM ĐOAN
Đồ án này đã được hoàn thành sau một thời gian nghiên cứu và tìm hiểu các nguồn tài liệu đã học, sách báo chuyên ngành cũng như các thông tin trên mạng mà theo em là hoàn toàn tin cậy Do thời gian thực hiện đồ án có hạn nên trong quá trình nghiên cứu và tìm hiểu còn gặp nhiều thiếu sót Em xin cam đoan đồ án này không giống với bất kỳ công trình nghiên cứu hay đồ án nào trước đây mà em đã biết
Đà Nẵng, tháng 06 năm 2006
Người thực hiện
VÕ DŨNG
Trang 3MỤC LỤC LỜI CẢM ƠN A LỜI CAM ĐOAN B MỤC LỤC C BẢNG TỪ VIẾT TẮT F LỜI MỞ ĐẦU H
CHƯƠNG1 1
HIỆN TRẠNG MẠNG VIỄN THÔNG VIỆT NAM VÀ XU HƯỚNG PHÁT TRIỂN MẠNG TRUY NHẬP CỦA THẾ GIỚI 1
1.1 Giới thiệu chương 1
1.2 Hiện trạng mạng truyền thông của Việt Nam 1
1.2.1 Truyền dẫn Quốc Tế 1
1.2.2 Truyền dẫn Quốc Gia 1
1.2.3 Truyền dẫn nội tỉnh 2
1.3 Sự phát triển của lưu lượng 2
1.4 Xu hướng phát triển hiện nay 3
1.5 Mạng truy nhập thế hệ sau 4
1.6 So sánh giữa các giải pháp truy nhập và thị trường mạng quang thụ động toàn cầu 5
Bảng 1.1 Thị trường mạng quang thụ động toàn cầu 2003-2008 5
1.7 Kết luận chương 7
CHƯƠNG2 8
MẠNG TRUY NHẬP QUANG THỤ ĐỘNG – PON 8
2.1 Giới thiệu chương 8
2.2 Tổng quang về công nghệ PON 8
2.2.1 Bộ tách / ghép quang 9
2.2.2 Các đầu cuối mạng PON 11
2.2.3 Mô hình PON 11
2.2.4 WDM và TDM PON 13
2.3 Kết luận chương 15
CHƯƠNG3 16
CÔNG NGHỆ ETHERNET 16
3.1 Giới thiệu chương 16
3.2 Tổng quan về Ethernet 17
3.3 Các phần tử của mạng Ethernet 17
3.4 Kiến trúc mô hình mạng Ethernet 18
3.5 Quan hệ vật lý giữa IEEE802.3 và mô hình tham chiếu ISO 19
3.6 Lớp con MAC Ethernet 21
3.6.1 Dạng khung cơ bản của Ethernet 21
3.6.2 Sự truyền khung dữ liệu 22
3.6.2.1 Truyền đơn công phương thức truy nhập CSMA/CD 23 3.6.2.2 Truyền song công-một cách tiếp cận để hiệu quả mạng cao hơn
24
Trang 43.7 Lớp vật lý Ethernet 24
3.8 Quan hệ giữa lớp vật lý Ethernet và mô hình tham chiếu ISO 25
3.9 Kết luận chương 26
CHƯƠNG4 27
MẠNG TRUY CẬP QUANG THỤ ĐỘNG ETHERNET – EPON 27
4.1 Giới thiệu chương 27
4.2 Lợi ích của mạng truy cập quang thụ động Ethernet _ PON 27
4.3 Mạng truy cập quang thụ động EPON 28
4.3.1 Nguyên lý hoạt động 28
4.3.2 Giao thức điều khiển đa điểm MPCP(Multi Point Control Protocol) 30
4.3.3 EPON với kiến trúc 802 34
4.3.3.1 Point to Point Emulation 35
4.3.3.2 Share Medium Emulation 36
4.4 Kết luận chương 37
CHƯƠNG5 39
KHẢO SÁT TRỄ VÀ CÁC PHƯƠNG PHÁP PHÂN PHỐI BĂNG THÔNG TRONG EPON 39
5.1 Giới thiệu chương 39
5.2 Mô hình của EPON 39
5.3 Thuật toán Interleaved Polling 41
5.4 Kế hoạch phân bổ băng thông (cửa sổ truyền cực đại) 44
5.5 Các thành phần của trể gói 46
5.6 Cấp phát băng thông cố định 47
5.7 Cấp phát băng thông cân đối 48
5.8 Sự cấp phát băng thông theo quyền ưu tiên 49
5.9 SLA aware p-DBA 50
5.10 SLA aware Adaptive DBA 52
5.11 Kết luận chương 53
CHƯƠNG6 54
GIAO DIỆN CHƯƠNG TRÌNH MÔ PHỎNG VÀ KẾT QUẢ TÍNH TOÁN 54
6.1 Giới thiệu chương 54
6.2 Giao diện chính của chương trình mô phỏng 54
6.3 Giao diện thể hiện mô phỏng quá trình truyền dữ liệu từ OLT đến các ONU (hướng xuống) 55
6.4 Giao diện mô phỏng quá trình truyền dữ liệu từ các ONU đến OLT (hướng lên) 56
6.5 Cấp phát băng thông truyền tải theo tỷ lệ lượng bytes có trong hàng đợi cho từng ONU 56
6.6 Tỷ lệ cấp phát băng thông cho các ONU 58
6.7 Thuật toán phân bổ băng thông theo tỷ lệ bytes có trong hàng đợi dựa trên tính ưu tiên của dịch vụ 58
6.8 Thuật toán tính toán trễ trong mạng truy nhập quang – EPON 63
Trang 56.9 Kết luận chương 65
KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN ĐỀ TÀI II TÀI LIỆU THAM KHẢO III PHỤ LỤC V
Trang 6BẢNG TỪ VIẾT TẮT
Allocation
Cấp phát băng thông thích ứng dữ liệu
CSMA/CD Carrier Sense Multiple Access
with Collision Detect
Đa truy nhập cảm nhận sóng mang có phát hiện xung đột
DCE Data Communication Equipment Thiết bị giao dịch dữ liệu
EPON Ethernet Passive Optical Network Mạng quang thụ động
Ethernet
FSAN Full Service Access Network Mạng truy cập dịch vụ đầy
đủ
phương tiện MDI Medium Depentdent Interface Giao diện phụ thuộc
phương tiện MII Medium Indepentdent Interface Giao diện độc lập phương
tiện
Trang 7MPCP MultiPoint Control Protocol Giao thức điều khiển đa
điểm
quang
Hierarchy
Phân cấp số cận đồng bộ
PMA Physical Medium Attachment Lớp con thuộc lớp vật lý
POTS Plain Old Telephony System Hệ thống điện thoại kiểu
cũ
SDH Synchoronous Digital Hierarchy Phân cấp số đồng bộ SDM Space Division Multiplexing Ghép kênh phân chia theo
không gian SFD Start of Frame Delimiter Byte xác định sự bắt đầu
khung
Dynamic Bandwidth Allocation
Cấp phát băng thông động theo mức dịch vụ cam kết SBA Static Bandwidth Allocation cấp phát băng thông cố
định
Bandwidth Allocation
Cấp phát băng thông động theo chế độ ưu tiên
SONET Synchoronous Optical Network Mạng quang đồng bộ TDM Time Division Multiplexing Ghép kênh phân chia theo
thời gian
Trang 8LỜI MỞ ĐẦU
Mạng đường trục Bắc – Nam nước ta sử dụng mạng Ring cáp quang SDH 20 Gbps Các mạng liên tỉnh sử dụng các hệ thống cáp quang SDH với dung lượng 622 Mbps và 2,5 Mbps Vào cuối năm 2004, mạng NGN đã chính thức được đưa vào
khai thác với khả năng cung cấp dịch vụ đa dạng, hội tụ cả thoại, video và dữ liệu, nhưng mạng truy nhập hầu như không có một sự phát triển nào đáng kể.Tuy nhiên
mạng truy nhập lại chủ yếu sử dụng cáp đồng, do đó không khai thác hết tính năng của mạng NGN Vấn đề đặt ra là làm thế nào để mạng truy nhập phát triển tương xứng với mạng đường trục đặc biệt là mạng NGN đồng thời đáp ứng ngày càng nhiều các dịch vụ mới đòi hỏi băng thông cao cho người dùng Trong khi đó, với những ưu điểm vượt trội của mình, EPON (Ethernet Passive Optical Network) đã tạo ra một sự chuyển biến rõ rệt trong mạng truy nhập Đây cũng là giải pháp mà đề tài này đề cập cho mạng truy nhập tại Việt Nam Nội dung của đề tài này được chia làm sáu chương theo cơ cấu như sau:
