1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu tính chất của hệ dao động tắt dần và dao động cưỡng bức. Áp dụng bồi dưỡng học sinh giỏi và học sinh ôn thi đại học

40 927 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 1,7 MB

Nội dung

Phần thứ nhất THÔNG TIN CHUNG VỀ SÁNG KIẾN 1. Tên sáng kiến: “Nghiên cứu tính chất của hệ dao động tắt dần và dao động cưỡng bức. Áp dụng bồi dưỡng học sinh giỏi và học sinh ôn thi đại học”. 2. Lĩnh vực áp dụng sáng kiến: Nội dung đề tài được trích từ các chuyên đề mà tôi đã dùng để giảng dạy cho học sinh ôn thi đại học, học sinh các lớp chuyên lý và học sinh các đội tuyển HSG của tỉnh tham dự kì thi HSG quốc gia môn vật lý với mục tiêu là giúp học sinh có cách nhìn tổng quát nhất về hệ dao động tắt dần và dao động cưỡng bức trong cơ học dựa trên việc xây dựng hệ thống lý thuyết cơ bản. Vận dụng giải và phân tích các bài toán trong chương trình thi đại học, các bài toán trong chương trình thi HSG quốc gia, quốc tế tại trường THPT chuyên Lê Hồng Phong Nam Định. Đồng thời nội dung của đề tài cũng có thể vận dụng cho công tác bồi dưỡng học sinh giỏi phổ thông và học sinh ôn thi đại học môn Vật lý tại các trường THPT nói chung. 3. Thời gian áp dụng sáng kiến: Từ năm 2009 đến năm 2014. 4. Tác giả: Họ và tên: Vũ Đức Thọ Năm sinh: 1974 Nơi thường trú: số 41 đường Phùng Chí Kiên- Khu ĐTM Hòa Vượng. Trình độ chuyên môn: Thạc sĩ vật lý. Chức vụ công tác: Hiệu trưởng. Nơi làm việc: Trường THPT chuyên Lê Hồng Phong Nam Định. Địa chỉ liên hệ: Trường THPT chuyên Lê Hồng Phong Nam Định- 76 đường Vị Xuyên- Phường Vị Hoàng- TP Nam Định. Điện thoại: Cơ quan: 03503.667788 Mobile: 0913005356 Email: vuductholhp@gmail.com 5. Đơn vị áp dụng sáng kiến: Tên đơn vị: Trường THPT chuyên Lê Hồng Phong Nam Định. Địa chỉ: 76 đường Vị Xuyên- Phường Vị Hoàng- TP Nam Định. Điện thoại: 03503.640297 Fax: 03503667788 3 MỞ ĐẦU 1. Điều kiện hoàn cảnh tạo ra sáng kiến Một trong những vấn đề rất dễ nhận thấy trong các câu khó của đề thi đại học trong những năm gần đây là yêu cầu học sinh từ những nội dung lí thuyết cơ bản trong sách giáo khoa, sử dụng các phép suy luận, những tính toán hợp lý để đưa ra những lời giải cho bài toán. Tuy nhiên những nội dung kiến thức trong sách giáo khoa là rất ngắn gọn, gần như tóm tắt các kết quả cơ bản của các vấn đề lý thuyết cũng như thực nghiệm vì vậy rất khó để học sinh cũng như giáo viên hiểu sâu sắc các vấn đề để vận dụng trong giảng dạy và học tập. Hơn nữa trong kì thi học sinh giỏi Quốc gia, Quốc tế bộ môn vật lý thì việc giáo viên và học sinh phải hiểu được sâu sắc được các vấn đề lý thuyết của chương trình đại học đại cương trên cơ sở đó vận dụng giải các bài toán là bắt buộc. Đối với bộ môn vật lý thì việc sử dụng thí nghiệm trong quá trình dạy học là hết sức cần thiết. Tuy nhiên đây là