Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
260 KB
Nội dung
Đề Học sinh giỏi trờng lớp 8 - thời gian: 90 Câu 1: Chứng minh (x-3)(x-5)+2 luôn luôn dơng với mọi x Q Câu 2: Cho biểu thức M = 4b 2 c 2 - (b 2 + c 2 a 2 ) 2 a/ Phân tích M thành nhân tử b/ Cho 3 điểm A,B,C khác nhau với BC = a ; CA = b ; AB = c. Tìm điều kiện về vị trí tơng quan giữa 3 điểm A,B,C để M = 0 Câu 3: Cho y > x > 0 và 2x 2 + 2y 2 = 5xy Hãy tính E = yx yx + Câu 4: Cho tam giác ABC vuông cân (Góc A=90 0 ). Từ một điểm M tùy ý trên cạnh BC, kẻ đờng vuông góc với BC cắt AB,AC lần lợt tại D và E. Gọi P là trung điểm BD ;Q là trung điểm CE. a/ nhận dạng tứ giác APMQ b/ Khi M chuyển động trên cạnh BC thì trung điểm I của đoạn PQ chuyển động trên đờng nào? Câu 5: Giải phơng trình 12 686 24 24 ++ ++ xx xx = -y 2 +4y +1 Đề thi công nhận học sinh giỏi trờng năm 2004 - 2005 lớp 8 Thời gian: 90 phút Câu 1: Cho biểu thức A = + + 32 2 2 2 2 3 : 2 2 4 4 2 2 xx xx x x x x x x 1 a/ Tìm ĐKXĐ của A và rút gọn biểu thức A b/ Tìm giá trị của x để A dơng c/ Tìm giá trị của A trong trờng hợp 7x = 4 Câu 2: Cho x, y, z là 3 số khác không thỏa mãn =++ =++ 2002 1111 2002 zyx zyx Chứng minh rằng trong 3 số x, y, z tồn tại 2 số đối nhau Câu 3: Tìm GTLN , GTNN của: A= 2 32 2 2 + ++ x xx Câu 4: Cho tam giác ABC có 3 góc nhọn BD và CE là 2 đờng cao cắt nhau tại H. Chứng minh rằng. a/ HD . HB = HE . H C b/ HDE đồng dạng với HCB c/ BH .BD + CH . CE = BC 2 Đề thi học sinh giỏi huyện năm học 2000 - 2001 Lớp 8 thời gian 120 Câu 1: Phân tích các đa thức thành nhân tử a/ (x 2 + x) (x 2 + x + 1) 2 b/ x 3 + y 3 + z 3 3xyz Câu 2: Cho ab 7. Chứng minh (a 3 b 3 ) 7 Câu 3: Cho biết 2 111 =++ cba và a + b +c =a.b.c. Chứng minh 2 111 222 =++ cba 2 Câu 4: Biết x;y;m;n là các so nguyên thỏa nãn điều kiện: x +y = m + n. Chứng minh rằng x 2 + y 2 + m 2 +n 2 = ( x+y) 2 + (x-m) 2 + (x-n) 2 Câu 5: Cho tam giác ABC gọi O là giao điểm 3 đờng phân giác trong. Đờng thẳng qua O và vuông góc với CO cắt CA tại M và CB tại N. a/ Chứng minh góc AOB = 90 0 + góc C/2 b/ Chứng minh AM/BN = (AO /BO) 2 Đề thi học sinh giỏi huyện năm học 2001 - 2002 Lớp 8 thời gian 150 C âu 1: Tính S= ab+cd Biết a 2 +b 2 =c 2 +d 2 =2002 và ac+bd=0 Câu 2: Cho A= xx xxx + 3 23 2 a)Rút gọn biểu thức A b)Tìm x để A=0 c) Tìm giá trị nguyên của x để A có giá trị nguyên Câu 3: Phân tích các đa thức thành nhân tử a) a 4 +8a 3 +14a 2 -8a-15 b) x 2 -y 2 -4x+4 Câu4 : Tìm giá trị nhỏ nhất của biểu thức A= x 2 + xy + y 2 -3x - 3y + 2002 Câu 5: Cho tam giác vuông ABC( A =90 0 ) vẽ đờng cao AH vẽ các đờng vuông góc HI tới cạnh AB và HK tới cạnh AC. Gọi M,N theo thứ tự là trung điểm của BH vàCH. Chứng minh rằng IK đi qua trung điểm của đờng cao AH. Chứng minh rằng tứ giác MNKI là hình thang vuông. Chứng minh rằng diện tích hình thang MNKI = nữa diện tích ABC . 