HƯỚNG PHÁT TRIỂN MẠNG TRUY NHẬP CỦA THẾ GIỚI
Chương này cho ta biết một cách tổng quan về mạng truyền dẫn hiện tại của Việt Nam, phân tích xu hướng phát triển mạng truy nhập trên thế giới dựa trên nhu cầu về dịch vụ Trên cơ sở đó, mục đích của chương này là nói lên tính tất yếu phải nâng cấp mạng truy nhập hiện nay và mạng truy nhập quang thụ động là giải pháp được lựa chọn
Trang 9Chương 2 MẠNG TRUY NHẬP QUANG THỤ ĐỘNG – PON
Chương này cho ta biết một cách tổng quang về mạng PON, đưa ra các mô hình cơ bản của mạng, phân tích các thành phần tồn tại chủ yếu trong mạng là OLT
và ONU Chương này cũng đưa ra hai kỹ thuật được sử dụng trong việc truyền tải của mạng PON đó là WDM và TDM Từ đó đưa ra ưu nhược từng kỹ thuật để đi đến lý do chọn kỹ thuật TDM
Trong chương này sẽ giới thiệu tổng quan về kỹ thuật Ethernet, quan hệ giữa
mô hình Ethernet với mô hình 7 lớp OSI , kiến trúc khung của Ethernet, các phương thức phát dữ liệu của Ethernet cũng như các chuẩn của nó Từ đó cho thấy được thế mạnh của công nghệ này trong mạng truy nhập quang thụ động
EPON
Chương này nói lên những ích lợi của việc sử dụng mạng truy nhập EPON, phân tích nguyên lý hoạt động của nó, phân tích về chuẩn IEEE 802 Chương cũng phân tích hai mô hình Share Medium và song công Từ đó cho thấy quá trình truyền
dữ liệu trong mạng EPON
BĂNG THÔNG TRONG EPON
Chương này đưa ra các phương pháp phân phối băng thông cơ bản được sử dụng trong mạng EPON và phân tích tính toán các thành phần trễ ảnh hưởng đến quá trình truyền tải của mạng
Chương này đưa ra giao diện mô phỏng và hình ảnh đồ thị cũng như ma trận của quá trình tính toán của chương trước, cũng như đưa ra các thuật toán sử dụng để
Trang 10tính toán Thuật toán được viết dựa trên ngôn ngữ MathCad, giao diện mô phỏng viết trên ngôn ngữ Visual Basic
Đó là tổng quan về đề tài mà em sẽ trình bày sau đây Tuy đã cố gắng trong quá trình thực hiện đề tài này, song do sự hạn chế về kiến thức nên không thể tránh khỏi những thiếu sót Em mong được sự phê bình, chỉ dẫn của thầy cô và bạn bè để đề tài được hoàn thiện hơn
Em xin chân thành cảm ơn thầy NGUYỄN TẤN HƯNG người đã tận tình hướng dẫn và giúp đỡ em trong quá trình làm đề tài này Em cũng chân thành cảm ơn các thầy cô trong khoa đã tận tình chỉ bảo, giúp đỡ và tạo điều kiện thuận lợi để em hoàn thành đề tài tốt nghiệp này
Sinh viên thực hiện
VÕ DŨNG
Trang 11
CHƯƠNG1 HIỆN TRẠNG MẠNG VIỄN THÔNG VIỆT NAM VÀ XU HƯỚNG PHÁT
TRIỂN MẠNG TRUY NHẬP CỦA THẾ GIỚI
1.1Giới thiệu chương
Với những ưu điểm vượt trội của thông tin quang thì việc ứng dụng thông tin quang trong mạng truy cập là điều cần thiết và tất yếu của xu hướng hiện nay Mục đích của việc này là nhằm đáp ứng các nhu cầu ngày càng gia tăng của người dùng viễn thông trong nước và quốc tế với các loại hình dịch vụ ngày càng phong phú,
đặc biệt giải quyết được vấn đề “nút cổ chai” giữa mạng truy nhập và mạng đường
trục hiện nay Bên cạnh đó, chiến lược phát triển viễn thông phụ thuộc rất nhiều vào hiện trạng mạng viễn thông và định hướng phát triển viễn thông ở mỗi nước Ở Việt Nam thì đây cũng không phải là một ngoại lệ Chương này sẽ trình bày về hiện
trạng mạng truyền dẫn của Việt Nam, xu hướng phát triển viễn thông trên thế giới
và tổng quan về mạng truy nhập quang thụ động
1.2Hiện trạng mạng truyền thông của Việt Nam
Mạng viễn thông Việt Nam hiện tại được chia thành ba thành phần chính: Cấp Quốc Tế, cấp Quốc Gia và cấp nội tỉnh (hình 1.1)
Ngoài ra còn có các trạm thông tin vệ tinh mặt đất
1.2.2 Truyền dẫn Quốc Gia
Tuyến trục Bắc-Nam sử dụng mạng Ring cáp quang 2,5Gb/s (trên cáp quang quốc lộ 1A và cáp quang 500Kv) và tuyến vi ba PDH (Plesiochoronous
Trang 12Digital Hierachy) 140Mb/s (có cấu hình 2+1), ngoài ra còn có tuyến cáp quang dọc
đường Trường Sơn
Cuối năm 2004, mạng NGN (Next Generation Network) đã được đưa vào khai thác dựa trên công nghệ chuyển mạch gói, cho phép triển khai đa dạng và nhanh chóng các dịch vụ, đáp ứng sự hội tụ giữa thoại và số liệu, giữa sự cố định và
di động với Internet băng rộng
1.2.3Truyền dẫn nội tỉnh
Các tuyến vi ba số PDH
Các tuyến cáp quang nội tỉnh
Mạng truy nhập thuê bao sử dụng cáp đồng
1.3 Sự phát triển của lưu lượng
Lưu lượng dữ liệu ngày càng tăng với một tốc độ chưa từng thấy Có thể chứng minh được tốc độ tăng lưu lượng dữ liệu trên 100% mỗi năm từ những năm
Quốc Tế
Quốc gia
Nội tỉnh
Gateway Quốc Tế
TOLL quốc gia
TOLL quốc gia
Gateway Quốc Tế
Hình 1.1: Cấu trúc mạng viễn thông Việt Nam hiện tại
Trang 131990 Có một thời kỳ mà sự kết hợp giữa các nhà máy kỹ thuật và kinh tế đã làm cho tốc độ tăng lên rất cao ví dụ năm 1995, 1996 mỗi năm tăng 1000% Xu hướng online và họ sẽ sẵn sàng online để trải qua nhiều thời gian và sử dụng những ứng dụng đòi hỏi băng thông lớn Việc nghiên cứu thị trường cho thấy, sau khi nâng cấp lên băng rộng người dùng đã online nhiều hơn 35% so với trước Lưu lượng thoại cũng tăng nhưng tốc độ chậm hơn 8% mỗi năm Theo như hầu hết các nhà phân tích thì lưu lượng dữ liệu đã vượt trội lưu lương thoại Nhiều dịch vụ và ứng dụng sẽ trỡ thành hiện thực khi mà băng thông mỗi người dùng được tăng lên Cả DSL( Digital Subscriber Line) và cáp modem đều không thể theo kịp nhu cầu Cả hai công nghệ này đều là những kiến trúc truyền thông được xây dựng hàng đầu hiện nay nhưng không tối ưu hoá cho lưu lượng dữ liệu Trong mạng cáp Modem, chỉ một vài kênh
