1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề và cách giải về tiếp tuyến hàm đa thức

7 321 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 262,52 KB

Nội dung

Bài 1: Tiếp tuyến hàm ña thức - Khóa LT ðảm bảo - Thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 HDG CÁC BTVN PHẦN TIẾP TUYẾN HÀM ðA THỨC Bài 1. Cho ñồ thị ( ) 3 2 : 1 m C y x mx m = + − − . Viết phương trình tiếp tuyến của ( ) m C tại các ñiểm cố ñịnh mà ( ) m C ñi qua Lời giải: Gọi 0 0 ( ; ) M x y là ñiểm cố ñịnh mà ( ) m C ñi qua 3 2 0 0 0 2 3 0 0 0 2 0 0 0 3 0 0 0 0 1, ( 1) 1 0, 1 0 1 1 0 2 1 0 y x mx m m m x x y m x x x y y x y ⇒ = + − − ∀ ⇒ − + − − = ∀  − = = = −    ⇒ ⇒ ∨    = = −   − − =   Do ñó có 2 ñiểm cố ñịnh mà ( ) m C ñi qua là ( ) 1 1;0 M và ( ) 2 1; 2 M − − Ta có: 2 3 2 y x mx ′ = + - Phuơng trình tiếp tuyến tại M 1 là: ( ) (1)( 1) (2 3) 2 3 y y x m x m ′ = − = + − + - Phuơng trình tiếp tuyến tại M 2 là: ( ) ( 1)( 1) 2 ( 2 3) 2 1 y y x m x m ′ = − + − = − + − − Bài 2. Tìm ñiểm ( ) 3 2 : 2 3 12 1 M C y x x x ∈ = + − − sao cho tiếp tuyến của (C) tại ñiểm M ñi qua gốc tọa ñộ. Lời giải: Gọi 0 0 ( ; ) M x y là ñiểm cần tìm 3 2 0 0 0 0 2 3 12 1 y x x x ⇒ = + − − (1) PTTT của (C) tại M là: ( ) ( ) 2 2 0 0 0 0 0 0 0 0 0 ( ) : ( )( ) 6 6 12 6 6 12 d y y x x x y x x x y x x x ′ = − + = + − + − + − Vì (d) ñi qua gốc tọa ñộ nên ( ) 2 0 0 0 0 6 6 12 y x x x = + − (2) Từ (1) và (2) ( ) 3 2 2 0 0 0 0 0 0 2 3 12 1 6 6 12 x x x x x x ⇒ + − − = + − 3 2 0 0 2 0 0 0 0 0 4 3 1 0 ( 1)(4 1) 0 1 12 x x x x x x y ⇒ + + = ⇒ + − + = ⇒ = − ⇒ = Vậy ( 1;1;2) M − Bài 1: Tiếp tuyến hàm ña thức - Khóa LT ðảm bảo - Thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 4 Bài 3. Viết phương trình tiếp tuyến của ñồ thị ( ) 3 2 : 3 2 C y x x = − + biết tiếp tuyến ñó vuông góc với ñường thẳng: 5 3 4 0 y x − + = Lời giải: Tiếp tuyến vuông góc với ñường thẳng: 5 3 4 0 y x − + = có phương trình dạng: 5 (d):y x a 3 = − + ð i ề u ki ệ n ñể (d) và (C) ti ế p xúc nhau là: h ệ 3 2 2 5 3 2 x a 3 5 3 6 3 x x x x  − + = − +     − = −   có nghi ệ m T ừ 2 2 5 29 5 3 27 3 6 9 18 5 0 1 61 3 3 27 x a x x x x x a  = → =  − = − ⇒ − + = ⇒   = → =   V ậ y có 2 ti ế p tuy ế n th ỏ a mãn bài toán: 1 5 29 ( ) : x 3 27 d y = − + và 2 5 61 ( ) : x 3 27 d y = − + Bài 4 . Vi ế t ph ươ ng trình ti ế p tuy ế n ñ i qua ( ) 0; 1 A − ñế n 3 2 2 3 1 y x x = + − Lời giải : Ph ươ ng trình ñườ ng th ẳ ng ñ i qua A có d ạ ng d: y=kx – 1. d ti ế p xúc v ớ i (C) khi và ch ỉ khi h ệ sau có nghi ệ m: ( ) 3 2 3 2 2 2 3 2 3 2 3 2 2 2 2 3 1 1 2 3 1 6 6 1 6 6 0 2 3 1 6 6 1 4 3 0 (4 3) 0 3 4 0 3 3 9 6. 