1. Trang chủ
  2. » Giáo án - Bài giảng

ÔN TẬP TOÁN 10 ĐỢT 2( KHTN HN)

9 197 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 3,66 MB

Nội dung

\d,,* " / ,,-,) wcAx HANG cAu uor t DAr sO - Ldp o (DQT 2) (Ddng cho hoc sinh Kh6i 10, Tlvdng THPT thug€n KHTN) A. Ddt 2 I. N6i dytg t] Oitrtr li thua,n vd ddu tam thitc bflc hai, dinh li Vi-6t (25 bbi). 2. Lrrgng gi6,c (ding thr3c Pitago, c6.u g6c c6 li€n quan dac biet) (30 bbi). 3. B5,t d8ng thfic Bu-nhi-a-c6p-xki (15 bhi)' II. Phan ngdn hdng cdu h6i Dinh Ii f,huln. dinh li' Vi'-dt ah' ttng dpng (cd'c bdi Be,i 1. X6t d5,u cta cac tam thrlc bflc hai sau tit 1-25) c)-2r2*r-1. a)-2r2*5r*7 b) 3r2 -8s*2 Bei 2. T\m rn dc (hn7L)p'- (2m+L)x+* +3 2 0vdi moi x' FEIg. Tim m,Id (rfi-f 12 +2(m+ 1)r **:2 < 0vdi moi x. Ae_4 Timrnddphrrongtrinh (rn2 *4m-S)g'-2(*- 1)r+2:0 c6hai nghi€m drrong. Bij 5. Tin rz d6 ph,rnng tr\nh mz? -2(,m - 1)" *4m- 1 : 0 cd hai nghi€m tr6i t1 dau. Bei 6. Tim rn rld phrrongtrinh rnr2 -2,(m - 1)r *4nt'- 1 :0 c6 hainghiQm6,m phd,n biQt. bai Z. Tim rn dd phrrong trinh (rn - l)rt - 4rnr * 3rn l- L0 : 0 c6 hai ngiri€m phon biQt ldn hon 2. bai e. Tirn rn dti phrrong trinh (3 - *)rz *Zmx + n'L+ 2 : 0 c6 ha-i nghiQm phi;r biQt nh6 hon 1. geig.'Iim rn cti5 phrrong trinh (zn - t)r' - 2\m+ 3)r - m * 2 : 0 c6 2 nghiQrn th6amanrf i1I12. Bei 10. Tim m ad'phriong trinh 13 + rnr *2m * 8 :0 c6 3 nghiQm phdn biet. BAi 11. T\m rn a<j ptlrong tr:inh (m - l)rn -2(**2)t2 *2rn* 1 : 0 c6 4 lghiQrn phsn biQt. bal f Z. Cho a, b, c ib cac s6 thuc th6a m6n 5a + 4b + 6c : 0. Chfing minh rling phuong trinh or2 * bx * c: 0 c6 it nh6t mQt nghiQm thUc' bai fi. Chrlng minh rh,ng vdi mqi Q,b,c phrrong trinh sau ludn c6 qghiQm (r - a)(r - b) + (r - b)(" - c) + (r -^c)(t - a) :0' fiii fa.'GiA.sfi phucrng trinh ar2 *br* c:0 vd nghiQm vb, a * b+ c< g.Chit*g minhrb,ngc<0. Bai 15. iim piruong trinh b6,c hai c6 c6c nghiQm lir, cic lfry thila bflc b:r crla c6c nghiOm cria phrrong trinh 12 +5r -J : 0 gai f O. T\rn m dii pS,rong tritrlt rnr2 - 2{* * 1)r * m- 4: 0 c6 hai nghiQrn ph6'n biQt th6a rt6n 11 * 4s2 :3. ,i Bei 17. T\m m d6 phrrong trinh 12 -2(*-2)r+m2 +2m-3:0 cd hai nghiern phAn biQt th6a m6,n 1 I xt*nz i-a: b ' Bai 18. Gi6 sfi rr,rz lh, hai nghiQm cria phuong trinh x2 - 4x * I :0. Tinh gi6, tri cria bi6u thrlc D- 1 , 1 I - I -r 1 i l'* #l l'+ #rl Bei 19. Tim m d6 phuong trinh 2r2 - 13r * 2m: 0 c6 1 nghiQm g6p doi mQt nghiQm cria phrrong trinh 12 - 4r * m:0. Bai 20. T\rn rn dei plruong trirrh lr2 - (m-2)r+m2 +m*2:0 c6 hai nghiOm tr,12 sao cho r! + rl ctat gi6 tri nh6 nh6t. Bai 21. T)m nr, dii phuong+rinh ra - 2mn2 - m * 2 :0 c6 nghiQm k6p. B,iij 22. Tlm m di5 phrrong trinh ua - (*" *4m)x2 *7m- I : 0 c6 4 nghiQm phdn biQt vb tting binh phuong cac nghiQm d6 b!,ng 10. Bai 23. Chrlng minh rB,ng vdi mgi s6 thUc r,g ta c6 12 +3g2 lZry *2r*69*3 > 0. B,di 24. Cho x,y lb c6,c s6 thqc th6a md,n 5r2 + 5A' - 5x - Lly + 8 < 0. Tim gi6 tri ldn nh6t vd nh6 nh6t cfra bidu thrlc r * 33y + 1. Bai 25. Cho r, y € R th6a mdn 12 +A2: 1. Tim gi6 tri ldn nh6t vd nh6 nh6t cira o- r ' a+2' Ludng gid,c (cd,c bdi til 26-55) Bai 26.vTinh 2 (sin6z * cos6") - 3 (sinar * cosar) . Bai z7.nTinh (t - tan2 r)2 1 - 4h'*; - AsiF rcos% \,/ Bai 28 Rrit gqn n - sinz _ ^l_. V 1 + sinr Bai 29Y Chrlng minh rB,ng tanz tan y : tanr * tan y cotr*coty Bei 30YChtlng minh rB,ng sinr*cosu -1 2cosr 1 + sinr 1- sinr I - cosz sinr-cosr*1 Bai 31. Chrlng minh rhng tanz x -tan2y sin2r - sinz3t -;"7;;"7 a : lit";;i'.Z;' Bai g2.JCho sin tr : -i,,, . " .+ Tinh tan3 r I cots r Bai g3.'Cho cos r: -1,0. r < zr. Tinh (sin r * tan r)(cos r * cot r) Bai 84.'Cho tan z * cot r : l. Tfnh sina r + cosa r. Bai gb. Cho sina * cos ": |. Tinh sin8 a * cos8 o. 1 Bai 36. Cho sino - cos ": | (0. o < t). Tinh r,6ina+ \reoso' Bai 37. Cho sin a - cos a : \. Tinh sinee a + cosloo a' Bai g8. Cho sin6 u + cos6 , : tn Tinh sinm z + coslo r. Bai 39. Cho tan a : 2. Tinh gi6 tri cria bi6u thfic S : sin2 a * 2sina coso - 3cos2 a' ./ Bai 40."Cho tanr : 2. Tinh gi6 tri cria biiSu thirc P:sin3=r+2:otc' cosss*sin3r' Bai 4liTfnh gi6 tri cira bidu thrlc S : sin2 10" + sin220o + "' + sinz80". Fidi 4zlTinh gi6, tri cria bi6u thrlc P : tan 10o tan20" tan80"' Bai 4g./Tinh "4 : cos ft + "o, '#. + .o. ff. Bei 44.'Don gi6,n B : sin2 (" * i)*sin2 (".'+)+sin2 (" . T)*sin2 (". ?) ) Bei 45' Don gi'n-bf.l[]", i" (" - T) - tan (;. ") "", (T -,) Bei 46./cho A, B,C lds6 do ba g6c cria rn6t tanr gi6,c. chrlng minh rh,ng A+B+3C ,\ t ^ , n , ' a) sin tT: cosC b) cos (A+ B - C): -cos2C , /A+B-2C\ ,3C c) ta" (- z ):corV' Bei 47' Tim gi5' tri L6n nh6t g : sin6 r * cos8 r' Bei 48. Tim gi6, tri nh6 nh6t g ::,/ffi; + #cosr vdi t € .)