RF được chỉ định cho dữ liệu trong khi phần lớn băng thông dành cho video tương
tự Mạng cáp đồng DSL không thể phù hợp với tốc độ dữ liệu ở khoảng cách yêu cầu do méo và nhiễu xuyên tâm tín hiệu Hầu hết các nhà hoạt động mạng đều nhận thức rõ rằng sự cần thiết của một giải pháp tập trung dữ liệu, các dịch vụ truyền thống như thoại, video sẽ hội tụ vào định dạng số với đầy đủ các dịch vụ sẽ ra đời
1.4 Xu hướng phát triển hiện nay
Trong những năm gần đây, mạng đường trục ( mạng xương sống:backbone)
đã có một sự phát triển vượt bậc, tuy nhiên mạng truy cập ít có sự thay đổi Sự phát triển kinh khủng của lưu lượng Internet càng làm trầm trọng thêm sự chậm trễ của
dung lượng mạng truy cập Đó chính là vấn đề “nút cổ chai” giữa mạng truy nhập
và mạng đường trục Giải pháp băng rộng được triển khai phổ biến hiện nay là DSL
và mạng cáp Modem Mặc dầu nó đã có sự cải thiện đáng kể so với đường dây
dial-up 56Kbps, tuy nhiên nó không thể cung cấp đủ băng thông cho các dịch vụ như video, tró chơi tương tác hay hội nghị truyền hình Một công nghệ mới đã được đưa
ra, có chi phí đầu tư không cao, đơn giản, có thể nâng cấp, có khả năng hội tụ các dịch vụ thoại dữ liệu và video đến người dùng trên một mạng đơn Đó là EPON (Ethernet Passive Optical Network), là giải pháp truy nhập quang sử dụng mạng
Trang 14quang thụ động (PON: Passive Optical Network) kết hợp với giao thức Ethernet (EPON) Giải pháp này mang ưu diểm của cả hai công nghệ PON với băng rộng và Ethernet được thiết kế phù hợp tải mang lưu lượng IP (Internet Protocol) Đây là một công nghệ truy nhập được kỳ vọng trong những năm tới và cũng được xem như
là một trong những công nghệ động lực để tiến đến mạng toàn quang
ta xét N thuê bao với khoảng cách trung bình so với CO là L Km thì mô hình PtP yêu cầu 2N bộ thu phát và NxL tổng chiều dài sợi quang
Trang 15Để giảm chiều dài sợi quang, chúng ta có thể sử dụng các chuyển mạch từ
xa, làm giảm chiều dài sợi quang chỉ còn L km (khoảng cách giữa chuyển mạch và người dùng không đáng kể) nhưng sẽ làm tăng số lượng bộ thu phát lên 2N+2 (hình 1.2b) Ngoài ra, kiến trúc mạng chuyển mạch cụm thuê bao (Curb-Switched) yêu cầu năng lượng điện cũng như năng lượng sao lưu tại Curb-switch
Hiện tại, một trong những chi phí cao nhất của các nhà cung cấp tổng đài nội hạt là cung cấp và bảo quản năng lượng điện trong vòng nội hạt Cho nên, thật hợp
lý khi thay các chuyển mạch cụm thuê bao bằng các bộ quang thụ động rẽ tiền (hình 1.2c)
PON là một kỷ thuật được xem xét với nhiều ưu điểm như số lượng các bộ thu phát quang, thiết bị đầu cuối CO và sợi quang ít PON là mạng quang điểm đa điểm( PtMP: Point to MultiPoint) với các phần tử không kích hoạt trong đường dẫn tín hiệu từ nguồn đến đích Chỉ các phần tử được sử dụng bên trong mạng PON là các linh kiện quang thụ động như là sợi quang, bộ nối và bộ chia quang Một mạng truy nhập dựa trên một sợi quang đơn chỉ yêu cầu N+1 bộ thu phát và L km sợi quang
1.6 So sánh giữa các giải pháp truy nhập và thị trường mạng quang thụ động toàn cầu
Bảng 1.1 Thị trường mạng quang thụ động toàn cầu 2003-2008
Tổng (FTTB+FTTH) 221,4 363,4 547,7 754,7 979,9 1161,5
Trang 16Bảng 1.2 So sánh giữa các giải pháp truy nhập
Từ hai bảng trên, triển vọng của EPON được minh chứng qua dự báo thị trường sản phẩm mạng PON và phẩm chất kỹ thuật so với các giải pháp truy nhập khác Tốc độ phát triển trung bình 39,3% trong giai đoạn 2003-2008 cho thấy một tương lai đầy hứa hẹn với thị trường PON trong bối cảnh suy thoái của thị trường viễn thông trong thời gian qua Đây được xem là một trong những thị trường hấp dẫn nhất đối với các nhà đầu tư trong giai đoạn tới
Đánh giá Công
Tốc độ Khoảng
cách
Chia
sẽ môi trường
Chi phí
Công lao động
Độ tin cậy Cáp
đồng
DSL 1.5 3200 Thấp T/bình Không T/bình T/bình T/bình Đồng
>10 100000 Cao Xa Không T/bình Cao Cao
Vô
tuyến
Satellite <1 N/A Thấp T/bình Có Cao Thấp T/bình
Blue
Tooth
Trang 171.7 Kết luận chương
Như đã trình bày ở trên, mạng đường trục là mạng với tốc độ dữ liệu cao lên đến hàng Gb/s và được áp dụng công nghệ chuyển mạch gói (mạng chuyển mạch thế hệ sau NGN) với sự hội tụ của thoại, dữ liệu và video tốc độ cao trong khi đó mạng truy nhập hầu như không có một sự phát triển tương xứng Gần đây, với công
nghệ DSL đã giảm bớt phần nào vấn đề “nút cổ chai” tuy nhiên vẫn chưa giải quyết
triệt để vấn đề này Như vậy, sự nâng cấp mạng truy nhập là việc làm tất yếu vào lúc này Tuy nhiên, kỹ thuật nào được lựa chọn ? Theo như xu hướng trên thế giới
và những ưu điểm mà nó đem lại, EPON đã chứng tỏ là giải pháp hữu hiệu nhất cho mạng truy nhập hiện nay EPON là sự kết hợp giữa mạng quang thụ động PON và công nghệ Ethernet Sự kết hợp này sẽ được trình bày trong các chương tiếp theo
Trang 18CHƯƠNG2 MẠNG TRUY NHẬP QUANG THỤ ĐỘNG – PON
2.1Giới thiệu chương
Với những ưu điểm vượt trội, mạng quang thụ động PON( Passive Optical Network) là một sự lựa chọn thích hợp nhất cho mạng truy nhập Trong chương này
sẽ nói về PON là như thế nào, hoạt động ra sao, cấu trúc của nó cũng như phương thức được sử dụng để truyền dữ liệu WDM và TDM PON Từ đó đưa ra ưu và nhược của từng phương thức
2.2 Tổng quang về công nghệ PON
Mạng quang thụ động PON (hình 2.1) sử dụng phần tử chia quang thụ động trong phần mạng phân bố nằm giữa thiết bị đường truyền quang (OLT) và thiết bị kết cuối mạng quang (ONU) Hoạt động của mạng PON được điều khiển bởi giao thức truy nhập theo địa chỉ MAC (lớp 2)
Hình 2.1: Mô hình mạng quang thụ động
Trang 19Hình 2.2: Cấu hình cơ bản các loại Coupler
a)
c) b)
O2 O2
O3
