NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé TÀI LIỆU DẠY CHO HỌC SINH LỚP 9 CHƯA ĐẠT CHUẨN KIẾN THỨC, KỸ NĂNG MÔN TOÁN ( LƯU HÀNH NỘI BỘ) I.PHÂN PHỐI CHƯƠNG TRÌNH Nội dung Tiết thứ CHUYÊN ĐỀ 1: BIẾN ĐỔI PHÂN THỨC ĐẠI SỐ (12 tiết) Tính chất cơ bản của phân thức 1 - 2 Phân tích đa thức thành nhân tử 3 - 4 Quy đồng mẫu nhiều phân thức 5 - 6 Phép cộng, trừ các phân thức đại số 7 Phép nhân, chia các phân thức đại số 8 Biến đổi đơn giản biểu thức chứa căn thức bậc hai 9 - 10 Bài tập 11 Kiểm tra 1 tiết 12 CHUYÊN ĐỀ 2: PHƯƠNG TRÌNH (13 tiết) PHẦN I: PHƯƠNG TRÌNH BẬC NHẤT Phương trình bậc nhất một ẩn và cách giải. 13 Phương trình đưa được về dạng ax + b = 0. 14 Phương trình tích. 15 Phương trình chứa dấu giá trị tuyệt đối. 16 PHẦN II: PHƯƠNG TRÌNH BẬC HAI Phương trình bậc hai một ẩn. 17 Công thức nghiệm của phương trình bậc hai. 18 Công thức nghiệm thu gọn. 19 Hệ thức Vi-ét. 20 Ứng dụng hệ thức Vi-ét giải bài toán tìm hai số biết tổng và tích. 21 Tìm điều kiện xác định của một phương trình. 22 1 NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé Phương trình chứa ẩn ở mẫu. 23 Phương trình trùng phương. 24 Kiểm tra 1 tiết (Chọn một trong 2 đề). 25 Chuyên 3: đề HỆ PHƯƠNG TRÌNH (9 ti tế ) Khái niệm về PT bậc nhất hai ẩn - Hệ hai phương trình bậc nhất hai ẩn 26 Giải hệ phương trình bằng phương pháp thế 27 - 28 Giải hệ phương trình bằng phương pháp cộng đại số 29 - 30 Giải hệ phương trình bậc nhất hai ẩn số bằng chương trình gài sẵn trên máy tính bỏ túi 31 Bài tập tổng hợp về giải hệ phương trình bậc nhất hai ẩn 32 - 33 Kiểm tra 1 tiết 34 CHUYÊN 4:ĐỀ GI I B I TO N B NG C CH L P PH NG TRÌNHẢ À Á Ằ Á Ậ ƯƠ V H PH NG TRÌNH (12 ti t)À Ệ ƯƠ ế I. GI I B I TO N B NG C CH L P H PH NG TRÌNHẢ À Á Ằ Á Ậ Ệ ƯƠ Dạng toán số - chữ số 35 Dạng toán chuyển động 36 - 37 Dạng toán năng suất 38 - 39 II.GI I B I TO N B NG C CH L P PH NG TRÌNHẢ À Á Ằ Á Ậ ƯƠ Dạng toán số - chữ số 40 Dạng toán chuyển động 41 - 42 Dạng toán năng suất 43 - 44 Dạng toán có nội dung Hình học - Hóa học 45 Kiểm tra theo chuyên đề 46 HÌNH HỌC CHUYÊN ĐỀ 1: GIẢI CÁC BÀI TOÁN VỀ tam gi¸c Tam gi¸c 1 C¸c trêng hîp b»ng nhau cña tam gi¸c 2 2 Nguyễn Hữu Lâm-THCS Luận Khê-Lu hành nội bộ Tính chất các đờng đồng quy trong tam giác 3 Tam giác đồng dạng 4 Các trờng hợp đồng dạng của tam giác 5 Các trờng hợp đồng dạng của tam giác vuông 6 Một số hệ thức về cạnh và đờng cao trong tam giác vuông 7 Tỉ số lợng giác của góc nhọn 8 Một số hệ thức về cạnh và góc trong tam giác vuông 9 Kiểm tra 10 CHUYấN 2: GII CC BI TON V T GIC Tứ giác 11 Hình thang - Hình thang cân 12 - 13 Hình bình hành - Hình chữ nhật 14 - 15 Hình thoi, hình vuông 16 - 17 Diện tích tứ giác 18 Ôn tập 19 Kiểm tra 20 CHUYấN 3: GII CC BI TON V NG TRềN Xỏc nh ng trũn 21 Tớnh ch t i x ng c a ng trũn 22 Dõy cung v kho ng cỏch n tõm. V trớ t ng i c a ng th ng v ng trũn 23 V trớ t ng i c a hai ng trũn 24 Gúc tõm, s o cung. Liờn h gi a cung v dõy 25 Ti p tuy n c a ng trũn 26 Gúc n i ti p. M i liờn h gi a gúc n i ti p v cung b ch n 27 Gúc t o b i ti p tuy n v dõy cung 28 Gúc cú nh bờn trong ng trũn, gúc cú nh bờn ngo i ng trũn.Cung ch a gúc 29 T giỏc n i ti p 30 3 NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé d i ng tròn, di n tích hình trònĐộ à đườ ệ 31 Ki m tra ể 32 II. NỘI DUNG CÁC CHUYÊN ĐỀ CHUYÊN ĐỀ I: BIẾN ĐỔI PHÂN THỨC ĐẠI SỐ (12 TIẾT) 4 NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé Tiết 1: TÍNH CHẤT CƠ BẢN CỦA PHÂN THỨC I. KIẾN THỨC CƠ BẢN 1. Luỹ thừa của một số hữu tỷ: a) Tính chất: . . n a a a a a = 142 43 (n ∈ N) a 0 = 1, a 1 = a (a ≠ 0) (n thừa số a) . m n m n a a a + = (m, n ∈ N ) a m :a n = a m-n (m, n ∈ N,m ≥ n) (x m ) n = x m.n (x.y) n = x n .y n ; ( ) 0 n n n x x y y y = ≠ ÷ b) Ví dụ: a) 3x 5 . 5x 2 = 15x 5+2 =15x 7 b) 15m 9 : 3m 7 = 5m 2 2. Nhân đơn thức với đa thức: a) Công thức: b) Ví dụ: 1. 5x(3x 2 - 4x + 1) = 5x.3x 2 + 5x(-4x) + 5x.1 = 15x 3 – 20x 2 + 5x 2. (2 53 + ) 3 - 60 = 2 15.43533 −+ = 6 + 15215 − = 156 − 3. Nhân đa thức với đa thức: a) Quy tắc: Nhân một đa thức với một đa thức ta nhân lần lượt từng số hạng của đa thức này với đa thức kia rồi cộng tổng các tích vừa tìm được. b) Công thức c) Ví dụ: 1. (x - 2)(6x 2 - 5x + 1) = x.6x 2 + x(-5x) + x.1 + (-2)6x 2 + (-2)(-5x) + (-2).1 = 6x 3 - 5x 2 + x - 12x 2 + 10x - 2 = 6x 3 - 17x 2 + 11x - 2. 2. (1 - x )(1 + xx + ) = 1 + xxxxxxx −−−+ = 1 xx − II. BÀI TẬP ÁP DỤNG Bài 1. Thực hiện phép tính: a) (3xy - x 2 + y) 3 2 x 2 y b) (5x 3 - x 2 )(1 - 5x) Giải: a) (3xy - x 2 + y) 3 2 x 2 y = 3xy. 3 2 x 2 y + (-x 2 ). 3 2 x 2 y + y. 3 2 x 2 y 5 (A + B)(C + D) = AC + AD + BC + BD A(B + C) = AB + AC ; A(B - C) = AB – AC NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé = 2x 3 y 2 - 3 2 x 4 y + 3 2 x 2 y 2 b) (5x 3 - x 2 )(1 - 5x) = 5x 3 - 25x 4 - x 2 + 5x 3 = - 25x 4 + 10x 3 - x 2 Bài 2. Tìm x biết: 3x(12x - 4) - 9x(4x - 3) = 30 Giải: 3x(12x - 4) - 9x(4x - 3) = 30 36x 2 - 12x - 36x 2 + 27x = 30 15x = 30 ⇒ x = 2 Bài 3. Rút gọn biểu thức: ( 71228 −− ) 7 + 2 21 = 7.77.3.47.7.4 −− + 2 21 = 2 7. 