một nhiệm vụ đặc biệt khó khăn với nhiều nguyên nhân: thiết bị thí nghiệm còn thiếu thốn và chưa đồng bộ; việc lắp ráp và tiến hành các thí nghiệm đòi hỏi nhiều thời gian trong khi thời gian nghỉ chuyển giữa hai tiết là không đủ, rất nhiều thí nghiệm cần phải có thời gian thực hiện, chưa kể không đảm bảo thành công ngay… Bên cạnh đó, một nguyên nhân rất quan trọng là năng lực thí nghiệm của giáo viên trên thực tế cũng còn nhiều hạn chế. Sự hạn chế đó thể hiện cả ở mặt kĩ thuật lắp ráp và tiến hành các thí nghiệm lẫn phương pháp sử dụng các thí nghiệm đó trong giờ học sao cho tăng cường được hoạt động nhận thức tự chủ, sáng tạo của học sinh. Để khắc phục những khó khăn đó, việc xây dựng các nội dung lý thuyết vật lý bằng những giả thuyết và công cụ toán học. Phân tích các kết quả tìm được cũng là một giải pháp tốt để giúp học sinh nắm bắt các quá trình diễn biến của hiện tượng. Làm cho các em hiểu và nhớ được nội dung, kiến thức một cách sâu sắc hơn… Dao động tắt dần và dao động cưỡng bức là nội dung khó trong chương trình vật lý lớp 12, hơn nữa sách giáo khoa lại nêu rất tóm tắt vì vậy nếu chỉ đọc sách giáo khoa thì cả học sinh và giáo viên đều không hiểu rõ vấn đề. Khi vận dụng để giải các bài toán thi đại học học, đặc biệt là những bài toán thi học sinh giỏi quốc gia và quốc tế là hết sức khó khăn. Chưa kể đến việc mở rộng vận dụng trong các bài toán dao động điện và quang học sóng thì học sinh gần như không thể. Vì vậy 4 làm rõ các vấn đề về dao động tắt dần và dao động cưỡng bức là hết sức cần thiết. Vì những lí do đó tôi chọn đề tài “Nghiên cứu tính chất của hệ dao động tắt dần và dao động cưỡng bức. Áp dụng bồi dưỡng học sinh giỏi và học sinh ôn thi đại học”. 2. Cấu trúc đề tài bao gồm: Phần mở đầu Nội dung đề tài Chương I: Cơ sở lý thuyết của dao động tắt dần và dao động cưỡng bức. Chương II: Áp dụng lý thuyết cơ bản về dao động tắt dần giải một số bài toán thuộc chương trình thi đại học. Chương III: Áp dụng lý thuyết cơ bản về dao động cưỡng bức giải một số bài toán. Chương IV: Một số bài toán bồi dưỡng học sinh giỏi quốc gia và quốc tế. Chương V: Các bài tập vận dụng. Kết luận 5 PHẦN NỘI DUNG CHƯƠNG I CƠ SỞ LÝ THUYẾT CỦA DAO ĐỘNG TẮT DẦN VÀ DAO ĐỘNG CƯỠNG BỨC I. DAO ĐỘNG TẮT DẦN 1.1. Khái niệm - Khi cho con lắc dao động trong môi trường có ma sát (hoặc lực cản) thì cơ năng của hệ sẽ mất dần, chuyển thành các dạng năng lượng khác, do đó biên độ dao động (tỉ lệ với căn bậc hai của năng lượng) cũng sẽ giảm dần theo thời gian. Dao động của con lắc sẽ tắt dần. Dao động tắt dần là dao động có biên độ giảm dần theo thời gian Sự giảm dần của biên độ dao động theo thời gian, gây ra do mất mát năng lượng của hệ dao động gọi là sự tắt dần của dao động 1.2. Phương trình của dao động tắt dần Xét vật dao động (ví dụ như con lắc lò xo) trong môi