6. 4 4 8 x x kx x x x x x k x x x x x x x x x x x x k k  + − = −  ⇔ + − = + −  = +   =   ⇔ + − = + − ⇔ + = ⇔ + = ⇔  = −  =   ⇒      = − + − = −           V ậ y có 2 ti ế p tuy ế n c ầ n tìm là: y 1 = − và 9 y x-1 hay 9x+8y+8=0 8 = − Bài 5 . Vi ế t ph ươ ng trình ti ế p tuy ế n ñ i qua ( ) 1;2 A − ñế n 3 2 3 2 y x x = − + Lời giải : Ph ươ ng trình ñườ ng th ẳ ng ñ i qua A có d ạ ng d: y=k(x+1) + 2. d ti ế p xúc v ớ i (C) khi và ch ỉ khi h ệ sau có nghi ệ m: Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2 3 2 2 2 3 2 3 2 3 3 2 1 2 3 2 3 6 1 2 3 6 0 3 2 3 3 6 2 2 6 0 3 3 2 0 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 x x k x x x x x x k x x x x x x x x x x x y k k y x k y x  − + = + +  ⇔ − + = − + +  = −   =   ⇔ − + = − − + ⇔ − = ⇔  = ±    = =     ⇒ = − ⇒ = − + +     = +  = + + +   V ậ y có 3 ti ế p tuy ế n c ầ n tìm là: y 2 = và ( ) ( ) 1 2 3 1 2 y x = ± + + Bài 6 . Cho ( ) 3 2 : 2 3 12 5 C y x x x = − − − . Vi ế t ph ươ ng trình ti ế p tuy ế n bi ế t a, Ti ế p tuy ế n ñ ó song song v ớ i ñườ ng th ẳ ng 6 4 y x = − b, Ti ế p tuy ế n ñ ó vuông góc v ớ i ñườ ng th ẳ ng 1 2 3 y x = + c, Ti ế p tuy ế n t ạ o v ớ i ñườ ng th ẳ ng 1 5 2 y x = − + góc 45  Lời giải: a, Tiếp tuyến song song với ñt: 6 4 y x = − có dạng ( ) : 6 d y x b = + với 4 b ≠ − ðK ñể ( ) d và ( ) C tiếp xúc là hệ sau có nghiệm: 3 2 2 2 3 12 5 6 6 6 12 6 x x x x b x x  − − − = +   − − =   Từ 2 2 1 13 2 6 6 12 6 3 0 1 13 2 x x x x x x  − + =   − − = ⇔ − − = ⇔  − − =   Vì: ( ) ( ) 3 2 2 2 1 2 3 18 5 6 6 12 6 6 12 15 7 13 8 3 6 x b x x x x x x x x x = − − − = − − − − − − − = − − - V ớ i 1 13 1 13 3 13 13 3 13 13 13. 8 6 2 2 2 2 x b y x − + − + + + = ⇒ = − − = − ⇒ = − 2 2 1 13 2 6 6 12 6 3 0 1 13 2 x x x x x x  − + =   − − = ⇔ − − = ⇔  − − =   Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 - V ớ i 1 13 1 13 3 13 13 3 13 13 13. 