Các phần tử thụ động của PON đều nằm trong mạng phân bố quang (hay còn gọi là mạng quang ngoại vi) bao gồm các phần tử như sợi quang, các bộ tách /ghép quang thụ động, các đầu nối và các mối hàn quang Các phần tử tích cực như OLT
và các ONU đều nằm ở đầu cuối của mạng PON Tín hiệu trong PON có thể được phân ra và truyền đi theo nhiều sợi quang hoặc được kết hợp lại và truyền đi trên một sợi quang thông qua bộ ghép quang, phụ thuộc tín hiệu đó đi theo hướng lên hay xuống của PON
2.2.1 Bộ tách / ghép quang
Một mạng quang thụ động sử dụng một thiết bị thụ động để tách một tín hiệu quang từ một sợi quang sang một vài sợi quang và ngược lại Thiết bị này là Coupler quang Để đơn giản, một Coupler quang gồm hai sợi nối với nhau Tỷ số tách của bộ tách có thể được điều khiển bằng chiều dài của tầng nối và vì thế nó là hằng số
Hình 2.2a có chức năng tách tia cào thành 2 tia ở đầu ra, đây là Coupler Y.Hình 2.2b là Coupler ghép các tín hiệu quang tại hai đầu vào thành một tín hiệu
Trang 20a) Coupler 4 ngăn 8x8 b) Coupler 3 ngăn 8x8
Hình 2.3: Coupler 8x8 được tạo ra từ nhiều Coupler
tại đầu ra Hình 2.2c vừa ghép vừa tách quang và gọi là Coupler X hoặc Coupler phân hướng 2x2 Coupler có nhiều hơn hai cổng vào và nhiều hơn hai cổng ra gọi là Coupler hình sao Coupler NxN được tạo ra từ nhiều Couper 2x2
Coupler được đặc trưng bởi các thông số sau:
Splitting loss (tổn hao tách): Mức năng lượng ở đầu ra của Coupler so với năng lượng đầu vào (db) Đối với Coupler 2x2 lý tưởng, giá trị này là 3dB Hình 2.3 minh hoạ hai mô hình 8x8 Coupler dựa trên 2x2 Coupler Trong mô hình 4 ngăn (hình a), chỉ 1/6 năng lượng đầu vào được chia ở mỗi đầu ra Hình (b) đưa ra mô hình hiệu quả hơn gọi là mạng liên kết mạng đa ngăn Trong mô hình này mỗi đầu
ra nhận được 1/8 năng lượng đầu vào
Insertion loss(tổn hao chèn): Năng lượng tổn hao do sự chưa hoàn hảo của quá trình xử lý Giá trị này nằm trong khoảng 0,1dB đến 1dB
Directivity (định hướng): Lượng năng lượng đầu vào bị rò rỉ từ một cổng đầu vào đến các cổng đầu vào khác Coupler là thiết bị định hướng cao với thông số định hướng trong khoảng 40-50dB
Thông thường, các Coupler được chế tạo chỉ có một cổng vào hoặc một Combiner (bộ kết hợp) Đôi khi các Coupler 2x2 được chế tạo có tính không đối xứng cao ( với tỷ số tách là 5/95 hoặc 10/90) Các Coupler loại này được sử dụng để tách một phần năng lượng tín hiệu, ví dụ với mục đích định lượng Các thiết bị như thế này được gọi là “tap coupler”
Trang 212.2.2 Các đầu cuối mạng PON
Optical Line Terminal (OLT thiết bị đường truyền quang ): OLT cung cấp giao tiếp giữa hệ thống mạng truy cập quang thụ động EPON và mạng quang đường trục của các nhà cung cấp dịch vụ thoại, dữ liệu và video OLT cũng kết nối đến mạng lõi của nhà cung cấp dịch vụ thông qua hệ thống quản lý EMS(Element Management System)
Optical Network Unit (ONU: thiết bị kết cuối mạng quang): ONU cung cấp giao tiếp giữa mạng thoại, video và dữ liệu người dùng với mạng PON Chức năng cơ bản của ONU là nhận dữ liệu ở dạng quang và chuyển sang dạng phù hợp với người dùng như Ethernet, POST,T1
Element Management System (EMS :hệ thống quản lý ): EMS quản lý các phần tử khác nhau của mạng PON và cung cấp giao diện đến mạng lõi của các nhà cung cấp dịch vụ EMS có chức năng quản lý về cấu hình, đặc tính và bảo mật
2.2.3 Mô hình PON
Có một vài mô hình thích hợp cho mạng truy cập như mô hình cây, vòng hoặc bus Mạng quang thụ động PON có thể triển khai linh động trong bất kỳ mô hình nào nhờ sử dụng một tapcoupler quang 1:2 và bộ tách quang 1:N
Mô hình cây ( sử dụng splitter 1:N)(a)
Trang 22Mô hình vòng (c)
Mô hình cây với ređunant trunk (d) Hình 2.4: Các mô hình mạng PON
Ngoài những mô hình trên, PON có thể triển khai trong cấu hình Redundant như là vòng đôi hoặc cây đôi hay cũng có thể là một phần của mạng PON được gọi
Trang 23trục (có thể là mạng IP, ATM hay SONET) ONU ở tại đầu cuối người sử dụng (trong giải pháp FTTH_Fiber To The Home, FTTB_Fiber To The Building) hoặc ở tại Curb trong giải pháp FTTC_Fiber To The Cur và có khả năng cung cấp các dịch
vụ thoại, dữ liệu và video băng rộng
Tuỳ theo điểm cuối của tuyến cáp quang xuất phát từ tổng đài mà các mạng truy nhập thuê bao quang có tên gọi khác nhau như sợi quang đến tận nhà FTTH, sợi quang đến khu dân cư FTTC
2.2.4 WDM và TDM PON
Ở hướng xuống (từ OLT đến ONU), mạng PON là mạng điểm-đa điểm OLT chiếm toàn bộ băng thông hướng xuống Trong hướng lên, mạng PON là mạng đa điểm-điểm: nhiều ONU truyền tất cả dữ liệu của nó đến một OLT Đặc tính hướng của các bộ tách ghép thụ động là việc truyền thông của một ONU sẽ không được nhận biết bởi các ONU khác Tuy nhiên các luồng dữ liệu từ các ONU khác nhau được truyền cùng một lúc cũng có thể bị xung đột Vì vậy trong hướng lên, PON sẽ
sử dụng một vài cơ chế riêng biệt trong kênh để tránh xung đột dữ liệu và chia sẽ công bằng tài nguyên và dung lượng trung kế
Một phương pháp chia sẽ kênh ở hướng lên của ONU là sử dụng ghép kênh phân chia theo bước sóng WDM, với phương pháp này thì mỗi ONU sẽ hoạt động ở một bước sóng khác nhau Giải pháp WDM yêu cầu một bộ thu điều khiển được hoặc là một mảng bộ thu ở OLT để nhận các kênh khác nhau Thậm chí nhiều vấn
đề khó khăn cho các nhà khai thác mạng là kiểm kê từng bước sóng của ONU: thay
vì chỉ có một loại ONU, thì có nhiều loại ONU dựa trên các bước sóng Laser của
nó Mỗi ONU sẽ sử dụng một laser hẹp và độ rộng phổ điều khiển được cho nên rất đắt tiền Mặc khác, nếu một bước sóng bị sai lệch sẽ gây ra nhiễu cho các ONU khác trong mạng PON Việc sử dụng Laser điều khiển được có thể khắc phục được vấn đề này nhưng quá đắt cho công nghệ hiện tại Với những khó khăn như vậy thì WDM không phải là giải pháp tốt cho môi trường hiện nay