_ I 7T1 lo';l Elai 49. Tim gi5, tri ldn nh6t vb nh6 nh6t cria bi6u thrlc ^ _ lsinzl ^ - , +lcosfl Bai 50. Tim gir6, tri ldn nh6t vd nh6 nh6t cria biiSu thrlc 1- sinar+1 cosd r * 2' ElAi 5tri Tim gi6 tri l6n nhit vd nh6 nhdt cfia bitiu thrlc sinl2 r + cosr2.z. Bai 52. Tlm gi5, tri *6rrr*#t vh, nh6 nh6t cria bidu thrlc sina r * cosa " + ;f + I cos4 r' Bai 53. Gi6i phrrong trinh sin3 z * coss *1 : 0. Bei 54. GiAi phrrong trinh tanr *cotr {tan2 r *cot2 e * tan3z *cot3 x:6. Bai 55. Chrlng minh rXng phrrong trinh / + tane + $ - cotr: 1 vO nghiQm. B6t dd,ng thtc Bu-nhia-c5p-xki (cd,c bd,,i tit 56-70). Elei 56.i Cho c2 * 2A2 *-322 : 1. Tim gi6 tri ldn nh6t vh, nh6 nh6t cria bidu thrlc A:r*2y*32. 1r Bai 57. Cho r, y, z ld, c5,c s6 thgc th6a m5,n z *2A - 2z : I. Tim gi6, tri nh6 nh6t cfra bia5u thrlc r'+y2 + 22. Bai 58. Cho a, b,c ) 0. Tim gi6 tri nh6 nh6t cria bii5u thrlc o- A - b\ - "\ " - a-fzb+3c' b*2c'*3a' c*2q*3b' {9 <-, {v" L \r_- -*-'4 , eA, Bai 59. Cho a, b, c 7 0. T\m gi6 tri l6n nh6,t vb nh6 nh6t cria bitiu thrlc -a4b9c, 5:ffi+ "+o+ otrb' Lcs' Bei 60. Cho a, b,c ) 0. Chrfng minh ring -_ \ a2 6z 3 a+b+ d b+r- "+o- e+b' 2 Bei 61. Cho a, b, c ) 0. Chfing minh rlng *"'4_q. s abc r-r > (b+ c)2 (c * o)2 (a + b)' - 4(a+b+c)' Bai 62. Cho a, b,c) 0. Chrrng minh rl'ng (#")' .(*^)'* (#r)'= * Bai 63. Cho o, b,c)0.Chtrng.minh rB'ng o , b , : ix|*1*lt t6+D * 4o *.1 t o("+ o) - -\o b ' c' Bai 64. Cho a, b,c) 0. Chrlng minh rX'ng W +WW + JW *GTTF + J+FTTATEP > 4(o+ b + c)' Bai 65. Cho a, b,c) 0. Chr?ng minh r}'ng a 2b 3c -6(o*b+c) r+t*z+a*3+{>6+o+b+c' Bai 66. Cho a, b,c) 0.Chrrng minh rX'ng ab bc ca -a*b-lc "+%- b+2"- r+zos t ' Bai 67. cho a, b, c,d, > 0 th6a m6,n ab + bc + cd, + d,a: 3. T\m gi6, tri nh6 nhdt Bei 68. Cho ab + bc+ ca:Sabc. Chtrng minh rX'ng 111-9 FGTD + Rc+ a) + ;6* 61 >'@b+ bc+6 Bai 69. Cho a, b,c) O,abc: 1. Chrlng minh rbng 1 1 I -1 1 1 F6.T + rcTA + A;+ b) 2 zo* %+ 2"' 70. cho a,b,c> 0 th6a m5,n a+6+c:3. Tim gi6. tri nh6 nh6t cira bidu cria bi6u thrlc Bai thrlc a4 6n c4 ^- -: L- " - Za, *bc' Zb2 +ca' 2cz +ab NGAN sAxc cAu uor HINH HeC - Ldp 10 (DdT 2) (Diing cho hoc,sinh Kh6i 10, Trttdng TH?T chuy€n KHTN) I. NQi dung l. Luong giac (5 bni). 2. Tfch v0 hudng (11 bdi). 3. He thilc luong trong tam gi6c (11 bdi). 4 He thrlc luong trong drldng trdn (3 bd,i). II. Ngdn hing cdu h6i 1. Luong gi6c Cdu 1. Cho .o.!1, * +: *+. Chrlrng minh rbng m n m*n coslou , sinlor 1 *^ . no : {^*ry Cau 2.t Cho 6sinar - 2cosa r I, tinh gi6 tri c6c bi6u thrlc a) 6sinar - cos6:r. b) sin6r+6cosar. CAu 3. Cho tan rtany: I, tfnh gid. tri bidu thrlc =-f-* ] " b u i acos2z+bsin2r'acos2g46ro"n theo a, b. Cau al Cho r : sin g, U : cos g sin g, z : cos p cos d, tinh rz + y2 + zz . cdu 5/chfing minh rbng bi6u thrlc GC%T4.;F; + '/"osn;+ 4s=[z; khong phu thuoc