Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
664,44 KB
Nội dung
Luận văn Đề tài: Điều khiển tự động - 1 - MỤC LỤC LỜI NÓI ĐẦU ……………………………………………………………….2 ĐỀ BÀI……………………………………………………………………….3 I . PHƯƠNG PHÁP XÁC ĐỊNH HÀM TRUYỀN ……………………………….4 II. VẼ LẠI HÀM TRUYỀN ,SO SÁNH VÀ NHẬN XÉT TÍNH ỔN ĐỊNH …….6 III. TÍNH ỔN ĐỊNH CỦA HỆ THỐNG………………………………………… 8 1.TIÊU CHUẨN ĐẠI SỐ………………………………………………………………………9 2. TIÊU CHUẨN ỔN ĐỊNH TẦN SỐ……………………………………………………… 10 IV.CÁC ĐIỂM CỰC VÀ ĐIỂM KHÔNG CỦA HỆ THỐNG………………… 12 V.BỘ ĐIỀU KHIỂN P,PI,PID………………………………………………… 13 1.BỘ ĐIỀU KHIỂN P……………………………………………………………………… 13 2.BỘ ĐIỀU KHIỂN PI………………………………………………………………… ……13 3.BỘ ĐIỀU KHIỂN PID………………………………………………………………………15 4.MÔ HÌNH ĐIỀU KHIỂN………………………………………………………………… 16 5. PHƯƠNG PHÁP LỰA TRỌN THÔNG SỐ BỘ ĐIỀU KHIỂN………………………… 17 6.THÔNG SỐ BỘ ĐIỀU KHIỂN16………………………………………………………… 20 - 2 - LỜI NÓI ĐẦU: Điều khiển tự động là một trong những ngành quan trọng trong quá trình công nghiệp hóa , hiện đại hóa đặc biệt là góp phần vào việc giải phóng sức lao động của con người và chính xác hơn con người.Điều khiển tự động có mặt từ trước công nguyên đó là chiếc đồng hồ có phao điều chỉnh Ktesibios của Hi Lạp. Rồi sau này cũng có thêm một số máy móc điều khiển tự động ( như : hệ điều chỉnh nhiệt độ của Cornelis drebble ,hệ điều chỉnh tốc độ được ứng dụng trong công nghiệp ….). Trong chiến tranh thế giới thứ 2 người hỏi điều khiển tự động để ứng dụng vào mục đích quân sự (như : máy bay tự động lái , điều khiển vũ khí ,điều khiển ra đa ) . Những năm 50 các phương pháp toán học bắt đầu ra đời được đưa nhanh vào ứng dụng thực tế .Ở Mỹ người ta nghiên cứu dựa trên miền tần số còn ở Liên Xô thì lại dựa trên miền thời gian. Môn điều khiển tự động là môn cần thiết cho sinh viên của ngành công nghệ tự động và còn một số ngành khác (như :hệ thống điện ,nhiệt điện ) .Nó trang bị cho chúng ta kiến thức để phân tích và tổng hợp hệ điều khiển trong miền thời gian và tần số bằng công cụ toán học . Trong điều khiển tự động có khâu dao động bậc 2 là một trong nhưng khâu cơ bản. Quá trình phân tích và tổng hợp của khâu này sẽ được trình bày trong các trang sau. - 3 - ĐỀ BÀI: Cho 1 đối tượng chưa biết mô hình toán học. Bằng thực nghiệm người ta dùng tác động đầu vào là hàm 5.1(t) và đo tín hiệu đầu ra thu được đường đặc tính y(t) như sau: Yêu cầu: 1. Xác định hàm truyền đạt của đối tượng trên từ đường đặc tính thu được? 2. Từ hàm truyền thu được dùng Matlab vẽ lại đường quá độ và so sánh. Nhận xét về tính ổn định của đối tượng .Tìm các điểm cực và điểm không? 3. Tổng hợp bộ điều khiển P, PI, PID để hệ có chất lượng điều khiển tốt nhất? - 4 - I. PHƯƠNG PHÁP XÁC ĐỊNH HÀM TRUYỀN : Với khâu bậc 2 dao động thì hàm truyền có dạng : 2 2 ( ) . 2 1 P K W P e T P TP τ ξ − = + + với 1 ξ < . Ta có đồ thị hàm quá độ: Hình 1: đặc tính quá độ của khâu bậc 2. - Hàm quá độ: phương trình đặc trưng của khâu dao động: 2 2 2 1 0T P TP ξ + + = Có hai nghiệm phức liên hợp: 2 1,2 1 P j j T T ξ ξ α β − = − ± = − ± hàm quá độ là :(với tín hiệu đầu vào là hàm 1(t). ) 2 2 1 ( ) . . 