Trang 24Một số giải pháp khác dựa trên WDM cũng được đề xuất nhưng giá cả khá cao Do vậy, TDM PON đã ra đời Trong TDM PON, việc truyền đồng thời từ vài ONU sẽ gây ra xung đột khi đến bộ kết hợp Để ngăn chặn xung đột dữ liệu, mỗi ONU phải truyền trong cửa sổ (khe thời gian) truyền của nó Một thuận lợi lớn của TDM PON là tất cả các ONU có thể hoạt động cùng một bước sóng, OLT cũng chỉ cần một bộ thu đơn Bộ thu phát ONU hoạt động ở tốc độ đường truyền, thậm chí băng thông có thể dùng của ONU thấp hơn Tuy nhiên, đặc tính này cũng cho phép TDM PON đạt hiệu quả thay đổi băng thông được dùng cho từng ONU bằng cách thay đổi kích cở khe thời gian được ấn định hoặc thậm chí sử dụng ghép kênh thống
kê để tận dụng hết băng thông được dùng của mạng PON
Trong mạng truy cập thuê bao, hầu hết các luồng lưu lượng lên và xuống không phải là Peer to Peer (user to user) Vì vậy điều này dường như là hợp lý để tách kênh lên và xuống Một phương pháp tách kênh đơn giản có thể dựa trên ghép kênh phân chia không gian(SDM) mà nó tách PON được cung cấp theo hướng truyền lên xuống Để tiết kiệm cho sợi quang và giảm chi phí sửa chữa và bảo quảng, một sợi quang có thể được sử dụng cho truyền theo hai hướng Trong trường hợp này, hai bước sóng được dùng là: hướng lên 1=1310nm, hướng xuống
2=1550nm Dung lượng kênh ở mỗi bước sóng có thể phân phối linh động giữa các ONU
Ghép kênh phân chia theo thời gian là phương pháp được ưu tiên hiện nay cho việc chia sẽ kênh quang trong mạng truy cập khi mà nó cho phép một bước sóng đơn ở hướng lên và bộ thu pháp đơn ở OLT đã làm cho giải pháp này có ưu thế hơn về chi phí đầu tư
Hình 2.5: Mạng PON sử dụng một sợi quang
Trang 252.3 Kết luận chương
Nội dung trên đã trình bày cho ta biết tổng quan về mạng truy nhập quang thụ động PON Và cũng cho ta thấy cấu trúc cơ bản của nó Chương tiếp theo sẽ trình bày một công nghệ được sử dụng trong mạng PON, nhằm khai thác khả năng tốt nhất của mạng truy nhập quang thụ động Đó là công nghệ Ethernet và được gọi
là mạng truy nhập quang thụ động Ethernet – EPON
Trang 26CHƯƠNG3 CÔNG NGHỆ ETHERNET
3.1 Giới thiệu chương
FASN (Full Service Access Network) (theo ITU G.983) định nghĩa một mạng truy nhập quang dựa trên công nghệ PON sử dụng ATM (Asynchronous Transfer Mode) như là giao thức lớp hai của nó Vào năm 1995, khi mà việc khởi xướng được bắt đầu, ATM có hy vọng cao để trỡ thành công nghệ thịnh hành trong mạng LAN (Local Area Network), MAN (Metropolitan Area Network) và mạng
đường trục (backbone) Tuy nhiên, cũng từ thời gian đó, công nghệ Ethernet đã đẩy
lùi ATM Ethernet đã trở thành một chuẩn được chấp nhận phổ biến với trên 320 triệu cổng triển khai trên toàn thế giới Việc triển khai Gigabit Ethernet tốc độ cao
và họ sản phẩm 10 Gigabit Ethernet đã trở nên hiện thực Ethernet dễ dàng triển khai và quản lý, đang chiến thắng vùng đất mới trong MAN và WAN Suy cho cùng thì 95% LAN sử dụng Ethernet nên ATM-PON không thể là lựa chọn tốt nhất cho việc kết nối mạng Ethernet
Một thiếu sót của ATM là việc hư hỏng và sai lệch của các cell ATM sẽ làm mất hiệu lực hoàn toàn khung IP Tuy nhiên các cell còng lại sẽ mang mức của cùng khung IP sẽ được truyền xa hơn, vì vậy việc chi phối tìa nguyên mạng là không cần thiết Ngoài ra, có lẽ điều quan trọng nhất là ATM không thể đạt được một công nghệ chi phí thấp như mong muốn Các chuyển mạch ATM và Card mạng là khá đắt so với chuyển mạch Ethernet và Card mạng Ethernet
Nói một cách khác, Ethernet là một lựa chọn hợp lý cho mạng truy nhập IP được tối ưu hoá dữ liệu
Kỹ thuật QoS được chấp nhận mới đã làm cho mạng Ethernet có khả năng cung cấp thoại, data và video Kỹ thuật này bao gồm mô hình truyền dẫn song công
và sự ưu tiên (P802.1p) Ethernet là công nghệ với chi phí thấp, phổ biến và phù hợp với nhiều thiết bị cũ khác nhau Vì vậy, trong chương này sẽ trình bày tổng
Trang 27quan về kỹ thuật Ethernet, kiến trúc khung của Ethernet và quan hệ giữa Ethernet với mô hình 7 lớp OSI
3.2 Tổng quan về Ethernet
Thuật ngữ Ethernet được quy vào họ sản phẩm của mạng LAN thuộc chuẩn 802.3 và được định nghĩa như là một giao thức CSMA/CD (Carrier Sence Multiple Access/Collision Detect) Hiện tại có 4 tốc độ dữ liệu được định nghĩa cho hoạt động trên cáp sợi quang:
Dễ hiểu, dễ thực hiện, dễ quản lý và bảo dưỡng
Cho phép triển khai mạng với chi phí thấp
Cung cấp nhiều mô hình linh hoạt cho việc cài đặt mạng
Bảo đảm kết nối thành công và hoạt động theo tiêu chuẩn của sản phẩm, bất chấp nhà chế tạo
Trang 28 DCE (Data Communication Equipment): là các thiết bị mạng trung gian có nhiệm vụ nhận và chuyển tiếp các khung dữ liệu thông qua mạng DCE có thể là các thiết bị Standalone như là bộ lặp, bộ chuyển mạch hay các thiết bị giao tiếp truyền thông như là Card giao tiếp
Các thiết bị mạng trung gian Standalone được xem như là một node trung gian hoặc DCE Card giao tiếp mạng được xem như là một NIC (Network Interface Card)
3.4 Kiến trúc mô hình mạng Ethernet
Mạng LAN có nhiều mô hình kiến trúc khác nhau, nhưng bất chấp sự rắc rối
và kích cở của nó, tất cả đều kết hợp từ ba kiến trúc kết nối cơ bản:
Kiến trúc đơn giản nhất là kết nối điểm-điểm (hình 3.1) Chỉ 2 đơn vị mạng được kết nối với nhau và kết nối này có thể là DTE với DTE, DTE với DCE, DCE với DCE Dây cáp trong kết nối điểm điểm được gọi là network link Chiều dài cho phép lớn nhất của cáp phụ thuộc vào kiểu cáp và phương thức truyền được sử dụng