7 2 3. 7 7. 7− − + 2 21 = 2.7 – 212 - 7 + 2 21 = 7 III. BÀI TẬP ĐỀ NGHỊ Bài 1. Tính: a) ( 2 1 x + y)( 2 1 x + y) b) (x - 2 1 y)(x - 2 1 y) Bài 2. Rút gọn các biểu thức sau (với 0 ≥ a ): a) aa 27.3 b) 42 9 ba c) aa 123 3 Bài 3. Triển khai và rút gọn các biểu thức sau: (với x, y không âm) a) ( 2+x )( 42 +− xx ) b) ( yx + )( yxyx −+ 2 ) Tiết 2 : TÍNH CHẤT CƠ BẢN CỦA PHÂN THỨC (Tiếp) I. KIẾN THỨC CƠ BẢN 1. Chia đa thức cho đơn thức: * Quy tắc: Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B), ta chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau. Ví dụ: (15x 2 y 3 + 12x 3 y 2 - 10 xy 3 ) : 3xy 2 = (15x 2 y 3 : 3xy 2 ) + (12x 3 y 2 : 3xy 2 ) + (-10xy 3 : 3xy 2 ) = 5xy + 4x 2 - 3 10 y 2. Chia đa thức một biến đã sắp xếp. Ví dụ: Thực hiện phép chia: 6 NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé 1. 2 (6 13 5):(2 5)x x x+ − + Giải: 2 6 13 5x x + − 2 5x + - ( 2 6 15x x+ ) 2 5x − − - ( 2 5)x− − 0 3 1x − 2. Sắp xếp đa thức sau theo luỹ thừa giảm dần của biến rồi thực hiện phép chia: 2 3 4 2 (12 14 3 6 ) : (1 4 )x x x x x x− + − + − + Giải: Ta có 2 3 4 4 3 2 12 14 3 6 6 12 14 3x x x x x x x x− + − + = − + − + và 2 2 1 4 4 1x x x x− + = − + 4 3 2 6 12 14 3x x x x − + − + 2 4 1x x− + - ( 4 3 2 4x x x− + ) 3 2 2 11 14 3x x x− + − + - ( 3 2 2 8 2x x x+ − ) 2 3 12 3x x− + 2 (3 12 3)x x− − + 0 2 2 3x x − + 3. Tính chất cơ bản của phân thức: a) Định nghĩa phân thức đại số: Phân thức đại số (hay phân thức) có dạng A B , trong đó A, B là các đa thức và B khác đa thức 0. Ví dụ: 5 22 8 6 yx yx ; 1 x + 2 b) Phân thức bằng nhau: Ví dụ: 2 x +1 1 x 1 x -1 = − vì (x +1)(x - 1) = x 2 - 1 c) Tính chất cơ bản của phân thức: 7 A C B D = nếu AD = BC A A.M = B B.M ; A A:N = B B:N (M ≠ 0; N ≠ 0; B ≠ 0) NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé d) Quy tắc đổi dấu: II. BÀI TẬP ÁP DỤNG Bài 1. Các phân thức sau có bằng nhau không? a) 2 2 5 5 5( 1) x x x x x − = − + b) 2 2 8 3 24 2 1 6 3 x x x x x + + = − − Bài 2. Áp dụng quy tắc đổi dấu để rút gọn phân thức: )3(15 )3(45 − − xx xx = )3(15 )3(45 − −− xx xx = – 3 Bài 3. Tính: a) 23 2300 b) x x 7 63 3 với x > 0 Giải: a) 23 2300 = 23 100.23 = 23 100.23 = 100 = 10 b) x x 7 63 3 = x xx 7 .7.9 2 = x xx 7 73 = 3x với x > 0 III. BÀI TẬP ĐỀ NGHỊ Bài 1. Rút gọn phân thức: a) 5 22 8 6 yx yx b) 2 2 )(15 )(10 yxxy yxxy + + Bài 2: Chứng minh các đẳng thức sau: a) yx xy yxxyyx −= −+ ))(( với x > 0 và y > 0 b) 3 2 3 2 2 3 3 2 1 2 2 x xy y x x y xy y x y + + = + − − − TIẾT 3: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. KIẾN THỨC CƠ BẢN 1. Định nghĩa: Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức. 8 A -A A A -A ; B -B B -B B = =− =− NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé Ví dụ: a) 2x 2 + 5x - 3 = (2x - 1).