trường có lực cản. Thông thường, lực cản của môi trường tác dụng vật tỉ lệ với tốc độ và ngược chiều chuyển động c F v α =− ur r . Trong đó 0 α > là hệ số cản, phụ thuộc vào hình dạng, kích thước của vật và độ nhớt của môi trường. Chọn trục Ox trùng phương chuyển động. Phương trình chuyển động của vật chiếu theo phương Ox là x ' x"k x m α − − = hay x" ' 0 k x x m m α + + = (1.1) Ở đây chúng ta cần chú ý thành phần F = -kx chính là lực kéo về tác dụng lên vật và gây dao động. Đặt : 2 0 2 ; . k m m α β ω = = thì phương trình (2.1) có thể viết: 2 0 x" 2 ' 0x x β ω + + = (1.2) Phương trình này gọi là phương trình vi phân của dao động tắt dần, β gọi là hệ số tắt dần, ω 0 là tần số góc riêng của vật. Ta sẽ tìm nghiệm của (1.2) dưới dạng : ( ) rt x t e= 6 Hình vẽ 1 trong đó r là một đại lượng không đổi. Thay biểu thức x(t) vào (1.2) và thực hiện việc lấy đạo hàm theo thời gian t và giản ước một thừa số khác không, ta đi đến một phương trình đại số ( gọi là phương trình đặc trưng) : 2 2 0 r 2 0r r β ω + + = (1.3) Hai nghiệm của phương trình đặc trưng là : 2 2 1,2 0 r β β ω =− ± − Bây giờ ta sẽ xét các trường hợp xảy ra: 1.3. Dao động tắt dần khi ma sát nhỏ ( 0 β ω < ). Ta biến đổi: ( ) ( ) 2 2 2 2 2 2 0 0 i i β ω ω β ω − = − = , trong đó i là số phức, được định nghĩa 2 1i =− . ω là một đại lượng thực, dương: 2 2 0 ω ω β = − . Khi đó : 1,2 r i β ω =− ± Hai nghiệm của phương trình (1.2.2) là : ( ) 1 1 i t x C e β ω − + = và ( ) 2 2 i t x C e β ω − − = Do đó nghiệm tổng quát của phương trình (1.2) là : ( ) ( ) 1 2 1 2 t i t i t x t x x e C e C e β ω ω − − = + = + (1.4) Áp dung công thức Ơle: os isin i e c ϕ ϕ ϕ = + cho biểu thức trong dấu ngoặc của phương trình (2.3): ( ) 1 2 0 os i t i t C e C e A c t ω ω ω ϕ − + = + , trong đó A 0 và ϕ là hai hằng số được xác định từ điều kiện ban đầu. Tóm lại, với điều kiện lực cản không quá lớn thì dao động tắt dần có dạng : ( ) ( ) 0 os t x t A e c t β ω ϕ − = + (1.5) Đồ thị ở hình vẽ 2 biểu diễn dao động tắt dần, các giới hạn trên và dưới của x được vẽ bằng các đường chấm chấm (đây chính là đồ thị hình 10.2a trang 48 SGK ban KHTN) *Nhận xét: Từ (1.5) ta có thể xem li độ biến đổi theo thời gian theo quy luật dạng cosin với tần số là ω và biên độ giảm dần theo qui luật : ( ) 0 t A t A e β − = với A 0 là biên độ cực đại tại thời điểm ban đầu. 7 Hình vẽ 2 “Chu kỳ” của dao động tắt dần : 2 2 0 2 2 T π π ω ω β = = − (1.6) So sánh với chu kỳ dao động riêng T 0 (chu kỳ dao động khi không có lực cản) 0 0 2 T π ω = Ta thấy T > T 0 , điều này hoàn toàn phù hợp với thực tế vì khi có lực cản thì dao động diễn ra chậm hơn. 1.3.1. Các đại lượng đặc trưng cho hệ dao động tắt dần khi ma sát nhỏ a. Thời gian lũy giảm: là khoảng thời gian mà sau đó biên độ của dao động tắt dần giảm e lần. 0 0 1A A e e βτ τ β − = ⇒ = (1.7) b. Giảm