Mạng Ethernet cơ sở được thực hiện với kiến trúc bus cáp đồng trục (hình 3.2) Chiều dài của Segment (đoạn) được giới hạn ở 500m và có thể kết nối 100 trạm vào một Segment Từng Segment có thể kết nối với các trạm lặp, miễn là nhiều đường không tồn tại giữa hai trạm bất kỳ trên mạng và số lượng DTE không vượt quá giá trị qui định
Hình 3.1: Mô hình kết nối điểm-điểm
Hình 3.2: Mô hình kết nối Bus đồng trục
Trang 29Mặc dầu những mạng mới không được kết nối trong cấu hình bus nhưng một vài mạng bus cũ vẫn tồn tại và vẫn được sử dụng hữu ích
Từ đầu thập niên 90, cấu hình mạng được lựa chọn là mô hình kết nối sao (hình 3.3) Đơn vị mạng trung tâm là bộ lặp đa cổng (còn gọi là Hub) hoặc là một chuyển mạch mạng Tất cả kết nối trong mạng sao là kết nối điểm điểm được thực
hiện với cáp sợi quang
3.5 Quan hệ vật lý giữa IEEE802.3 và mô hình tham chiếu OSI
HHiiiiiiiiiiiiiii
Hình 3.4 mô tả các lớp vật lý của IEEE802.3 và quan hệ của nó với mô hình tham chiếu OSI Với giao thức IEEE802, lớp liên kết dữ liệu trong OSI được chia
Hình 3.3: Mô hình kết nối sao
Hình 3.4: Quan hệ vật lý của Ethernet với mô hình tham chiếu OSI
Trang 30thành hai lớp con IEEE802: lớp con MAC (Media Access Control) và lớp con MAC-Client Lớp vật lý IEEE802.3 tương đương với lớp vật lý OSI
Lớp con MAC-Client có thể là một trong các lớp con sau:
Là lớp con LLC (Logical Link Control) nếu đầu cuối là một DTE Lớp con này cung cấp giao tiếp giữa Ethernet MAC và lớp trên trong ngăn giao thức của trạm đầu cuối Lớp con LLC được định nghĩa trong chuẩn IEEE802.2
Là thực thể cầu nối (Bridge Entity) nếu đầu cuối là DCE Thực tế cầu nối cung cấp giao tiếp LAN to LAN giữa các mạng LAN sử dụng cùng giao thức (ví dụ Ethernet to Ethernet) và cũng cung cấp giữa các giao thức khác nhau (ví dụ Ethernet với Token Ring) Thực thể cầu nối được định trong chuẩn IEEE802.1
Bởi vì đặc điểm kỹ thuật của LLC và thực thể cầu nối là chung cho tất cả các giao thức LAN IEEE802, tính tương thích của mạng là cơ sở của các giao thức mạng đặc biệt Hình 3.5 minh hoạ các yêu cầu tương thích khác nhau được lợi dụng bởi lớp vật lý và lớp MAC trong truyền thông dữ liệu cơ sỏ trên kết nối Ethernet
Lớp MAC điều khiển sự truy nhập của một node đến phương tiện truyền thông của mạng và đặc biệt là đến các giao thức riêng biệt Tất cả lớp MAC phải có
Hình 3.5 Lớp vật lý và lớp MAC tương thích với các yêu cầu cho truyền thông dữ liệu cơ sở
Trang 31thiết lập cơ bản về các yêu cầu vật lý, bất chấp liệu có phải chúng bao gồm một hay nhiều giao thức mở rộng được lựa chọn định nghĩa Chỉ những nhu cầu cho truyền thông cơ sở (truyền thông không có nhu cầu lựa chọn giao thức mở rộng) giữa hai node mạng thì cả hai lớp MAC phải hổ trợ cùng tốc độ truyền
Lớp vật lý 802.3 qui định rõ tốc độ truyền dữ liệu, mã hoá tín hiệu, và kiểu kết nối phương tiện giữa hai node Ví dụ, Gigabit Ethernet định nghĩa hoạt động trên cáp xoắn đôi hoặc cáp sợi quang, nhưng tuỳ theo mỗi thủ tục mã hoá tín hiệu hoặc từng kiểu cáp riêng biệt mà yêu cầu một sợi thi hành lớp vật lý khác nhau
3.6 Lớp con MAC Ethernet
Lớp con MAC có hai chức năng chính:
Đóng gói dữ liệu kể cả đóng khung trước khi truyền, phân tích và dò lỗi trong suốt và sau khi nhận khung
Điều khiển truy nhập phương tiện bao gồm khởi tạo một sự truyền khung
và phục hồi lại sự truyền bị hỏng
3.6.1 Dạng khung cơ bản của Ethernet
Chuẩn 802.3 định nghĩa dạng khung dữ liệu cơ bản được yêu cầu cho tất cả
sự thi hành của MAC, cộng thêm một vài khuôn dạng để chọn bổ sung mà được sử dụng để mở rộng giao thức Dạng khung dữ liệu cơ sở gồm có 7 trường:
Trang 32 PRE (Preamble): gồm có 7 byte PRE là các mức logic 0 và 1 xen kẻ nhau
để báo cho trạm nhận khung dữ liệu đang đến và cung cấp phương tiện để đồng bộ mức thu nhận khung của lớp vật lý bên nhận với luồng bit đến
DA (Destination Address): trường DA xác định trạm sẽ nhận khung Một bit ngoài cùng bên trái chỉ định có phải là địa chỉ của một địa chỉ cá nhân ( chỉ định bởi 0) hoặc của một nhóm địa chỉ (chỉ định bởi 1) Bit thứ hai kể từ bên trái chỉ định
có phải DA là điều hành toàn bộ (globally administered) được chỉ định mứt 0 hoặc điều hành nội bộ (chỉ định mứt 1), 46 bit còn lại là một nhóm các trạm hoặc tất cả các trạm trên mạng
SA( Source Address): 6 byte: trường SA xác định trạm nguồn (trạm gởi).Trường SA luôn là địa chỉ duy nhất và bit đầu tiên bên trái luôn ở mức 0
Length/Type -4byte: Trường này chỉ định số byte dữ liệu của lớp con MAC-Client mà được chứa trong trường dữ liệu của khung hoặc kiểu ID khung nếu khung được tập hợp sử dụng một dạng khung lựa chọn Nếu giá trị của trường Length/Type ít hơn hoặc bằng 1500, số byte của LLC trong trường dữ liệu bằng giá trị của trường Length/Type Nếu lớn hơn 1536, khung này là một kiểu khung lựa chọn và giá trị của trường Length/Type chỉ định kiểu của khung sẽ được gởi và nhận
Data: Là sự nối tiếp của n byte giá trị bất kỳ với n 1500 Nếu chiều dài của trường dữ liệu nhỏ hơn 46, trường dữ liệu phải được mở rộng bằng cách thêm một filler thích hợp để mang trường dữ liệu dài 46 byte
FCS(Frame Check Sequence): 4 byte: trường này chứa một giá trị 32 bit kiểm tra độ dư vòng được tạo bởi lớp MAC bên gởi và được tính toán lại ở lớp MAC bên thu để kiểm tra độ hư hại của khung FCS được phát trên các trường DA,SA, Length/Type và Data
3.6.2 Sự truyền khung dữ liệu
Bất cứ lúc nào, một trạm MAC đầu cuối nhận một yêu cầu truyền khung kèm theo địa chỉ và thông tin dữ liệu từ lớp con LLC, lớp MAC bắt đầu truyền một cách tuần tự bằng cách truyền thông tin LLC vào bộ đệm khung lớp MAC
Trang 33 Việc định ranh giới mào đầu khung được chèn vào trường PRE và SOF