8 6 2 2 2 2 x b y x − − − − − − = ⇒ = − − = − ⇒ = − V ậ y có 2 ti ế p tuy ế n th ỏ a mãn bài toán là: ( ) 1 3 13 13 : 6 2 d y x + = − và ( ) 2 3 13 13 : 6 2 d y x − = − b, Ti ế p tuy ế n vuông góc v ớ i ñườ ng th ẳ ng 1 2 3 y x = + s ẽ có h ệ s ố góc 3 k = − . Ph ươ ng trình hoành ñộ ti ế p ñ i ể m là: 1 2 2 2 1 7 2 6 6 12 3 2 2 3 0 1 7 2 x y x x x x x  + =   ′ = − − = − ⇔ − − = ⇔  − =   ( ) ( ) 3 2 2 2 1 2 3 18 5 6 6 12 6 6 12 15 7 16 5 3 6 x b x x x x x x x x x = − − − = − − − − − − − = − − - PTTT t ạ i 1 1 7 2 x + = là: ( ) 1 7 3 16. 5 3 13 8 7 2 y x y x + = − − − ⇒ = − − + - PTTT t ạ i 1 1 7 2 x − = là: ( ) 1 7 3 16. 5 3 13 8 7 2 y x y x − = − − − ⇒ = − − − c, G ọ i k là h ệ s ố góc c ủ a ti ế p tuy ế n c ầ n tìm. Theo gi ả thi ế t ta có: 1 3 2 1 2 tan 45 2 1 2 1 1 2 1 3 2 k k k k k k k k = −  + +  = = ⇔ + = − ⇔  − = −   - V ớ i 3 k = − ta có pt hoành ñộ ti ế p ñ i ể m: 1 2 2 2 1 7 2 6 6 12 3 6 6 9 0 1 7 2 x y x x x x x  + =   ′ = − − = − ⇔ − − = ⇔  − =   - PTTT t ạ i 1 1 7 2 x + = là: ( ) 1 7 3 16. 5 3 13 8 7 2 y x y x + = − − − ⇒ = − − + - PTTT t ạ i 1 1 7 2 x − = là: ( ) 1 7 3 16. 5 3 13 8 7 2 y x y x − = − − − ⇒ = − − − - V ớ i k = 1/3 ta có pt hoành ñộ ti ế p ñ i ể m: Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 1 2 2 2 3 315 1 6 6 6 12 6 6 9 0 3 3 315 6 x y x x x x x  + =   ′ = − − = ⇔ − − = ⇔  − =   ( ) ( ) 3 2 2 2 1 127 2 3 18 5 6 6 12 6 6 12 15 7 134 3 6 18 x b x x x x x x x x x= − − − = − − − − − − − = − − PTTT t ạ i 1 3 315 6 x + = là 1 1333 402 201 3 18 y x   + = −       PTTT t ạ i 1 3 315 6 x − = là 1 1333 402 201 3 18 y x   − = −       V ậ y có 4 ti ế p tuy ế n th ỏ a mãn bài toán Bài 7 . Tìm các ñ i ể m trên tr ụ c hoành mà t ừ ñ ó k ẻ ñượ c 3 ti ế p tuy ế n ñế n ñồ th ị hàm s ố ( ) 3 2 : 3 C y x x = + trong ñ ó có 2 ti ế p tuy ế n vuông góc v ớ i nhau Lời giải : L ấ y ( ) ,0 M m b ấ t kì thu ộ c tr ụ c hoành Ox. ðườ ng th ẳ ng ñ i qua M v ớ i h ệ s ố góc k có ph ươ ng trình ( ) y k x m kx km = − = − ti ế p xúc v ớ i ( ) C ⇔ h ệ 3 2 2 3 (1) 3 6 (2) x x kx km x x k  + = −   + =   có nghi ệ m. Th ế (2) vào (1) ta có: ( ) ( ) 3 2 2 3 3 6 x x x x x m + = + − ( ) ( ) ( ) 2 2 2 3 3 6 0 0 2 3 3 6 0 x x m x m x x m x m ⇔ + − − = =  ⇔  + − − =   ðể t ừ M k ẻ ñượ c 3 ti ế p tuy ế n ñế n ( ) C trong ñ ó có 2 ti ế p tuy ế n vuông góc thì ph ươ ng trình ( ) 2 ( ) 2 3 3 6 0 g x x m x m = + − − = ph ả i có 2 nghi ệ m phân bi ệ t 1 2 ; x x khác 0 sao cho 1 2 1 k k = − (k xác ñị nh theo x trong (2)) ( ) ( )( ) ( ) ( ) [ ] 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 ; 3 3 3 48 0 9 30 9 0 3 (0) 6 0 0 0 9 2 2 1 9 2( ) 4 1 