Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
505 KB
Nội dung
Đề 1 : Bài 1(3 điểm ) Cho hàm số y = x 3 + 3x 2 - 4 (1 ) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1 ). 2/ Dựa vào đồ thị (C ) hãy biện luận theo tham số m số nghiệm của phương trình x 3 + 3x 2 – 4 - m = 0 . 3/ Viết phương trình tiếp tuyến với đồ thị (C ) tại điểm có hoành độ bằng 1 . Bài 2 (0, 5 điểm ) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số [ ] 2 4 3 , x 1 ; 3y x x= − + − ∈ Bài 3 ( 1, 75 điểm ) 1/ Giải các phương trình sau : a/ x x 25 25 1 1 = + b/ 2 2 32 log 5log 2 0x x − − = 2/ Giải bất phương trình : 2 3 3 log (2 4 ) log (9 3 )x x x + > − Bài 4 ( 1 điểm ) 1/ Tính vi phân của mỗi hàm số sau : a/ 3 2 (3 2)y x= − b/ y = ln(3x + 1) 2/ Cho hàm số 2 3 x x y e e x = + − . Tìm x để y ’ ≥ 0 Bài 5 ( 1 điểm ) Cho hàm số 2 1 2 x y x − = − (2) 1/ Tìm các đường tiệm cận của đồ thị hàm số đã cho . 2/ Chứng minh rằng với mọi số thực k thì đường thẳng y =x –k cắt đồ thị hàm số (2 ) tại hai điểm phân biệt . Bài 6 (2,75 điểm) Cho hình chóp S.ABCD có ABCD là một hình chữ nhật , AB = a , AD = 2a , SA ⊥ (ABCD) và SA = 2a . 1/ Tính thể tích của khối chóp S.ABCD . 2/ Chứng minh rằng 5 điểm S , A , B , C , D cùng nằm trên một mặt cầu . Xác định tâm và tính bán kính của mặt cầu này . 3/ Quay đường gấp khúc BAS quanh cạnh AB ta được một hình nón .Hãy tính diện tích xung quanh của hình nón này . 4/ Tính bán kính của mặt cầu có tâm là điểm A và tiếp xúc với mặt phẳng (SCD) . Sở GD và ĐT Trà Vinh Trường THPT Trà Cú Đề Kiểm Tra HK I Năm 2010-2011 Môn : Toán 12 Thời gian : 150 phút ( Không kể thời gian phát đề ) 1 ĐÁP ÁN Bài câu Hướng dẫn giải Điể m 1 3đ 1 2đ Cho hàm số y = x 3 + 3x 2 - 4 (1 ) 1/ Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1 ). Giải : 1)TXĐ : R 2) Sự biến thiên : a) Chiều biến thiên : y’ = 3x 2 + 6x = 3x(x + 2) y’ = 0 <=> x = 0 hoặc x = - 2 b) Hàm số đã cho đồng biến trên các khoảng (-∞ ; - 2 ), ( 0 ; + ∞) và nghịch biến trên khoảng ( -2 ; 0) c) Cực trị Hàm số đạt cực đại tại x = - 2 và y CĐ = 0 và đạt cực tiểu tại x = 0 , y CT = -4 d ) Giới hạn : +∞= ∞+→ y x lim ; −∞= ∞−→ y x lim Đồ thị hàm số không có tiệm cận e) Bảng biến thiên 3) Đồ thị x y -4 -2 O 1 Nhận xét đúng 0,5 0,25 0,25 0,5 0,5 2 2 0,5 2/ Dựa vào đồ thị (C ) hãy biện luận theo tham số m số nghiệm của phương trình x 3 + 3x 2 – 4 - m = 0 . Giải x 3 + 3x 2 – 4 - m = 0 <= > x 3 + 3x 2 - 4 = m Số nghiệm của phương trình đã cho chính là số giao điểm của đường thẳng y = m với đồ thị hàm số y = x 3 + 3x 2 – 4 m số giao điểm số nghiệm m > 0 1 1 m = 0 2 2 - 4 < m < 0 3 3 m = -4 2 2 m < - 4 1 1 0,25 0,25 3 0,5 3/ Viết phương trình tiếp tuyến với đồ thị (C ) tại điểm có hoành độ bằng 1 . Ta có : hoành độ tiếp điểm x = 1 ; tung độ tiếp điểm y = 0 Hệ số góc của tiếp tuyến với đồ thị (C ) tại điểm ( 1; 0 ) là : y’(1) = 9 Phương trình tiếp tuyến : y = 9(x – 1) + 0 = 9x - 9 0,25 0,25 2 0,5đ Bài 2 (0, 5 điểm ) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số [ ] 2 4 3 , x 1 ; 3y x x= − + − ∈ Trên đoạn [1 ; 3 ] ta có 34 2 342 42 ' 22 −+− +− = −+− +− = xx x xx x y y’ = 0 <=> x = 2 thuộc đoạn [1 ; 3 ] y(1) = 0 ; y(3) = 0 y(2) = 1 [ ] 1 ;3 1 = yMax ; [ ] 0 ;3 1 =yMin 0,25 0,25 3 1,75 đ 1 0,5 đ Giải các phương trình sau : 2 1 2225525 25 1 222x 1 x −=⇔=−−⇔=⇔= −− + xxx xx 0,5 0,7 5 b/ 2 2 32 log 5log 2 0x x− − = ĐK : x > 0 2 2 32 log 5log 2 0x x − − = 02loglog02log5log 2 2 2 2 2 2 5 =−−⇔=−−⇔ xxxx 3 Đặt xt 2 log = , phương trình đã cho trở thành phương trình : t 2 – t - 2 = 0 <=> t = - 1 hoặc t = 2 Với t = - 1 ta có 2 1 1log 2 =⇔−= xx Với t = 2 ta có 42log 2 =⇔= xx 0,25 0,25 0,25 2 0,5 2/ Giải bất phương trình : 2 3 3 log (2 4 ) log (9 3 )x x x + > − <=> 3) ; 1( 3 ) ; 1(); 2 9 - ; ( 3 0972 039 3942 22 ∈⇔ < ∞+∪−∞∈ ⇔ < >−+ ⇔ >− −>+ ⇔ x x x x xx x xxx 0,25 0,25 4 1đ 1 Bài 4 ( 1 điểm ) 1/ Tính vi phân của mỗi hàm số sau : a/ 3 2 (3 2)y x= − . TXĐ : 3 2 >x dxxdxxxdy 23 2 9 ))'23.()23( 2 3 ( 1 2 3 −=−−= − 0,25 b/ y = ln(3x + 1) TXĐ : 3 1 −>x Ta có dx x dy 13 3 + = 0,25 2 2/ Cho hàm số 2 3 x x y e e x = + − . Tìm x để y ’ ≥ 0 Hàm số đã cho xác định với mọi số thực x y’ = 2e 2x + e x - 3 y’ ≥ 0 <=> 2e 2x + e x - 3 ≥0 . Đặt t = e x , t > 0 ta có : 2t 2 + t - 3 ≥ 0 <=> t ≤ -3/2 hoặc t ≥ 1 Kết hợp với điều kiện t > 0 ta có t ≥ 1 Do đó e x ≥ 1 ,<=> x ≥ 0 0,25 0,25 5 1 Bài 5 ( 1 điểm ) Cho hàm số 2 1 2 x y x − = − (2) TXĐ : x ≠ 2 0,25 4 Đồ thị hàm số (2) có TCĐ là đường thẳng có phương trình x = 2 và TCN là đường thẳng có phương trình y = 2 . 0,25 2 Phương trình hoành độ giao điểm của đường thẳng y = x – k với đồ thị hàm số 2 1 2 x y x − = − là : ≠ =+++− ⇔ ≠ −−=− ⇔−= − − 2 ) * ( 012)4( 2 ))(2(12 2 12 2 x kxkx x kxxx kx x x Chứng minh được phương trình (*) luôn có hai nghiệm phân biệt khác 2 với mọi số thực k . Kết luận : Đường thẳng y = x – k luôn cắt đồ thị hàm số đã cho tại hai điểm phân biệt với mọi số thực k . 0,25 0,25 6 1 Bài 6 ( 3 điểm) Cho hình chóp S.ABCD có ABCD là một hình chữ nhật , AB = a , AD = 2a , SA ⊥ (ABCD) và SA = 2a . a 2a 2a I O D A B C S H 1/ Tính thể tích của khối chóp S.ABCD . 3 4 2.2 3 1 3 1 3 a aaaSASV ABCD === 0,25 0,5 2 2/ Chứng minh rằng 5 điểm S , A , B , C , D cùng nằm trên một mặt cầu .Xác định tâm và tính bán kính của mặt cầu này . Gọi I là trung điểm của cạnh SC Chứng minh được : IS = IA = IB = IC = ID 5 điểm S, A, B, C, D cùng nằm trên mặt cầu tâm I , bán kính 2 SC r = = aaaSAAC 345 2 1 2222 =+=+ 0,5 0,25 5 3 3/ Quay đường gấp khúc BAS quanh cạnh AB ta được một hình nón .Hãy tính diện tích xung quanh của hình nón này . Mặt nón tạo thành có độ dài đường sinh l = SB = a 5 và bán kính đáy r’ = SA = 2a ; chiều cao h = AB = a Suy ra : Diện tích xung quanh của hình nón đã cho là : Sxq = πr’l = π.2a.a 5 = 2πa 2 . 