2 1 P K h p e T P TP P τ ξ − = + + Ta có hàm thời gian: 1 2 2 1 ( ) { . . } 2 1 P K h t L e T P TP P τ ξ − − = + + ( ) .1( ).{1 [ os( ( ))+ sin( ( ))]} t K t e c t t α τ α τ β τ β τ β − − = − − − − - 5 - Trong đó : 2 0 0 0 1 ; 1 ; T α ω ξ β ξ ω ω = = − = do tín hiệu đầu vào là hàm 5.1(t) nên khi biến đổi laplace ta có: 5 ( )x p p = Từ đó ta có hàm quá độ : 2 2 5 5 ( ) W( ). . . 2 1 P K h p p e P T P TP P τ ξ − = = + + => 1 2 2 5 5 ( ) {W( ). } { . . } 2 1 P K h t L p L e P T P TP P τ ξ − − = = + + ( ) .5.1( ){1 [ os( ( )) sin( ( ))]} t K t e c t t α τ α τ β τ β τ β − − = − − − + − Từ hàm truyền ta xác định được các thông số : 1 2 1 , ,5 ,A A K T và τ chính thời gian trễ. Từ đó ta xác định được 0 , , , α β ω ξ như sau: 1 1 2 1 ln A T A α = 1 2 T π β = 2 2 0 1 T ω α β = + = T ξ α = -Từ hàm truyền của đề bài ta xác định dược các thông số như sau: 1 2 1 43,3; 8,3;5 100; 62.5A A K T= = = = ; 33 τ = s Và ta có: 0 0,0264; 0,1; 0,103; 9,7; 0,256.T α β ω ξ = = = = = Từ đây ta có hàm truyền : 33 2 2 2 20 W( ) 2 1 94,1 4,96 1 P p K P e e T P TP P P τ ξ − − = = + + + + - 6 - II.VẼ LẠI HÀM TRUYỀN , SO SÁNH VÀ NHẬN XÉT Từ hàm truyền ta có hàm quá độ như sau: Ta có đồ thị như sau: Hình 2:đồ thị hàm quá độ của hàm truyền. NHẬN XÉT: Hình 3:đồ thị hàm quá độ và đặc tính ra trên một hệ trục tọa độ. (đồ thị không bị nhấp nhô là đồ thị của hàm truyền tim được) - 7 - 0.0264( 33) 0.0264 ( ) 100.1( 33).{1 .[ os(0,1( 33)) sin(0,1( 33))]} 0,1 t h t t e c t t − − = − − − + − • Từ hình hai đồ thị của hàm quá độ và đặc tính ra trên một hệ trục tọa độ ta thấy về biên độ gần giống nhau có thể chấp nhận được. • Sự khác nhau là do sai số làm tròn và không thể xác định chính xác được bằng thủ công. Đường cong sau khi vẽ lại nhẵn hơn là do chọn bước nhảy của tham số đầu vào nhỏ hơn.càng xác định chính xác thì ta càng có hàm truyền chuẩn theo như đường đặc tính mong muôn. • Nếu ghép thành mô hình với thời gian chậm trễ là 33 thì ta có đặc tính ra.Cụ thể như sau. Hình 4:mô hình trong matlab Ta có step time bằng 33 ta có đặc tính ra: Hình 5:đồ thị đặc tính ra khi ghép thành mô hình: - 8 - III.TÍNH ỔN ĐỊNH CỦA HỆ THỐNG : Hệ thống ĐKTĐ được gọi là ổn định nếu sau khi bị phá vỡ trạng thái cân bằng do tác động của nhiễu, nó sẽ tự điều chỉnh để trở lại trạng thái cân bằng. Nếu nó không trở lại trạng thái cân bằng mà tín hiệu ra tiến tới vô cùng thì hệ thống sẽ không ổn định. Trạng thái trung gian giữa ổn định và không ổn định được gọi là biên giới ổn định, khi đó tín hiệu ra của hệ thống dao động với biên độ không đổi. * ĐIỀU KIỆN ĐỂ HỆ THỐNG ỔN ĐỊNH Một hệ thống tuyến tính liên tục được gọi là ổn định nếu quá trình quá độ của nó tắt dần theo thời gian, không ổn định nếu quá trình quá độ của nó tăng dần theo thời gian và ở biên giới ổn định nếu quá trình quá độ của nó dao động với biên độ không đổi hoặc bằng hằng số. Hình 6:mô tả sự ổn định của hệ thống (1): Hệ thống ổn định và không dao động. (2): Hệ thống