Địa chỉ nguồn và đích được chèn vào trường địa chỉ
Số byte dữ liệu LLC được tính và chèn vào trường Length/Type
Số byte dữ liệu LLC được chèn vào trường dữ liệu Nếu lượng byte dữ liệu LLC nhỏ hơn 46 thì phải đệm thêm để trường dữ liệu dài 46byte
Một giá trị FCS được phát trên trường DA, SA, Length/Type, data và được gán vào phần sau của trường dữ liệu
Sau khi khung được tập hợp, quá trình phát khung phụ thuộc vào lớp MAC hoạt động ở chế độ đơn công hay song công
Chuẩn IEEE 802.3 hiện tịa yêu cầu tất cả các lớp MAC Etherhet hỗ trợ hoạt động ở chế độ đơn công, trong chế độ này lớp MAC có thể truyền và nhận khung nhưng không thể thực hiện cả hai Ở chế độ hoạt động song công cho phép lớp MAC có thể đồng thời truyền và nhận khung
3.6.2.1 Truyền đơn công phương thức truy nhập CSMA/CD
Giao thức CSMA/CD được bắt đầu phát triển như là một phương thức để hai hoặc nhiều trạm có thể chia sẽ chung một phương tiện trong một môi trường không chuyển mạch khi giao thức không yêu cầu xử lý tập trung, truy nhập Token hoặc ấn định khe thời gian để cho biết khi nào một trạm sẽ được phép truyền Mỗi Ethernet MAC tự quyết định khi nó sẽ được phép gởi khung dữ liệu
Carrier sense: mỗi trạm liên tục lắng nghe lưu lượng trên cáp để xác định khi nào khoảng trống giữa các khung truyền xãy ra
Multiple Access: các trạm có thể bắt đầu truyền bất cứ lúc nào nó dò thấy mạng rỗi
Collision detect: nếu hai hoặc nhiều trạm trong cùng mạng CSMA/CD bắt đầu truyền cùng một lúc, thì các luồng bit này sẽ bị xung đột xãy ra trước khi nó hoàn thành việc gởi dữ liệu Nó phải ngưng truyền ngay khi phát hiện xung đột và
Trang 343.6.2.2 Truyền song công-một cách tiếp cận để hiệu quả mạng cao hơn
Sự hoạt động song công là một khả năng lựa chọn MAC cho phép truyền đồng thời theo hai hướng tông qua kết nối điểm điểm Truyền song công về mặt chức năng là đơn giản hơn truyền đơn công bởi vì nó không tranh chấp phương tiện truyền thông, không xung đột, không phải truyền lại và không caan fbit mở rộng trong các khung ngắn Kết quả là không những chỉ có nhiều thời gian cho việc truyền tải dữ liệu mà còn gấp đôi hiệu quả băng thông vì mỗi đường có thể hổ trợ tốc độ cao nhất và truyền đồng thời theo hai hướng
Quá trình truyền thường bắt đầu ngay khi khung sẵn sàng để gởi Chỉ có một giới hạn là phải có một khoảng trống IFG(InterFrame Gap) giữa các khung liên tiếp (hình 3.7) và mỗi khung phải phù hợp với dạng khung Ethernet chuẩn
3.7 Lớp vật lý Ethernet
Các thiết bị Ethernet chỉ được sử dụng ở dưới của lớp 2 trong ngăn giao thức OSI, thiết bị điển hình được sử dụng như Card giao tiếp mạng (NIC) Các NIC khác nhau được xác định dựa trên thuộc tính lớp vật lý
Việc đặt tên qui ước là một sự sâu chuỗi của ba thuật ngữ xác định tốc độ truyền, phương pháp truyền và phương tiện mã hoá tín hiệu Ví dụ:
10 Base-T = 10 Mbps, băng thông cơ sở, trên 2 cáp xoắn đôi
100 Base-T2 = 100 Mbps, băng thông cơ sở, trên 2 cáp xoắn đôi
100 Base-T4 = 100 Mbps, băng thông cơ sở, trên 4 cáp xoắn đôi
Hình 3.7: Khuôn dạng truyền dữ liệu song công
Trang 35 1000 Base-LX = 1000 Mbps, bước sóng dài trên cáp sợi quang
3.8 Quan hệ giữa lớp vật lý Ethernet và mô hình tham chiếu ISO
Mặc dầu mô hình vật lý cụ thể của lớp vật lý có thể thay đổi từ phiên bản này sang phiên bản khác nhưng tất cả Ethernet NIC nói chung đều tương thích với mô hình được minh hoạ trong hình 3.8
Lớp vật lý đối với từng tốc độ truyền được phân thành các lớp con độc lập với kiểu phương tiện truyền thông riêng biệt và lớp con theo kiểu phương tiện truyền thông hay mã hoá tín hiệu
Lớp con Reconciliation (hoà giải ) và MII (Media Independent Interface) cung cấp kết nối logic giữa lớp con MAC và tập hợp khác nhau của lớp phụ thuộc phương tiện MII và GMII được định nghĩa với các đường dẫn dữ liệu thu và phát riêng biệt ở tốc độ dữ liệu là 10 Mbps (độ rộng là 1 bit), với tốc độ 100Mbps (độ rộng là 4 bit), với tốc độ là 1000 Mbps(độ rộng là 8 bit) Giao tiếp độc lập phương tiện (MII) và lớp con Reconciliation có chung từng tốc độ truyền của nó và được cấu hình cho hoạt động song công
Lớp con mã hoá vật lý phụ thuộc phương tiện(PCS): cung cấp logic cho
mã hoá, ghép kênh và đồng bộ của luồng dữ liệu đi cũng như sựu liên kết mã tách kênh và giải mã cho dữ liệu đến
Lớp con PMA(Physical Medium Attachment): chứa tín hiệu thu và phát cũng như phục hồi đồng hồ cho luồng dữ liệu thu
MDI (Medium Dependent Interface): là bộ kết nối cáp giữa tín hiệu thu nhận và đường truyền
Auto-negotiation Sublayer cho phép NIC ở mỗi đầu cuối đường truyền trao đổi thông tin về khả năng riêng có của nó, sau đó thương lượng và chọn lựa mô hình hoạt động thuận lợi nhất mà cả hai mô hình đều có thể hổ trợ Auto-negotiation
là một tuỳ chọn trong Ethernet trước đây và được uỷ thác phiên bản sau
Trang 36Phụ thuộc vào kiểu mã hoá tín hiệu được sử dụng và cấu hình đường truyền như thế nào mà PCS và PMA có thể hoặc không thể hổ trợ hoạt động song công
3.9 Kết luận chương
Với mô hình linh hoạt, kiến trúc đơn giản đặc biệt là chi phí thấp, Ethernet
đã vượt qua ATM và trở thành công nghệ phổ biến hiện nay Ethernet được chuẩn hoá theo chuẩn IEEE802.3 với các tốc độ hoạt động đa dạngvà tương tích với mô hình bảy lớp là điều kiện thuận lợi để ứng dụng vào mạng truy cập Ngoài ra, Ethernet còn tương thích với nhiều loại thiết bị khác nhau nên trở thành một sự lựa chọn lý tưởng cho mạng truy nhập để truyền tải lưu lượng IP và hổ trợ hiệu quả lưu lượng đa phương tiện Ethernet đã chứng tỏ là lựa chọn thích hợp nhất cho mạng quang thụ động để ứng dụng cho mạng truy nhập