5 (đvdt) 0,25 0,5 4 4/ Tính bán kính của mặt cầu có tâm là điểm A và tiếp xúc với mặt phẳng (SCD) . Mặt cầu tâm A và tiếp xúc với mặt phẳng (SCD) nên mặt cầu này có bán kính bằng khoảng cách từ tâm A đến (SCD). Trong mặt phẳng (SAD) , kẻ AH ⊥ SD tại H . Khi đó )(SCDSH CDSH SDSH ⊥⇒ ⊥ ⊥ H là hình chiếu vuông góc của A lên mặt phẳng (SCD). AH = d(A , (SCD)) , AH = 2 2 a SD = , Vậy bán kính mặt cầu cần tìm là R = a 2 0,25 0,25 Đề 2: A. PHẦN CHUNG: (7,0 điểm) Phần dành cho tất cả học sinh học chương trình chuẩn và chương trình nâng cao. Câu I: (3,0 điểm) Cho hàm số 3 y = x - 3x - 1 (1) 1) Khảo sát và vẽ đồ thị (C) của hàm số (1). 2) Dựa vào đồ thị (C), biện luận theo tham số m số nghiệm của phương trình: 3 - x + 3x +1+ m = 0 . 3) Viết phương trình tiếp tuyến của đồ thị (C) tại tiếp điểm có hoành độ x 0 = 2 . Câu II: (3,0 điểm) 1) Rút gọn biểu thức: A = 2+ 7 2+ 7 1+ 7 14 2 7 . 2) Giải các phương trình sau: a) x x 9 -10.3 + 9 = 0 b) 1 4 4 1 log (x -3) =1+ log x Câu III: (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, cạnh SA vuông góc với đáy, góc ABC bằng 0 60 , BC = a và SA = a 3 . Tính thể tích của khối chóp đó. B. PHẦN RIÊNG: (3,0 điểm) Học sinh học chương trình nào chỉ được làm phần dành riêng cho chương trình đó. I. Dành cho học sinh học chương trình chuẩn: Câu IVa : (3,0 điểm) 6 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 1 2 y = log (x +1) trên đoạn [1 ; 3]. 2) Cho hình nón có đỉnh S, mặt đáy là hình tròn tâm O, đường kính AB = 2R và tam giác SAB vuông. a) Tính thể tích khối nón giới hạn bởi hình nón đó. b) Giả sử M là một điểm thuộc đường tròn đáy sao cho · 0 BAM 30 = . Tính diện tích thiết diện của hình nón tạo bởi mặt phẳng (SAM). II. Dành cho học sinh học chương trình nâng cao: Câu IVb: (3,0 điểm) 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3 2 1 1 1 2 2 2 1 y = log x + log x -3log x +1 3 trên đoạn 1 ;4 4 é ù ê ú ê ú ë û . 2) Cho mặt cầu tâm O, bán kính bằng R. Xét một hình nón nội tiếp mặt cầu có bán kính đáy bằng r. Tính diện tích xung quanh hình nón. ĐÁP ÁN Câu Ý Nội dung Điểm I Cho hàm số 3 y = x - 3x - 1 (1) (3.0 điểm) 1 Khảo sát và vẽ đồ thị (C) của hàm số (1). 1.5 điểm TXĐ: R 0.25 y’ = 3x 2 – 3, ' 0y = x = ±1Û y' > 0 Û x < - 1 hoặc x > 1; y' < 0 -1< x <1Û 0.25 HS đồng biến trên các khoảng ( ) ( ) ; 1 ; 1;- ¥ - + ¥ và nghịch biến trên khoảng (-1; 1) y CĐ = y(-1) = 1và y CT = y(1) = -3 0.25 Bảng biến thiên: x - ¥ -1 1 + ¥ y’ + 0 - 0 + y 1 + ¥ - ¥ -3 0.25 7 Đồ thị: + '' 6x, y'' = 0 x = 0. y = Û Đồ thị có tâm đối xứng là điểm (0; -1) + Các điểm khác thuộc (C) là (- 2; - 3), (2; 1) 3 2 1 -1 -2 -3 -4 -5 -6 -4 -2 2 4 6 O 1 1 2-2 -3 -1 0.50 2 Dựa vào đồ thị (C), biện luận theo tham số m số nghiệm của phương trình: 3 - x + 3x + 1+ m = 0 1.0 điểm Ta có: 3 3 1 0x x m- + + + = 3 3x - 1 = mx -Û (2) 0.25 (2) là PT HĐGĐ của (C) và (d): y = m, (d) song song hoặc trùng với Ox. Số nghiệm của PT (2) đúng bằng số giao điểm của (C) và (d). 