(x + 3) b) x - 2 x y +5 x - 10y = [( x ) 2 – 2 y x ] + (5 x - 10y) = x ( x - 2y) + 5( x - 2y) = ( x - 2y)( x + 5) 2. Các phương pháp phân tích đa thức thành nhân tử a) Phương pháp đặt nhân tử chung : Nếu tất cả các hạng tử của đa thức có một nhân tử chung thì đa thức đó được biểu diễn thành một tích của nhân tử chung với một đa thức khác. Công thức: Ví dụ: 1. 5x(y + 1) – 2(y + 1) = (y + 1)(5x - 2) 2. 3x + 12 x y = 3 x ( x + 4y) b) Phương pháp dùng hằng đẳng thức: Nếu đa thức là một vế của hằng đẳng thức đáng nhớ nào đó thì có thể dùng hằng đẳng thức đó để biểu diễn đa thức này thành tích các đa thức. * Những hằng đẳng thức đáng nhớ: (A + B) 2 = A 2 + 2AB + B 2 (A - B) 2 = A 2 - 2AB + B 2 A 2 - B 2 = (A + B)(A - B) (A+B) 3 = A 3 + 3A 2 B + 3AB 2 + B 3 (A - B) 3 = A 3 - 3A 2 B + 3AB 2 -B 3 A 3 + B 3 = (A+B) (A 2 - AB + B 2 ) A 3 - B 3 = (A - B)(A 2 + AB + B 2 ) Ví dụ: Phân tích các đa thức sau thành nhân tử: 1. x 2 – 4x + 4 = ( ) 2 2x − 2. 2 9 ( 3)( 3)x x x− = − + 3. [ ] [ ] 2 2 ( ) ( ) ( ) ( ) ( ) ( ) 2 .2 4x y x y x y x y x y x y x y xy+ − − = + + − + − − = = Cách khác: 2 2 2 2 2 2 ( ) ( ) 2 ( 2 ) 4x y x y x xy y x xy y xy+ − − = + + − − + = c) Phương pháp nhóm hạng tử: Nhóm một số hạng tử của một đa thức một cách thích hợp để có thể đặt được nhân tử chung hoặc dùng hằng đẳng thức đáng nhớ. Ví dụ: 9 AB + AC = A(B + C) NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé 1. x 2 – 2xy + 5x – 10y = (x 2 – 2xy) + (5x – 10y) = x(x – 2y) + 5(x – 2y) = (x – 2y)(x + 5) 2. x - 3 x + x y – 3y = (x - 3 x ) + ( x y – 3y) = x ( x - 3) + y( x - 3)= ( x - 3)( x + y) II. BÀI TẬP ÁP DỤNG Bài 1: Phân tích các đa thức sau thành nhân tử : a) 14x 2 – 21xy 2 + 28x 2 y 2 = 7x(2x - 3y 2 + 4xy 2 ) b) 2(x + 3) – x(x + 3) c) x 2 + 4x – y 2 + 4 = (x + 2) 2 - y 2 = (x + 2 - y)(x + 2 + y) Bài 2: Giải phương trình sau : 2(x + 3) – x(x + 3) = 0 ( ) ( ) x 3 0 x 3 x 3 2 x 0 2 x 0 x 2 + = = − ⇔ + − = ⇔ ⇔ − = = Vậy nghiệm của phương trình là x 1 = -3: x 2 = 2 III. BÀI TẬP ĐỀ NGHỊ Bài 1: Phân tích các đa thức sau thành nhân tử: a) 10( x - y) – 8y(y - x ) b) 2 x y + 3z + 6y + x y Bài 2: Giải các phương trình sau : a) 5 x ( x - 2010) - x + 2010 = 0 b) x 3 - 13 x = 0 TIẾT 