3 Đề thi học sinh giỏi huyện năm học 2002 - 2003 Lớp 8 thời gian 150 Câu1: Cho A= 22 1)( 2442 222 +++ ++ mnnm mnnmn a) Rút gọn A b) Chứng minh A>0. Với giá trị nào của m thì A lớn nhất. Câu2: Tính tổng a 1997 + b 1997 + c 1997 .Biết a + b + c = 0 và a 3 + b 3 + c 3 =0 với a, b, c Q Câu3: GPT: 8x 3 - (4x+3) 3 + (2x+3) 3 =0 Câu4: Tổng các chữ số hàng đơn vị và hàng trăm của một số có 3 chữ số =16. Nếu viết các chữ số ấy theo thứ tự ngợc lại thì đợc số nhỏ hơn số đã cho là 198 đơn vị. Biết rằng số đó 9. Tìm số đó. Câu5: Cho hình thang KLMN (KN LM ).Gọi E là giao điểm hai đờng chéo. Qua E kẻ đờng thẳng song song với LM cắt LK ở H và MN ở F. Chứng minh a) EH = EF; b) LMKNEF 111 += Đề thi học sinh giỏi huyện năm học 2003 - 2004 Lớp 8 thời gian 150 Câu1: Cho A = 254 6962 23 234 +++ ++ aaa aaaa a)Rút gọn biểu thức A b) Tìm giá trị nguyên của a để A có giá trị nguyên Câu2: Cho a, b, c,d thoả mãn a + b + c + d = 0 . Chứng minh rằng: a 3 + b 3 + c 3 + d 3 = 3(c+ d)(ab- cd) M= 395839082 + xx 4 c) Tìm GTLN của biểu thức N = 32 1 22 ++ ba + 32 1 22 ++ cb + 32 1 22 ++ ac Biết a ,b ,c là các số dơng thoả mãn điều kiện a.b.c=1. Câu4: Tìm nghiệm nguyên của phơng trình: x 4 -x 2 +2x+2=y 2 Câu5: Gọi M, N lần lợt là trung điểm của các cạnh AD, BC của hcn ABCD. Trên tia đối của tia DC lấy điểm P bất kì. Hai đờng thẳng AC, PM cắt nhau tại Q. Chứng minh rằng: a) AC, BD, MN cùng đi qua một điểm b)Góc QNM =Góc MNP Đề thi học sinh giỏi huyện năm học 2004 - 2005 Lớp 8 thời gian 150 Câu 1: Tính a) 2 2005 + 2 2005 + 2 2005 + 2 2005 + 2 2005 + 2 2005 + 2 2005 + 2 2005 = 2 x b) 93 =x Câu 2: Cho biểu thức: A = 1 123 :) 3 1 1 3 32 32 ( 32 + + + + + x x x x x x xx x a)Rút gọn biểu thức A b)Tìm ĐKXĐ của biểu thức A c) Tìm những giá trị nguyên của x để A có giá trị nguyên Câu 3: Tìm những giá trị nguyên của x để đa thức f(x) = x 3 3x 2 3x - 1 đa thức g(x) = x 2 + x +1 Câu 4: Cho tam giác ABC có các đờng cao BB 1 , CC 1 và góc A lớn nhất . Chứng minh rằng: BA.BC 1 + CA.CB 1 = BC 2 . Câu 5: Cho hình thang ABCD (AB Song song với CD ). Biết AB = 2,5 cm; AD = 3,5 cm BD = 5 cm và góc DAB = góc DBC . a) Chứng minh ADB đồng dạng BCD . b) Tính độ dài các cạnh BC và CD c) Tính tỉ số diện tích hai tam giác ADB và BCD . 5 Sở Giáo dục và Đào tạo Nghệ An Kì thi tuyển sinh vào lớp 10 trờng THPT chuyên phan bội châu Năm học 2008-2009 h ớng dẫn chấm và biểu điểm môn toán Đề chính thức (Hớng dẫn và biểu điểm chấm này gồm có 04 trang) Bài 1 (2,0 điểm) Điểm Điều kiện: 1 x, y 9 và x, y nguyên 0.25 Ta có: 2 2 = + xxyy xx yy (1) x.100.11+y.11= x 2 .11 2 +y 2 .11 2 100x+y=11(x 2 +y 2 ) 0.5 => 11 + x y => x+y=11( vì 1 x, y 9; x, y ) 0.5 => (x,y) chỉ có thể là các cặp (2, 9); (3, 8); (4, 7); (5, 6); (6, 5); (7, 4); (8; 3) (9, 2) 0.5 Thay lân lợt từng cặp trên vào (1) ta thấy chỉ ó x=8 và y=3 thỏa mãn. Vậy số cần tìm là 83. 