0.25 Dựa vào đồ thị (C) ta có: - Khi m < -3 hoặc m > 1: (d) cắt (C) tại 1 điểm nên phương trình có 1 nghiệm duy nhất - Khi m = -3 hoặc m = 1: (d) và (C) có hai điểm chung phân biệt nên phương trình có hai nghiệm phân biệt. - Khi -3 < m < 1: (d) cắt (C) tại 3 điểm phận biệt nên phương trình có 3 nghiệm phân biệt (đúng 2 ý cho 0.25) 0.50 3 Viết phương trình tiếp tuyến của đồ thị (C) tại tiếp điểm có hoành độ x 0 = 2 0.5 điểm x 0 = 2 Þ y 0 = 1 y’ = 3x 2 – 3 Þ y’(2) = 9 0.25 PT tiếp tuyến của (C) tại điểm (2; 1) là: y = 9(x – 2) + 1 hay y = 9x – 17 0.25 II (3.0 điểm) 1 Rút gọn biểu thức: A = 2+ 7 2+ 7 1+ 7 14 2 .7 1.0 điểm 8 A = 2 7 2 7 2 7 2 7 1 7 2 7 1 7 14 2 .7 2 .7 2 .7 + + + + + + + = 0.50 2 7 2 7 1 7 1 7 7 7 7 7 + + - - + = = = 0.50 2.a Giải phương trình x x 9 - 10.3 + 9 = 0 1.0 điểm PT Û ( ) ( ) 2 3 10 3 9 0 x x - + = 0.25 Đặt 3 x t = > 0 ta được phương trình theo t: t 2 – 10t + 9 = 0 Û t = 1 hoặc t = 9 0.25 Với t = 1 ta được 3 x = 1 Û x = 0 Với t = 9 ta được 3 x = 9 Û x = 2 0.25 Tập nghiệm của phương trình là: { } 0;2S = 0.25 2.b Giải phương trình 4 1 4 1 log (x - 3) = 1+ log x 1.0 điểm Điều kiện: 1 3 0 0 3x x x - > > >Ù Û 0.25 Khi đó: PT Û 4 4 log ( 3) 1 logx x- - = - Û 4 4 log log ( 3)x x- - = 1 0.25 Û 4 log 1 3 x x = - Û 4 3 x x = - 0.25 Û x = 4(x - 3) Û 3x = 12 Û x = 4 (thõa mãn điều kiện) Vậy phương trình có một nghiệm x = 4 0.25 III Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, cạnh SA vuông góc với đáy, góc ABC bằng 0 60 , BC = a và SA = a 3 . Tính thể tích của khối chóp đó. (1.0 điểm) a a 3 60 0 A C B S 0.25 Ta có: AC = BC.tanB = a.tan60 0 = 3a 0.25 Diện tích tam giác ABC: 1 dt(ΔABC) = CA.CB 2 2 1 3 = a 3.a = a 2 2 0.25 9 Theo giả thiết SA = 3a là chiều cao của hình chóp. Vậy thể tích của khối chóp là: 1 V = dt(ΔABC).SA 3 2 3 1 3 1 3 3 2 2 a a a= = 0.25 IVa (3,0 điểm) 1 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 1 2 y = log (x + 1) trên đoạn [1 ; 3] 1.0 điểm Đặt t = x +1 , x Î [1; 3] Û t Î [2; 4]. Khi đó hàm số đã cho trở thành 1 2 y = log t . 0.25 Vì 1 0 < a = < 1 2 nên hàm số 1 2 y = log t nghịch biến trên khoảng (0; )+ ¥ 0.25 Giá trị lớn nhất của hàm số trên đoạn [2; 4] là 1 2 log 2 1=- Giá trị nhỏ nhất của hàm số trên đoạn [2; 4] là 1 2 log 4 2=- (đúng 1 ý cho 0.25) 0.50 2 Cho hình nón có đỉnh S, mặt đáy là hình tròn tâm O, đường kính AB = 2R và tam giác SAB vuông. 