4: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ (Tiếp) I. KIẾN THỨC CƠ BẢN 2. Các phương pháp phân tích đa thức thành nhân tử: d. Phương pháp tách một hạng tử:(trường hợp đặc biệt của tam thức bậc 2 có nghiệm) Tam thức bậc hai có dạng: ax 2 + bx + c = ax 2 + b 1 x + b 2 x + c ( 0a ≠ ) nếu 1 2 1 2 b b ac b b b = + = Ví dụ: a) 2x 2 - 3x + 1 = 2x 2 - 2x - x +1 = 2x(x - 1) - (x - 1) = (x - 1)(2x - 1) 10 [...]... dạng ax+b=0, với a và b là hai số đã cho và a ≠0, được gọi là phương trình bậc nhất một ẩn Ví dụ: 5x + 8 = 0: là phương trình bậc nhất một ẩn, trong đó a = 5; b = 8 -2x + 4 = 0: là phương trình bậc nhất một ẩn, trong đó a = -2; b= 4 -7x – 3 = 0: là phương trình bậc nhất một ẩn, trong đó a = -7; b = -3 2 Hai quy tắc biến đổi phương trình: a) Quy tắc chuyển vế: Trong một phương trình, ta có thể chuyển... của phương trình với 2 ta được: x 2 Trong một phương trình ta có thể chia cả hai vế cho cùng một số khác 0 Ví dụ 4: Cho phương trình 3x = -2, chia hai vế của phương trình cho 3 ta được: x = −2 3 c) Cách giải phương trình bậc nhất một ẩn Từ một phương trình, dùng quy tắc chuyển vế hay quy tắc nhân, ta luôn nhận được một phương trình mới tương đương phương trình đã cho Ví dụ 5: Giải phương trình: 3x –... và đổi dấu hạng tử đó Ví dụ 1: Cho phương trình: x – 2 = 0, chuyển hạng tử -2 t ừ v ế trái sang v ế ph ải v à đổi dấu thành +2 ta được x = 2 2 2 + x = 0, chuyển hạng tử từ vế trái sang vế phải và 3 3 2 2 đổi dấu thành - ta được x = 3 3 Ví dụ 2: Cho phương trình: b) Quy tắc nhân với một số: Trong một phương trình ta có thể nhân cả hai vế với cùng một số khác 0 Ví dụ 3: Cho phương trình: =6 1 x = 3, nhân... 3 Câu 3: Cho biểu thức 1 A = x − x ÷ x ÷ x −1 ÷ x + x +1 a) Tìm điều kiện xác định của A? Rút gọn A b) Tính giá trị của biểu thức A khi x = 3 4 c) Tìm x để A < 8 ĐỀ SỐ 2 Câu 1: Tính: ( 1 2− 5 ) 2 − ( 1 2+ 5 x− Câu 2: Giải phương trình: Câu 3: Cho biểu thức: A = 1 − ) 2 4 + 2 + x = 0 (1) 2+ x a−3 a a −2 a −3 9−a + − ÷: ÷ a −9 a +3 2− a a + a −6 a) Rút gon A b) Tìm... 2 NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé a a b Bài 2: Cho biểu thức: Q = 2 2 − 1 + 2 2 ÷ : a −b a − b a − a 2 − b2 a) Rút gọn Q b) Tìm giá trị của Q khi a = 3b 2+ x Bài 3: Cho biểu thức P = 2− x − 2− x 2+ x − 4x x −3 ÷: x −4÷ 2 x −x a) Rút gọn P b) Tìm các giá trị của x để P > 0, P < 0 c) Tìm giá trị của x sao cho P = 1 TIẾT 10: BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC... thỏa mãn điều kiện, do đó không có giá trị nào của x để P = 0 III BÀI TẬP ĐỀ NGHỊ Bài 1: Rút gọn biểu thức: 5+ 5 5− 5 + 5− 5 5+ 5 Bài 2: Cho biểu thức Q = 1− x x 1− x a) Tìm điều kiện xác định Q? b) Rút gọn Q c) Tìm x để Q = 1 6x − 1 x 2 − 36 6x + 1 + 2 Bài 3: Cho phân thức P = 2 ; ÷ 2 x − 6x x + 6x 12x + 12 a) Tìm điều kiện xác định của P? b) Rút gọn P c)Tính giá trị của P tại x = 9 + 4 5... phương trình đã cho Ví dụ 5: Giải phương trình: 3x – 6 = 0 Giải: 3x – 6 = 0 ⇔ 3x = 6 (Chuyển -6 sang vế phải và đổi dấu) ⇔ x=2 (Chia hai vế cho 3) Vậy phương trình có tập nghiệm S={2} II Bài tập vận dụng Bài 1: Chỉ ra phương trình nào là phương trình bậc nhất trong các phương trình sau: 25 a) 2 – x = 0; 3x – 2 = 3 NguyÔn H÷u L©m-THCS LuËn Khª-Lu hµnh néi bé b) 8x – 3 = 0; Bài 2: Giải phương trình: a)... = 0 ⇔ hoặc a = 0 hoặc b = 0 * Phương trình tích có dạng: A(x).B(x) = 0; Trong đó A(x), B(x) là đa thức - Cách giải: A(x).B(x) = 0 ⇔ A(x) = 0 hoặc B(x) = 0 Ví dụ: Giải phương trình: (3x – 5)(x + 3) = 0 Ta có: (3x – 5)(x + 3) = 0 ⇔ 3x – 5 = 0 hoặc x + 3 = 0 * 3x – 5 = 0 3x = 5 ⇔ x = * x + 3 = 0 ⇔ x = -3 5 3 Vậy phương trình đã cho có hai nghiệm x = Tập nghiệm của phương trình là S = { 28 5 và x = -3... ) 3 + m = 0 ⇔ 18 − 3m − 12 + m = 0 ⇔ −2m = −6 ⇔m=3 Vậy với m = 3 phương trình đã cho nhận x = 3 là một nghiệm b) Để phương trình ax 2 + bx + c = 0 luôn có nghiệm thì ∆ ≥ 0 Ta có: ∆ = − ( m + 4 ) − 4.2.m 2 = m 2 + 8m + 16 − 8m = m 2 + 16 Vì m 2 ≥ 0 với mọi m do đó ∆ = m 2 + 16 > 0 với mọi m Vậy phương trình đã cho luôn có nghiệm với mọi m III Bài tập đề nghị Bài 1: Giải các phương trình sau... (7) Ta có: ∆ ' = {2(1 - 3 )}2 - 2 3 (2 3 + 4) = 4 - 4 3 + 12 - 12 - 8 3 = 4 - 12 3 < 0 ∆ ' < 0 => phương trình (7) vô nghiệm x1 = Chú ý: Giáo viên dạy cần hướng dẫn học sinh biết kiểm tra k ế qu ả b ằ máy t ng tính cầm tay Bài 3: Cho phương trình: ( m +1)x2 + 4mx + 4m - 1 = 0 (8) a) Giải phương trình với m = 1 b) Với giá trị nào của m thì phương trình (8) có hai nghiệm phân biệt? Giải: a) Với m = . BẢN 1. Chia đa thức cho đơn thức: * Quy tắc: Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B), ta chia mỗi hạng tử của A cho B rồi cộng các. các đờng đồng quy trong tam giác 3 Tam giác đồng dạng 4 Các trờng hợp đồng dạng của tam giác 5 Các trờng hợp đồng dạng của tam giác vuông 6 Một số hệ thức về cạnh và đờng cao trong tam giác vuông 7 Tỉ. vuông 7 Tỉ số lợng giác của góc nhọn 8 Một số hệ thức về cạnh và góc trong tam giác vuông 9 Kiểm tra 10 CHUYấN 2: GII CC BI TON V T GIC Tứ giác 11 Hình thang - Hình thang cân 12 - 13 Hình bình