0.25 Bài 2 (2,0 điểm). Điều kiện: x -1 0,25 Ta có: 3 2 10 1 3( 2) + = + x x 2 2 10 1 1 3( 2) + + = + x x x x 0,25 Đặt 2 1 1 = + = + u x v x x , (điều kiện u 0, v > 0) khi đó phng trình (2) trở thành 10u.v = 3(u 2 +v 2 ) 0,5 (3 )( 3 ) 0 = u v u v 3 3 = = u v u v 0,25 Trờng hợp 1: u = 3v ta có: 2 1 3 1 + = + x x x 9x 2 -10x+8 = 0 vô nghiệm 0,25 6 Trờng hợp 2: 3u = v ta có: 2 3 1 1 + = + x x x 9x + 9= x 2 x+1 0,25 x 2 10x 8 = 0 5 33 5 33 = = + x x (thỏa mãn điều kiện x -1) Vậy phơng trình đã cho có các nghiệm là: 5 33 = x và 5 33 = + x 0,25 Bài 3 (1,0 điểm) Vì phơng trình f(x) = x vô nghiệm nên f(x) > x, x R hoặc f(x) < x, x R 0,5 . Nếu f(x)> x, x R thì a[f(x)] 2 + b.f(x) + c = f(f(x)) > f(x) > x, x R suy ra phơng trình a[f(x)] 2 + b.f(x) + c = x vô nghiệm 0,25 . Nếu f(x)< x, x R thì a[f(x)] 2 + b.f(x) + c = f(f(x)) < f(x) < x, x R suy ra phơng trình a[f(x)] 2 + b.f(x) + c = x vô nghiệm Vậy ta có điều phải chứng minh. 0,25 Bài 4 (1,0điểm) Ta có xy+yz+zx= xyz 1 1 1 1 + + = x y z Đặt 1 1 1 , , = = = a b c x y z ta đợc a, b, c >0 và a+b+c=1 (1) Khi đó bất đẳng thức đã cho trở thành: 2 2 2 2 2 2 3( ) + + + + a b c a b c b c a (2) 0,25 Ta sẽ chứng minh (2) đúng với mọi a, b, c thỏa mãn (1) Thật vậy, do điều kiện a+b+c=1 nên ta có: (2) 2 2 2 2 2 2 2 2 2 2 3( ) ( ) + + + + + + + ữ ữ ữ + + a b c a b b c c a a b b c a c a b c 0,25 2 2 2 2 2 2 ( ) ( ) ( ) ( ) ( ) ( ) + + + + a b b c c a a b b c c a b c a 2 2 2 1 1 1 ( 1)( ) ( 1)( ) ( 1)( ) 0 + + a b b c c a b c a 0,25 7 2 2 2 ( ) ( ) ( ) ( ) ( ) ( ) 0 + + + + + a c b a c b a b b c c a b c a Bất đẳng thức đúng vì: a, b, c > 0. Dấu đẳng thức xẩy ra khi và chỉ khi a = b = c =1/3 hay x = y = z = 3. 0,25 Bài 5 (3,0 điểm) a (1,5 điểm) Theo tính chất tiếp tuyến ta có OM, ON lần lợt là phân giác của các góc EOH, FOH 0,25 Tứ giác AEOF nội tiếp nên BAC + EOF = 180 o 0,25 Từ đó MON= 180 2 = = o BAC ABC ACB Suy ra MOB = ONC. Vậy MOB ONC b, 1,25 (điểm) Từ MOB ONC => = MB OB OC NC BM.CN=OB.OC= 2 4 BC = const Vì S AMN = S ABC S BMNC nên S AMN lớn nhất khi và chỉ khi S BMNC nhỏ nhất(do S ABC không đổi) 8 S S A B C N M O F H E Ta có S BMNC = S BOM +S MON + S NOC = 1 ( ) 2 + + R BM MN CN = 1 ( )( ) 2 + + + = + R BM CN ME NF doMN ME NF = 1 ( ) 2 + + + R BM CN BM BE CN CF = R(BM+CN-BE) do BE=CF R (2 . ) BM CN BE = R(BC-BE) không đổi Dấu = xảy ra BM = CN MN //BC H là trung điểm của cung nhỏ EF. Vậy S AMN lớn nhất khi H là trung điểm của cung nhỏ EF Câu 6 ( 1,0 điểm) Chia hìh vung đã cho thành 16 hình vung đơn vị(các cạnh song song với các cạnh hình vuông đã cho và có độ dài bằng 1) Do 33>16.2 nên theo nguyên lý Dirichlê, tồn tại ít nhất 3 điểm cùng nằm trong hoặc trên cạnh của một hình vuông đơn vị. Giả sử đó là ba điểm A, B, C ở trong hoặc nằm trên cạnh của hình vuông đơn vị MNPQ. Ta có MP = 2 và với mọi điểm E thuộc hình vuông MNPQ thì MP AE, tức AE 2 . Từ đó hình tròn (A; 