2.a Tính thể tích khối nón giới hạn bởi hình nón đó. 1.0 điểm Ta có SA và SB là các đường sinh của hình nón nên SA = SB. Theo giả thiết thì tam giác ASB vuông tại S có SO là trung tuyến nên chiều cao hình nón là: h = SO = 1 2 AB = R. 0.25 Thể tích khối nón là V= 1 3 dt đáy .SO = 3 2 1πR πR .R = 3 3 0.25 30 R H O S A B M Nếu hình vẽ chỉ để phục vụ câu a) cho 0.25 0.50 2.b Giả sử M là điểm thuộc đường tròn đáy sao cho góc · BAM = 30 0 . Tính diện tích thiết diện của hình nón tạo bởi mp(SAM). 1.0 điểm Vì M thuộc đường tròn đường kính AB nên tam giác ABM vuông tại M có góc A bằng 30 0 Þ MA =AB.cosA = 2R.cos30 0 = R 3 . 0.25 10 [...]... một hình nón n i tiếp mặt cầu có bán kính đáy bằng r Tính DTXQ hình nón 0.25 0.25 0.25 2.0 i m S R O M r 0.25 H S' Hình vẽ phục vụ tốt cho l i gi i (có thể v i cách gi i khác) 11 Vì S là đỉnh, H là tâm của hình tròn đáy của hình nón n i tiếp mặt cầu tâm O nên H thuộc đường kính SS’ của mặt cầu Đặt SH = h là chiều cao của hình nón 0.25 Vì M thuộc đường tròn (H) nên tam giác MSS’ vuông t i M Þ r 2 = MH...Vì tam giác SOM vuông t i O nên OS = OM = R Þ SM = R 2 G i H là trung i m MA, ta có MH = 0.25 1 3 MA = R 2 2 3 4 SH ^ MA Þ SH = SM 2 - MH 2 = 2R 2 - R 2 = R 5 2 0.25 Mp(SAM) cắt hình nón theo thi t diện là tam giác SAM cân đỉnh S có SH là đường cao.: 0.25 1 1 R R 2 15 SΔSAM = SH.AM = 5.R 3 = 2 2 2 4 IVb (3.0 i m) 1 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 1 é ù... h = R + R 2 - r 2 thì độ d i đường sinh hình nón: l = SM = SH 2 + HM 2 = h 2 + r 2 = 2R 2 + 2R R 2 - r 2 Diện tích chung quanh của hình nón: Sxq =πrl = πr 2R 2+ 2R R 2- r 0.50 2 * Nếu SH = h = R - R 2 - r 2 thì độ d i đường sinh hình nón: l = SM = SH 2 + HM 2 = h 2 + r 2 = 2R 2 - 2R R 2 - r 2 Diện tích chung quanh của hình nón: Sxq =πrl = πr 2R 2- 2R R 2- r 0.50 0.50 2 12 ... 2 4 IVb (3.0 i m) 1 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 1 é ù 1 3 2 y = log 1 x + log 1 x - 3log 1 x + 1 trên đoạn ê ; 4 ú 3 ê ú 4 ë û 2 2 2 1.0 i m é ù 1 Đặt t = log 1 x , ta thấy x Î ê ; 4ú Û t Î [-2; 2] ê ú 2 4 ë û B i toán trở thành: Tìm GTLN, GTNN của hàm số 1 y = t 3 + t 2 - 3t +1 trên đoạn [-2; 2] 3 0.25 y' = t 2 + 2t - 3 ; y' = 0 Û t = 1 Î [-2; 2] Ú t = - 3 Ï [-2; 2] 1 2 - . luôn có hai nghiệm phân biệt khác 2 v i m i số thực k . Kết luận : Đường thẳng y = x – k luôn cắt đồ thị hàm số đã cho t i hai i m phân biệt v i m i số thực k . 0,25 0,25 6 1 B i 6 ( 3 i m) . 2010-2011 Môn : Toán 12 Th i gian : 150 phút ( Không kể th i gian phát đề ) 1 ĐÁP ÁN B i câu Hướng dẫn gi i i m 1 3đ 1 2đ Cho hàm số y = x 3 + 3x 2 - 4 (1 ) 1/ Khảo sát sự biến thi n và vẽ đồ. tam giác SAB vuông. a) Tính thể tích kh i nón gi i hạn b i hình nón đó. b) Giả sử M là một i m thuộc đường tròn đáy sao cho · 0 BAM 30 = . Tính diện tích thi t diện của hình nón tạo b i mặt