vb.o r. 2.Tich vO hrrdng 6"-qCL 1,qggi6c ABC vd P 1) rliOrn b6t kj,. Clnnrg rnirrtr rturg PICT+pdTB:o -j> ____+ PA.BC + ceu 71 cho hai vector AB,fu A'Al rb, hinh chi€u vuong g6c cria A, B l€ndirdng tlring C.D Chirrrg rninh angZB.CB :TB.eD. d Cau 8. Cho tam gid,c ABC b6t kj,, c6c dudng cao AAr, BBr,CCr. Az, Bz,C2 ld t'urrg rli6m BC, cA, AB. chtrng minh reng lfrrm +Ttr'ri;ffi";; : o Cd.u 9. Ch, tam gi6c ABC trung tuy6n AA,i. -t /a) chrrng minh ri,ng TB Td - AB2 + AC2 - BC2 . '2 b) Chring minh rhng IB.ft = ALI| - P9: 4 c) Dung hinh binh hdnh ABDC. Chrrng .riinh .hng =t + 2T6.BV : AD2 + BC2 - 4AB2.z4Bcl: AD2 + BCz _ 4AC2. CAu 10. Cho tam gi6c ABC. trong tdm G, p lh di6m bAt k,, a) Chrltng minh rdng PA2 + PB2 + PC2 : Jp'Cz + GA2 + GB2 + GC2 : JpGz + AB2+BC2+CA2 3 ,: b) Gqi (o,R) lb. drrdng trdn ngoai ti6p tam gib"c ABC. K la trong t5.m tam gi6c OBC. Chfing minh rBng 3AK2 : AB2 + AC2 + Rt - Bq' C6u 11. Cho tam gid,c ABC,^-L ld tAm rlrrdng t.On nOi tiel, a) Chfing minh rbng :{: - :y:- - =t9:= :; . AB.AC BC.BA CA.CB b) chrlng minh rbng AB.AC + BC.B.4+c,q.cn > eA+ IB + IC)r. cdu 12. cho tam gi6c ABC truc ram H. dudng trdn ngoai tiep (o, R). chrlrng rninh rXng OH '::= ^ ^ R : cos HOA * cos HOB + cos HOe Cdu 13. Cho tam gii"c ABC.Tim vi-tri c6c di6m P tren dudng trbn n6i ti€p sao cho t6ng binh phuong khoing cdc trl p dcn c6c dinh tam gi6c lZn nh6t. c6u 14. cho ? yt tacdc so rhuc a, b. Tim vector ? 1ui6u dion ? theo ?, ? vb.a.b)saocho {Ai:o I b.t:u Cdu 15. Cho ba 'ecror A,t .?. rinr di€' kien Ae f ".71? : -d1l .21. cdu 16.,.cho P ld di€lm b6t kj'tr6n d rdng trbn ngoai ti€p tam gi6c d6u ABC. a) Chfng minh rd,ng "orFTA*cos pOB*cospOC:0. b) chirng minh ra,ng\ os' FTA* cos2 FoE + cos2 Fdd khong doi. cdu 1r. Cha rarn gi6c ABC ddt.t : eA.ndFd+fcA.cAFB+tTB IAsd clhLls nrinh ring tam gi6c ABC vuong khi vh chi khi ? co'phrrorrg uuo'g go" v'<1i BC, 3. He thrlc luong trong tam gi6c cAu 18. cho tam gid"c LABC vuong tai va tam gidc aA,B,c, ri0rrg darrg tar' gi6c AABC. AH,A'H'ldn ltrot lh dudng cao cria tam gi6c ABC ua turr,'gia" A'B'C'. Chrlng minh rhng i11 ABA!B' + AgA'C:7gNJg, cAu 19. cho tam. gi(rc ABC vu6ng Lai A. Dudng cao AH. Ar, Azlan luot lb hinh chieu vuo.ng goc cria H len AB, AC. Chrrng minil rbng ' BA, '483 'cAz AC3 h\ -2 1 1 "t 441114"- s^"rt s*n , i ,I HA 1 HA C) =; : -{- r '- \/ - - "" ) -' HAr.HA2 ,AC' AB.HBtrxB-T7.HC) cAu 2o. cho tam g i6c ABC vu6ng tai Ar. p rh dicm b6t ky tr€n drrdng rhx.g Bc, E,.F la hinh chi€u cria p le' rlrrdrrg thdng AB,AC. chrlng minh rh,r€ ME.MC : riA.EE +FA.F1. C6u 21. Cho tam gi6c ABC. a) Chrlng minh rhng ,4: 60" khi vd chi khi a2 : bz + cz - bc b) Chfing minh rdng A: 120" khi vA, chi khi a2 : b2 + c2 + bc c) Chirng minh ri,ng neu ,4 > 60" thi bz * c2 2a2, b * c 26, Cdra 22. Cho tam gi6,c ABC. Clrlng minh rX,ng \,, A a "c al (o^- c)coL- 1-(. a)coti *@ -ir)cot i:,, b) (b' - c2)cotA+ (c2 - a2)cotB + (a2 - bz)-cotC:0. Cdu 23. Cho tam gifLc ABC. cdc phdn gi6c tlong c6 d6 dhi lo,16,l,. a) chfing nrinh rhng # * AS cos $ 1 I I La t6 - t" :;t b*; b) Nou tamgi6c ABC nhon. Chfngrninh rbng i.l * i. ,/2t! *l * tt lo 16 1,, ,a b r:' CAu 24. Cha lam giS,c ABC b6n kinh duong trdn bing t,i€p g6c / liL ro, b6n kinh rtrdng trdn n6i ti€p r. bd,n kfnh drrdng trdn nqoai ti6p R. rr) Clrrtrrg rninh rilg cosl - cosB + cosC: f = ' Ro b) Chirng minh r5,ng -cosA*cosB +cos(l: -{_Fi" c) Chfng minh ranf bct ca t ab : p2 + 4Rr - r''. R d) Chrrng rninh rdng bc - ab - ca : (p - o)' - 4Rr^ + rf; Cdu 25. Cho tam gi5.c .ABC c6 /-A:2/.8. Chung mirrh rbng n2:b2 +bc Cdu 26. Cho tam gi6c ABC tAm cludng trdn nOi ti6p 1, tam dudng trdn ngoai ti€p O, tntc tdnr 11. Gie si't 01 : I H. Chrrng minh rd,ng tam gi6c ABC c6 rndt g6c bbrrg 60". CAu 27. Clto tam gi6c ABC, a) Cho {.,a,2lb c6c s6 thuc b6t kj'. Chrlng minh rd.ng azcosA* zrcosB * rycos 6 . t : ! J z ') b) Tam giac A'B'C' ld tam giSc b6t kj,. Chtrng -inn".arrg cotA * cotB * cotC )Sg + t:tf' * cosC' - sinA sinB sinC 4. I{.e thr?c luong trong dudng trbn CAu 28. Cho b6n didm hai dudng th&ng AB,CD cdt nhau tai L{. Chr'rng niinh r},ng A, B , C , D cirng nhm tr€n drrdng trbn khi vd chi khi -trA.MB : Me .MD . AD. Dtrdng trdn ngoai ti6p tarn.giilc. ADM cdt AB,AC tai,E,F. Chfng minh rdngBE':CF. Cdu 30. Cho tam gi6c ABC, c5.c: duilng c,ao AA', BB',CC'd6ng quy tai truc tArn H. ") Chrrng minh rbng a) HA.HT : HA.HT : HB.HF : He .Ee. t:) 2(x7.TH +EF.na +e7trE): AB2 + BC2 +CA2. "-,.':j'tr=!':. : l . m,Id (rfi-f 12 +2(m+ 1)r **:2 < 0vdi moi x. Ae_4 Timrnddphrrongtrinh (rn2 *4m-S)g' -2(* - 1)r+2:0 c6hai nghi€m drrong. Bij 5. Tin rz d6 ph,rnng tr h mz? -2(, m - 1)". +ca' 2cz +ab NGAN sAxc cAu uor HINH HeC - Ldp 10 (DdT 2) (Diing cho hoc,sinh Kh6i 10, Trttdng TH?T chuy€n KHTN) I. NQi dung l. Luong giac (5 bni). 2. Tfch v0 hudng. nghiQrn th6amanrf i1I12. Bei 10. Tim m ad'phriong trinh 13 + rnr *2m * 8 :0 c6 3 nghiQm phdn biet. BAi 11. Tm rn a<j ptlrong tr:inh (m - l)rn -2(* *2)t2 *2rn* 1 :

Ngày đăng: 01/05/2015, 00:00

TỪ KHÓA LIÊN QUAN

w