Hình 3.8: Mô hình tham chiếu lớp vật lý Ethernet
Trang 37CHƯƠNG4 MẠNG TRUY CẬP QUANG THỤ ĐỘNG ETHERNET – EPON
4.1 Giới thiệu chương
Việc vượt trội về khả năng truyền dữ liệu của mạng quang thụ động PON là không phủ nhận, nhưng để khai thác tối đa khả năng của nó thì còn tuỳ thuộc vào công nghệ được lựa chọn trong truyền tải Chương này trình bày sự kết hợp cộng nghệ Ethernet trong mạng truy nhập quang thụ động gọi tắt EPON, và đưa ra nguyên lý truyền,lợi ích của nó và EPON với kiến trúc IEEE 802, giao thức điều khiển đa điểm MPCP(Multi Point Control Protocol)
4.2 Lợi ích của mạng truy cập quang thụ động Ethernet _ PON
EPON là sự kết hợp giữa mạng truy cập quang thụ động PON và kỷ thuật Ethernet nên nó mang ưu điểm của cả hai công việc này Việc triển khai EPON mang lại lợi ích rất to lớn bao gồm:
Băng thông cao hơn: EPON sẽ cung cấp băng thông cao nhất cho người dùng trong bất kỳ hệ thống truy cập quang thụ động nào Tốc độ lưu lượng hướng xuống là 1Gbps và lưu lượng lên từ 64 ONU có thể vượt quá 800 Mbps Với khả năng cung cấp băng thông rất lớn như vậy, EPON có một số lợi ích sau:
o Số lượng thuê bao trên một mạng PON lớn
o Băng thông trên mỗi thuê bao nhiều
o Khả năng cung cấp video
o Loại trừ những phần tử ATM và SONET phức tạp và đắc đỏ
o Các lênh kiện quang thụ động sống lâu đã giảm được chi phí bảo dưỡng
Trang 38o Những giao diện Ethernet chuẩn loại trừ nhu cầu cho DSL và Modem cáp
bổ sung
Nhiều lợi nhuận hơn: EPON có thể hổ trợ đồng thời các dịch vụ thoại, dữ liệu và video, cho phép nhà cung cấp nâng cao dịch vụ băng rộng và linh hoạt Ngoài ra, nó cũng cung cấp các dịch vụ truyền thống như POST, T1, 10/100 Base-
T, hổ trợ các dịch vụ trên nền ATM, TDM(Time Division Multiplexing) và SONET
4.3 Mạng truy cập quang thụ động EPON
EPON là mạng dựa trên mạng PON mà nó mang lưu lượng dữ liệu được đóng gói vào khung Ethernet Nó sử dụng chuẩn mã đường truyền 8b/10b (8 bit người dùng được mã hoá như 10 bit đường truyền ) và hoạt động ở tốc độ chuẩn của Ethernet
cả hai
Ở hướng xuống, EPON hoạt động như một mạng quảng bá Khung Ethernet được truyền bởi OLT qua bộ chia quang thụ động đến từng ONU ( với N trong khoảng từ 4 đến 64) ONU sẽ lọc bỏ các gói tin không phải là của nó nhờ vào địa chỉ MAC(Media Access Control) trước khi truyền các gói tin còn lại đến người dùng Hình 4.1
Trang 39
Ở hướng lên, vì đặc tính định hướng của bộ kết hợp quang thụ động, khung
dữ liệu từ bất kỳ ONU nào chỉ đến OLT và không đến các ONU khác Trong trường hợp đó, ở hướng lên: đặc tính của EPON giống như kiến trúc điểm- điểm Tuy nhiên, không giống như mạng điểm - điểm thật sự, các khung dữ liệu trong EPON
từ các ONU khác nhau được truyền đồng thời vẫn có thể bị xung đột Vì vậy, ở hướng lên (từ người dùng đến mạng), ONU cần sử dụng một vài cơ chế tránh xung đột dữ liệu và chia sẽ dung lượng kênh quang hợp lý Ở đây, luồng dữ liệu hướng lên được phân bố theo thời gian Hình 4.2
Nếu không có khung nào trong bộ đệm để điền vào khe thời gian thì 10 bit đặc tính rỗng sẽ được truyền Sự sắp xếp định vị khe thời gian hợp lý có thể định vị tĩnh (TDMA cố định) hoạt động dựa vào hàng đợi tức thời trong từng ONU (thực hiện thống kê ) Có nhiều mô hình định vị như là định vị dựa vào quyền ưu tiên của
dữ liệu, dựa vào chất lượng dịch vụ QoS hay dựa vào mức dịch vụ cam kết (SLAs :Service Level Agreements)
Hình 4.1: Lưu lượng hướng xuống trong EPON
Hình 4.2: Lưu lượng hướng lên trong EPON
Trang 404.3.2 Giao thức điều khiển đa điểm MPCP(Multi Point Control Protocol)
Để hổ trợ việc định vị khe thời gian bởi OLT, giao thức MPCP đang được nhóm IEEE 802.3ah phát triển MPCP không xây dựng một cơ chế phân bổ băng tần cụ thể, mà thay vào đó, nó là một cơ chế hổ trợ thiết lập các thuật toán phân bổ băng tần khác nhau trong EPON Giao thức này dựa vào hai bản tin Ethernet: Gate
và Report Bản tin Gate được gởi từ OLT đến ONU để ấn định một khe thời gian truyền Bản tin Report được ONU sử dụng để truyền đạt các thông tin về trạng thái hiện tại của nó (như mức chiếm dữ của bộ đệm) đến OLT, giúp OLT có thể phân bổ khe thời gian một cách hợp lý Cả hai bản tin Gate và Report đều là các khung điều khiển MAC (loại 88-08) và được xử lý bởi lớp con điều khiển MAC
Có hai mô hình hoạt động của MPCP: tự khởi tạo và hoạt động bình thường Trong mô hình tự khởi tạo được dùng để dò các kết nối ONU mới, nhận biết trễ Round-trip và địa chỉ MAC của ONU đó Trong mô hình bình thường được dùng để phân bổ cơ hội truyền dẫn cho tất cả các ONU được khởi tạo
Từ nhiều ONU có thể yêu cầu khởi tạo cùng một lúc, mô hình khởi tạo tự động là một thủ tục dựa vào sự cạnh tranh Ở lớp cao hơn nó làm việc như sau:
1 OLT chỉ định một khe khởi tạo, một khoảng thời gian mà không có ONU khởi tạo trước nào được phép truyền Chiều dài của khe khởi tạo này phải tối thiểu là: <transmission size> + <maximum round-trip time> - <minimum round-trip time>; với <transmission size> là chiều dài của cửa sổ truyền mà một ONU không khởi tạo có thể dùng
2 OLT gởi một bản tin khởi tạo Gate báo hiệu thời gian bắt đầu của khe khởi tạo và chiều dài của nó Trong khi chuyển tiếp bản tin này từ lớp cao hơn đến lớp MAC, MPCP sẽ gán nhãn thời gian được lấy theo đồng hồ của nó
3 Chỉ các ONU chưa khởi tạo mới đáp ứng bản tin khởi tạo Gate Trong lúc nhận bản tin khởi tạo Gate, một ONU sẽ thiết lập thời gian đồng hồ của nó theo nhãn thời gian đến trong bản tin khởi tạo Gate
4 Khi đồng hồ trong ONU đến thời gian bắt đầu của khe thời gian khởi tạo (cũng được phân phối trong bản tin Gate), ONU sẽ truyền bản tin của chính nó