3 6 3 6 1 m m m m m m g m m m x x x x x x x x x x x x x x   > − < −   ∆ = − + > + + >     ⇔ = − ≠ ⇔ ≠ ⇔ ≠       + + = − + + + = − + + = −      Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 ( )( ) 1 1 3 3 3 3 1 0 0 27 27 1 9 3 3 3 3 4 1 m m m m m m m m m m m   > − ∨ < − > − ∨ < −     ⇔ ≠ ⇔ ≠ ⇔ =     − = − − − + − + = −     sV ậ y ñ i ể m th ỏ a mãn là: 1 ;0 27 M       Bài 8 . Cho ñồ th ị ( ) 3 1 : 3 x C y x + = − và ñ i ể m M b ấ t kì thu ộ c ( ) C . G ọ i I là giao c ủ a 2 ti ệ m c ậ n. Ti ế p tuy ế n t ạ i M c ắ t 2 ti ệ m c ậ n t ạ i A, B. CMR: a, M là trung ñ i ể m c ủ a AB b, Di ệ n tích tam giác IAB không ñổ i Lời giải : a, ðồ th ị ( ) C có TCN: ( ) 1 : y 3 d = và TC ð : ( ) 2 : x 3 d = ⇒ t ọ a ñộ ñ i ể m ( ) 3;3 I L ấ y ñ i ể m b ấ t kì ( ) 10 3 ;3 , 0 M m C m m   + + ∈ ≠     . Ti ế p tuyên t ạ i M có d ạ ng: ( ) ( ) ( ) ( ) 2 2 10 10 20 30 : 3 3 3 3d y y m x m y x m m m m   ′ = + − + + + ⇔ = − + + +     Ph ươ ng trình hoành ñộ giao ñ i ể m c ủ a ( ) C và ( ) d là: 2 2 2 2 2 2 10 20 30 3 1 1 1 3 6 9 3 2 1 0 3 x x x x m x m m m m m m m       + − + + + = ⇔ − + + − + + =       −       D ễ th ấ y pt trên có 2 nghi ệ m phân bi ệ t 1 2 x x < . G ọ i ( ) 1 1 ; A x y và ( ) 2 2 ; B x y . Ta có: 2 1 2 2 2 6 2 6 2 1 M m m x x m x m + + = = + = ( ) 1 2 1 2 2 2 10 20 30 20 2 3 6 2 M y y x x y m m m m   + = − + + + + = + =     V ậ y m là trung ñ i ể m c ủ a AB ( ñ pcm) b, Do tam giác IAB vuông t ạ i I, mà có M là trung ñ i ể m c ủ a AB nên ta có: ( ) ( ) ( ) ( ) 1 2 1 10 . 2 ; ; 2 20 2 IAB S IA IB d M d M d m m ∆ = = = = Bài 1: Ti ế p tuy ế n hàm ñ a th ứ c - Khóa LT ðả m b ả o - Th ầ y Phan Huy Kh ả i Hocmai.vn – Ngôi tr ườ ng chung c ủ a h ọ c trò Vi ệ t 4 V ậ y di ệ n tích IAB ∆ không ñổ i. ………………….Hết………………. Nguồn: Hocmai.vn . Bài 1: Tiếp tuyến hàm ña thức - Khóa LT ðảm bảo - Thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 HDG CÁC BTVN PHẦN TIẾP TUYẾN HÀM ðA THỨC Bài 1. Cho ñồ. ( 1;1;2) M − Bài 1: Tiếp tuyến hàm ña thức - Khóa LT ðảm bảo - Thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 4 Bài 3. Viết phương trình tiếp tuyến của ñồ thị ( ) 3. ( ) 1 1;0 M và ( ) 2 1; 2 M − − Ta có: 2 3 2 y x mx ′ = + - Phuơng trình tiếp tuyến tại M 1 là: ( ) (1)( 1) (2 3) 2 3 y y x m x m ′ = − = + − + - Phuơng trình tiếp tuyến tại M 2

Ngày đăng: 16/05/2015, 16:15

TỪ KHÓA LIÊN QUAN

w