1. Trang chủ
  2. » Giáo án - Bài giảng

Dethithu_DH_Toan_2009_TTO-book.vnmath.com.pdf

30 276 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 1,67 MB

Nội dung

ĐỀ ÔN TẬP SỐ THI ĐẠI HỌC, CAO ĐẲNG Mơn thi: TỐN, khối A Thời gian làm 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm)Cho hàm số y  x  3mx  m  1x  (1), m tham số thực Khảo sát biến thiên vẽ đồ thị hàm số (1) m = -1 Tìm giá trị m để tiếp tuyến đồ thị hàm số (1) điểm có hồnh độ x = -1 qua điểm A(1;2) Câu II (2 điểm) Giải phương trình tgx = cotgx + 4cos2 2x (2 x  1) 2 Giải phương trình x  +  x = (x  R) Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: 5 x  y  z  13  x3 y 3 z 3 d1:   d :  2  x  y  z   Chứng minh d d cắt Gọi I giao điểm d d Tìm tọa độ điểm A,B thuộc d , d cho tam giác IAB cân I có diện tích Câu IV (2 điểm) 1.Tính tích phân I =   Giải phương trình e  sin( x  ) 41 42 xdx 2x  =tgx PHẦN RIÊNG Thí sinh làm câu: V.a V.b Câu V.a Theo chương trình KHƠNG phân ban (2 điểm) Cho tập hợp E = 0,1,2,3,4,5,7 Hỏi có số tự nhiên chẵn gồm chữ số khác lập từ chữ số E? Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC đường cao kẻ từ đỉnh B đường phân giác góc A có phương trình 3x + 4y + 10=0 x - y + 1=0; điểm M(0;2) thuộc đường thẳng AB đồng thời cách điểm C khoảng Tìm tọa độ đỉnh cuả tam giác ABC Câu V.b Theo chương trình phân ban (2 điểm) 2x    Giải bất phương trình log  log   x 1   Cho hình chóp S.ABC có đáy tam giác ABC vuông cân đỉnh B, BA = BC = 2a, hình chiếu vng góc S mặt phẳng đáy (ABC) trung điểm E AB SE = 2a Gọi I, J trung điểm EC, SC; M điểm di động tia đối tia BA ˆ cho góc E CM =  (    Nếu < t < t < t2 < nên tsint2 > sint2 > sint, f ’(t) < Do ta có bảng biến thiên t  f ’(t) + – cos1 f(t) 2 cos  Do cos 0,25  2    nên f t   0, t  0;  Suy  3 cos xy   cos xy  2  Từ (1) (2) suy điều phải chứng minh V.a 0,50 0,25 2,00 Chứng minh đẳng thức (1,00 điểm) Xét khai triển n n n 1 n f  x   2 x  1  Cn 2 x   Cn 2 x    Cnn 1 2 x   Cn n 1  f '  x   2n2 x  1 n  n 2n Cn x n 1  n  12 n 1Cn x n    2Cn 1 * 0,50 Thay x = vào (*) ta n n.2n.Cn  n  1.2n 1 Cn   2Cn 1  2n.3n 1 Nhận xét : khai triển (1+x)n , lấy đạo hàm, cho x= 2, nhân vế cho 2 Tìm tọa độ điểm M (1,00 điểm) Gọi I tâm đường tròn (C) suy I(4;0) Xét M(0;a) thuộc trục tung mà từ kẻ hai tiếp tuyến MA, MB đến đường tròn (C) Giả sử A(x1;y1); B(x2;y2) Ta có MA   x1; y1  a , IA   x1  4; y1  Vì IA  MA nên x1  4x1  y1  y1  a    x1  2  y12  4x1  4  ay1  Vì A thuộc (C) nên x1  ay1  12  Suy A thuộc đường thẳng 4x – ay – 12 = Tương tự, B thuộc đường thẳng 4x – ay – 12 = Do phương trình đường thẳng AB 4x – ay – 12 = Đường thẳng AB qua E(4;1) nên a=4 Điểm cần tìm M(0;4) Cách khác: pt tiếp tuyến A(x1;y1) có dạng (x - 4)(x - 4) + y 1y - = Vì tiếp tuyến qua M(0;a) nên có (x - 4)(- 4) + y 1a - = Tương tự, tọa độ B(x2;y2) thỏa (x - 4)(- 4) + y 2a - = Suy pt AB 4x – ay – 12 = V.b 0,50 0,50 0,50 2,00 Giải bất phương trình mũ (1,00 điểm) Đặt t = x  x 1 , t  Bất phương trình cho trở thành t2 - - £ Û t3 – 2t – ≤ Û (t - 2)(t2 + 2t +2) Û t ≤ t 0,50 Ta có < x  x 1  Û x2 – 2x - 2≤ Û   x   Nghiệm bất phương trình   x   Tính tỷ số … (1,00 điểm) Gọi E = MN ∩ CD Khi Q = PE∩ AD Gọi F trung điểm BC G điểm AC cho DG//PQ Nhận thấy FD//MN G PG PG ED MF Ta có  1 1 1  1  1  AP AP PC EC MC 3 AQ AP Suy   AD AG 0,50 0,50 A B G 0,50 Q P N E D M F Gọi V thể tích tứ diện ABCD, V1 thể tích khối đa diện ABMNQP, V2 thể tích khối đa diện CDNMPQ Khi V2=V-V1 Ta có V1 = VABMN + VAMPN + VAPQN BM BN S S S Do  ,  nên BMN  , MNC  , DNC  BC BD SBCD SBCD S BCD Suy 1 1 VABMN  V , VAMNP  VAMNC  V ,V APQN  VADNC  V 8 10 V1 Như V1  V , suy  20 V2 13 Nếu thí sinh làm khơng theo cách nêu đáp án mà đủ điểm phần đáp án quy định Hướng dẫn: Trung tâm Luyện thi Vĩnh Viễn

Ngày đăng: 09/05/2015, 06:00

TỪ KHÓA LIÊN QUAN

w