Trờng THCS Nguyễn Văn Cừ Giáo viên: Nguyễn Thị Quang Ngày soạn : 02/3/2011 Tiết 49 - Luyện tập, kiểm tra 15 phút A. Mục tiêu : 1. Kiến thức: Củng cố định lý thuận và định lý đảo về tứ giác nội tiếp. 2. Kỹ năng: Vận dụng đợc các định lý đẻ giải bài tập liên quan đến tứ giác nội tiếp. 3. Thái độ: Nghiêm túc trong học tập, cẩn thận, chính xác. B. chuẩn bị : GV: Thớc thẳng, phấn màu, thớc đo góc, com pa, đề kiểm tra. HS : Thớc thẳng, com pa, thớc đo góc, đọc trớc bài 7. c. ph ơng pháp : Quan sát, vấn đáp, thực nghiệm, hợp tác nhóm. D.Các hoạt động dạy học: I/ ổn định tổ chức: II/ Kiểm tra: - Nêu các dấu hiệu nhận biết tứ giác nội tiếp đờng tròn? - Trong các hình sau hình nào nội tiếp đợc trong đờng tròn: Hình bình hành, hình chữ nhật, hình vuông, hình thang, hình thang vuông, hình thang cân? Vì sao? III/ Bài mới: hoạt động gv và hs Nội dung ghi bảng (?) Xem hình vẽ trên bảng phụ làm bài tập 56 (SGK). Hãy tính số đo các góc của tứ giác ABCD - Đặt x = BCE = DCF, áp dụng tính chất góc ngoài của tam giác vào 2 tam giác BEC & DCF - áp dụng tính chất 2 góc đối diện của tứ giác nội tiếp, từ đó tính đợc x, có đ- ợc giá trị của x ta tính đợc số đo của các góc tứ giác ABCD Vẽ hình và ghi GT-KL của bài toán ? - Để c/m tứ giác ABCD nt ta c/m đk nào ? Dựa vào gt ta tính góc DCB = ? ACD = ACB + BCD = ? độ 1. Chữa bài tập Bài tập 56 /89: Đặt x = BCE = DCF Khi đó : ABC + ADC = x+ E + x + F = = 2x + 60 0 = 180 0 Hay x = 60 0 Vậy :ABC = 60 0 + 40 0 = 100 0 ADC = 60 0 + 20 0 = 80 0 BCD = 180 0 - x = 180 0 - 60 0 = 120 0 BAD = 180 0 - BCD = 180 0 - 120 0 = 60 0 2. Luyện tập Bài tập 58/90sgk GT ABC đều, trên nửa mp bờ BC lấy D DB = DC, ACBDCB 2 1 = KL a/ t/giác ABCD nội tiếp b/X/đ tâm đ/tròn qua A, B, D ,C - C/m BDC cân = > DBC = ? từ đó tính góc BD = ? - ACD + ABD = ? (?) Xác định tâm đg tròn ngoại tiếp tứ giác ABCD ? Ta có: DCB = 1 2 ACB (gt) = 1 2 .60 0 = 30 0 ACD = ACB + BCD = = 60 0 + 30 0 = 90 0 (CB nằm giữa 2 tia CA và CD) Mà BDC cân tại D (DB = DC), nên Trờng THCS Nguyễn Văn Cừ Giáo viên: Nguyễn Thị Quang DBC = DCB = 30 0 ABD = 60 0 +30 0 =90 0 Vậy ACD + ABD = 90 0 +90 0 = 180 0 Tứ giác ABCD nội tiếp b) Vì ABD = 90 0 nên AD là đờng kính của đ/tròn ngoại tiếp tứ giác ABCD. Do vậy tâm đ/tròn ngoại tiếp tứ giác ABCD là trung điểm của AD . IV. Củngcố : ? Đ/ n Tứ giác nội tiếp, Định lý Làm bài kiểm tra 15 phút Đề bài: Cho tam giác ABC. Các đờng phân giác trong của góc B và góc C cắt nhau tại S, các đờng phân giác ngoài của góc B và C cắt nhau tại E. Chứng minh BSCE là một tứ giác nội tiếp. Đáp án và biểu điểm: - Vẽ hình và ghi giả thiết, kết luận (2 điểm) - SBE = 90 0 (Góc tạo bởi hai tia phân giác của hai góc kề bù) 3 điểm - SCE = 90 0 (Góc tạo bởi hai tia phân giác của hai góc kề bù) 3 điểm - SBE + SCE = 180 0 . Vậy tứ giác BSCE nội tiếp đợc đờng tròn.(2 điểm) V. H ớng dẫn về nhà - Sử dụng đợc tính chất của tứ giác nội tiếp trong trong thực hành làm toán . - Về nhà làm tiếp bài tập 59,60 SGK - Chuẩn bị bài mới: Đờng tròn ngoại tiếp, đờng tròn nội tiếp E. Rút kinh nghiệm Kết quả bài kiểm tra điểm giỏi Khá + trung bình điểm yếu, kém . dạy học: I/ ổn định tổ chức: II/ Kiểm tra: - Nêu các dấu hiệu nhận biết tứ giác nội tiếp đờng tròn? - Trong các hình sau hình nào nội tiếp đợc trong đờng tròn: Hình bình hành, hình chữ nhật, hình. điểm: - Vẽ hình và ghi giả thiết, kết luận (2 điểm) - SBE = 90 0 (Góc tạo bởi hai tia phân giác của hai góc kề bù) 3 điểm - SCE = 90 0 (Góc tạo bởi hai tia phân giác của hai góc kề bù) 3 điểm -. 100 0 ADC = 60 0 + 20 0 = 80 0 BCD = 180 0 - x = 180 0 - 60 0 = 120 0 BAD = 180 0 - BCD = 180 0 - 120 0 = 60 0 2. Luyện tập Bài tập 58 /90 sgk GT ABC đều, trên nửa mp bờ BC lấy D DB