2 ) phủ toàn bộ hình vuông MNPQ. Tơng tự các hình tròn (B; 2 ), (C; 2 ) phủ toàn bộ hình vuông MNPQ. Suy ra ba hình tròn (A; 2 ), (B; 2 ), (C; 2 ) chữa hình vuông MNPQ và ba điểm A, B, C nằm trong phần chung của ba hình tròn nói trên. Vậy câu trả lời bài toán là có, Sở GD&ĐT Nghệ An Kì thi TUYểN sinh VàO lớp 10 trờng thpt chuyên phan bội châu Năm học 2008-2009 9 Đề Dự Bị S Môn thi: toán Thời gian: 150 phút (không kể thời gian giao đề) Bài 1: (3 điểm) a) Tìm m để phơng trình (m+1)x 2 2mx + m 2 = 0 có hai nghiêm x 1 , x 2 thảo mãn Bài 3: (1điểm) Cho đa thức f(x) = ax 2 + bx + c (a 0 ). Biết rằng phơng trình: f(x) = x vô nghiệm. Chứng minh rằng phơng trình: a[f(x)] 2 + bf(x) + c = x vô nghiệm. Bài 4: (1điểm) Cho x, y, z > 0 thỏa mãn: xy + yz + zx = xyz. Chứng minh rằng: 2 2 2 2 2 2 1 1 1 3 y z x x y z x y z + + + + ữ Bài 5: (3 điểm) Cho tam giác ABC cân tại A. Gọi O là trung điểm của BC. Đờng tròn (O; R) tiếp xúc với AB ở E, tiếp xúc với AC ở F. Điểm H chạy trên cung nhỏ EF (H khác E, F). Tiếp tuyến của đờng tròn tại H cắt AB, AC lần lợt tại M, N. a) Chứng minh: MOB ONC b) Xác định vị trí của điểm H sao cho diện tích tam giác AMN lớn nhất. Bài 6: (1 điểm) Cho 33 điểm nằm trong hình vuông có độ dài cạnh bằng 4, trong đó không có ba điểm nào thẳng hàng. Ngời ta vẽ các đờng tròn có bán kính bằng 2 và tâm là các điểm đã cho. Hỏi có hay không ba điểm trong các điểm đã cho sao cho chúng đều thuộc phần chung của ba hình tròn có tâm cũng chính là ba điểm đó? Vì sao? Hết Họ và tên thí sinh: Số báo danh: 10 [...]... giác AMN lớn nhất Bài 6: (1 điểm) Cho 33 điểm nằm trong hình vuông có độ dài cạnh bằng 4, trong đó không có ba điểm nào thẳng hàng Ngời ta vẽ các đờng tròn có bán kính bằng 2 và tâm là các điểm đã cho Hỏi có hay không ba điểm trong các điểm đã cho sao cho chúng đều thuộc phần chung của ba hình tròn có tâm cũng chính là ba điểm đó? Vì sao? Hết Họ và tên thí sinh: Số báo danh: 11...Sở GD&ĐT Nghệ An Kì thi TUYểN sinh VàO lớp 10 trờng thpt chuyên phan bội châu học 20 08- 2009 Đề chính thức Môn thi: toán Thời gian: 150 phút (không kể thời gian giao đề) Bài 1: (2 điểm) Tìm số tự nhiên có 2 chữ số 2 xy , biết rằng xxyy = xx + yy Bài 2: (2 điểm) ( Giải phơng trình: 10 x 3 + 1 = 3 x 2 + 2 2 ) Bài 3: (1điểm) Cho . chỉ có thể là các cặp (2, 9); (3, 8) ; (4, 7); (5, 6); (6, 5); (7, 4); (8; 3) (9, 2) 0.5 Thay lân lợt từng cặp trên vào (1) ta thấy chỉ ó x =8 và y=3 thỏa mãn. Vậy số cần tìm là 83 . 0.25 Bài 2. GPT: 8x 3 - (4x+3) 3 + (2x+3) 3 =0 Câu4: Tổng các chữ số hàng đơn vị và hàng trăm của một số có 3 chữ số =16. Nếu viết các chữ số ấy theo thứ tự ngợc lại thì đợc số nhỏ hơn số đã cho là 1 98. điểm nào thẳng hàng. Ngời ta vẽ các đờng tròn có bán kính bằng 2 và tâm là các điểm đã cho. Hỏi có hay không ba điểm trong các điểm đã cho sao cho chúng đều thuộc phần chung của ba hình