ổn định và dao động. (3): Hệ thống không ổn định và không dao động. (4): Hệ thống không ổn định và dao động. (5): Hệ thống dao động với biên độ không đổi(biên giới ổn định) Để biết hệ thống ĐKTĐ có ổn định hay không, ta phải giải PTDT của hệ thống có dạng: Phương trình trên có nghiệm như sau: +Hệ thống ổn định nếu 0 i α < tức là có nghiệm nằm bên trái trục ảo +Hệ ở biên giới ổn định nếu 0 i α = tức là có nghiệm ở trên trục trục ảo +Hệ không ổn định nếu 0 i α > tức là có nghiệm nằm bên phải trục ảo *Chỉ cần 1 nghiệm của phương trình đặc tính có phần thực dương thì hệ thống không ổn định. - 9 - Hình 7:các nghiệm của phương trình đặc tính 1 TIÊU CHUẨN ỔN ĐỊNH ĐẠI SỐ 1.1 Tiêu chuẩn ổn định routh Điều kiện cần thiết để một hệ thống điều khiển tuyến tính ổn định là các hệ số của phương trình đặc trưng dương. Khi không tồn tại điều kiện cần thì hệ thống được liệt vào loại có cấu trúc không ổn định, và lúc đó ta phải thay đổi cấu trúc của nó. Điều kiện cần và đủ để hệ thống tuyến tính ổn định là tất cả các số hạng trong cột thứ nhất của bảng Routh dương. Giả sử có phương trình đặc tính như sau: Ta có bảng routh Cách tính các hệ số của bảng Routh: * Cách lập bảng: + Dòng đầu tiên của bảng Routh ghi các số hạng có chỉ số chẵn, dòng thứ hai ghi các số hạng có chỉ số lẻ. - 10 - [...]... thống có tác động chậm, dao động với tần số nhỏ và không tồn tại sai lệch dư Đường 3 mô tả quá trình khi Kp lớn và Ti lớn Tác động điều khiển tương đối lớn nhưng thiên về quy luật tỉ lệ nên hệ thống dao động với tần số lớn và tồn tại sai lệch dư - 15 - Đường 4 tương ứng với quá trình điều khiển khi Kp lớn và Ti nhỏ Tác động điều khiển rất lớn Quá trình điều khiển dao động mạnh, thời gian điều khiển kéo... tác động thì quy luật PI chậm hơn quy luật tỉ lệ nhưng nhanh hơn quy luật tích phân Hình 5.5 mô tả các quá trình quá độ của hệ thống điều khiển tự động sử dụng quy luật PI với các tham số Kp và Ti khác nhau Hình 13: Các quá trình quá độ điều khiển của quy luật PI Đường 1 ứng với Kp nhỏ và Ti lớn Tác động điều khiển nhỏ nên hệ thống không dao động Đường 2 ứng với Kp nhỏ và Ti nhỏ Tác động điều khiển. .. thiết, khi quy luật PI không đáp ứng được yêu cầu về chất lượng điều chỉnh Đồ thị bode: - 16 - Hình 14: đồ thị bode của khâu PID Hình 15: Minh hoạ sai lệch điều khiển với các luật điều chỉnh 4.MÔ HÌNH ĐIỀU KHIỂN: Ta có mô hình khiển với phản hồi âm Bộ điều khiển PID được ghép nối tiếp với đối tượng: - 17 - Hình 16 :mô hình điều khiển cho bộ điều khiển PID: Mô hình trên matlab: Hình 17 :mô hình PID trên... tượng điều khiển Trong thực tế, quy luật điều khiển PI được sử dụng khá rộng rãi và đáp ứng được chất lượng cho hầu hết các quá trình công nghệ Tuy nhiên, do có thành phần tích phân nên độ tác động của quy luật bị chậm đi Vì vậy, nếu đối tượng có nhiễu tác động liên tục mà hệ thống điều khiển lại đòi hỏi độ chính xác cao thì quy luật PI không đáp ứng được 3.BỘ ĐIỀU KHIỂN PID Để tăng tốc độ tác động. .. Ti ∞ Td 0 PI 0.45Kgh 0.83Tgh 0 PID 0.6Kgh 0.5Tgh 0.125Tgh Các thông số trên chỉ là điểm khởi đầu cho bộ điều khiển có thể nó gần với thông số cần tìm.Sau đó ta cần có quá trình tinh chỉnh để được bộ điều khiển như mong muốn 6 THÔNG SỐ BỘ ĐIỀU KHIỂN Ta sử dụng phần mềm matlab để điều chỉnh bộ điều khiển dựa trên đặc tính ra áp dụng phương pháp Zeigler – Nichols cách 2 Cho Pi=0,Pd=0 ta xác định được Kp=3,1*10^-2... matlab của hệ thống 5 PHƯƠNG PHÁP LỰA CHỌN THÔNG SỐ CHO BỘ ĐIỀU KHIỂN PID: 5.1 phương pháp giải tích: Bộ PID thực chất là khâu điều khiển sớm trễ pha nên có thể sử dụng giản đồ Bode hoặc QĐN để thiết kế bộ điều khiển PID.Tuy nhiên phương pháp dùng QĐN hay giản đồ Bode ít được sử dụng 5.2 phương pháp thực nghiệm : ảnh hưởng của tham số PID tới bộ điều khiển : - 18 - Cụ thể như sau : * Nếu e(t) càng lớn thì... số của các bộ điều khiển P, PI, PID được chọn như sau: Thông số P Kp T2/T1 Ti PI 0,9.T2/T1 T1/0,3 PID 1,2.T2/T1 2T1 ∞ Td 0 0 0,5T2 Cách 2: Dựa vào đáp ứng quá độ của hệ kín với tín hiệu vào là hàm bước nhảy cho Ki=0,Kp=0 và tăng dần hệ số khuếch đại Kp đến giá trị Kgh Khi đó đáp ứng ngõ ra là tín hiệu dao động với chu kỳ Tgh Hình 19:tín hiệu ra dao động khi tăng Kp Thông số các bộ điều khiển - 20 -... hai nghiệm phức: p1,2 = −0, 0264 ± 0,1 j - 13 - V BỘ ĐIỀU KHIỂN P, PI, PID 1.BỘ ĐIỀU KHIỂN P : Có hàm truyền là : w( p) = K P Trong đó Kp là hệ số khuếch đại của quy luật Theo tính chất của khâu khuếch đại (hay khâu tỷ lệ) ta thấy tín hiệu ra của khâu luôn luôn trùng pha với tín hiệu vào Điều này nói lên ưu điểm của khâu khuếch đại là có độ tác động nhanh Vì vậy, trong công nghiệp, quy luật tỉ lệ làm... dụng với các đối tượng tĩnh, hệ thống điều khiển luôn tồn tại sai lệch tĩnh Để giảm giá trị sai lệch tĩnh thì phải tăng hệ số khuếch đại nhưng khi đó, tính dao động của hệ thống sẽ tăng lên và có thể làm hệ thống mất ổn định quy luật tỉ lệ thường được dùng cho những hệ thống cho phép tồn tại sai lệch tĩnh K càng lớn thì sai số xac lập càng nhỏ Hình 11: Quá trình điều khiển với các hệ số Kp khác nhau Nếu... càng nhỏ Hình 11: Quá trình điều khiển với các hệ số Kp khác nhau Nếu tăng KP thì rõ ràng sai lệch tĩnh giảm nhưng lại có biên độ dao động tăng quá ,khi đó hệ thống sẽ mất tính ổn định vì vậy phải lựa chọn thong số cho phù hợp 2 BỘ ĐIỀU KHIỂN PI Để hệ thống vừa có tác động nhanh, vừa triệt tiêu được sai lệch dư, người ta kết hợp quyluật tỉ lệ với quy luật tích phân để tạo ra quy luật tỉ lệ - tích phân . HÌNH ĐIỀU KHIỂN………………………………………………………………… 16 5. PHƯƠNG PHÁP LỰA TRỌN THÔNG SỐ BỘ ĐIỀU KHIỂN………………………… 17 6.THÔNG SỐ BỘ ĐIỀU KHIỂN16………………………………………………………… 20 - 2 - LỜI NÓI ĐẦU: Điều khiển tự động. móc điều khiển tự động ( như : hệ điều chỉnh nhiệt độ của Cornelis drebble ,hệ điều chỉnh tốc độ được ứng dụng trong công nghiệp ….). Trong chiến tranh thế giới thứ 2 người hỏi điều khiển tự động. trình quá độ điều khiển của quy luật PI Đường 1 ứng với Kp nhỏ và Ti lớn. Tác động điều khiển nhỏ nên hệ thống không dao động. Đường 2 ứng với Kp nhỏ và Ti nhỏ. Tác động điều khiển tương đối