lượng lôgarit tắt dần ( decrement logarit tắt dần): là đại lượng đo bằng logarit tự nhiên của tỷ số giữa các giá trị biên độ tại các thời điểm khác nhau một chu kỳ : ( ) ( ) ln A t T A t T δ β = = + (1.8) c. Hệ số phẩm chất của hệ dao động: được xác định bằng tích 2π với tỉ số của năng lượng E(t) của hệ dao động ở thời điểm t và độ lớn của độ giảm năng lượng này sau một chu kỳ ( ) 2 ( ) ( ) E t Q E t E t T π = − + (1.9) Vì năng lượng tỉ lệ với bình phương biên độ nên 2 2 2 2 ( ) 2 2 ( ) ( ) 1 A t Q A t A t T e δ π π − = = − + − (1.10) Chú ý: khi ma sát là rất nhỏ ( ) 0 β ω << , dao động tắt dần rất chậm thì 2 1 2e δ δ − − ≈ . Khi đó Q π δ ≈ (1.11) Vì 2 2 0 0 0 T T ω ω β ω = − ≈ ⇒ ≈ nên 0 0 2 Q T ωπ β β ≈ ≈ (1.12) 1.3.2. Các đặc điểm của hệ dao động tắt dần khi ma sát nhỏ a. Dao động tắt dần không có tính tuần hoàn vì chuyển động lần sau không lặp lại hoàn toàn giống như chuyển động lần trước. 8 b. Li độ biến đổi theo quy luật dạng cosin với biên độ giảm dần theo thời gian, ta nói đó là quá trình giả tuần hoàn hay quá trình tắt yếu. 1.4. Quá trình biến đổi khi ma sát lớn ( 0 β ω > ). 1.4.1. Phương trình chuyển động. Ta đặt 2 2 0 q β ω = − (1.13) Khi đó : 1,2 r q β =− ± (1.14) Nghiệm tổng quát của phương trình (1.2) là : ( ) 1 2 1 2 1 2 x( ) rt r t t qt qt t C e C e e C e C e β − − = + = + Trong đó C 1 , C 2 là các hằng số xác định từ điều kiện ban đầu, q là một số thực. 1.4.2. Các đặc điểm của dao động tắt dần khi ma sát lớn - Đồ thị li độ theo thời gian có dạng như hình vẽ (đây chính là đồ thị hình 10.2c, 10.2d trang 48 SGK ban KHTN) - Khi ma sát lớn, chuyển động của vật gọi là phi tuần hoàn hay quá trình tắt mạnh. 1.5. Quá trình tới hạn ( 0 β ω = ). - Khi 0 β ω = thì nghiệm tổng quát của phương trình (2.2) có dạng: ( ) 1 2 x( ) t t C C t e β − = + - Đồ thị li độ theo thời gian có dạng như hình vẽ. Như vậy li độ x trở về giá trị 0 nhanh hơn so với trường hợp tắt mạnh. 9 II. DAO ĐỘNG CƯỠNG BỨC 2.1- Khái niệm Do lực cản của môi trường dao động sẽ tắt dần và sẽ mất hẳn. Để có thể duy trì dao động ta phải bù trừ sự tổn hao năng lượng của hệ dao động, tuy nhiên cần lưu ý là sự bù trừ này phải được thực hiện đúng nhịp với các dao động của hệ. Do vậy, ta phải tác động vào hệ một ngoại lực biến đổi theo thời gian theo qui luật điều hòa. Dao động như vậy gọi là dao động cưỡng bức. Vậy: dao động cưỡng bức là dao động của hệ dưới tác dụng của lực cưỡng bức tuần hoàn 0 f = osF c tΩ . Trong đó F 0 , Ω là biên độ và tần số của ngoại lực cưỡng bức. 2.2- Phương trình của dao động cưỡng bức Xét vật dao động (ví dụ như con lắc lò xo) trong môi trường có lực cản nhỏ với hệ số cản là 0 α > . Ta tác dụng thêm vào vật một lực cưỡng bức tuần hoàn 0 f = osF c tΩ . Chọn trục Ox trùng phương chuyển động. Phương trình chuyển động của vật chiếu theo phương Ox là 0 x ' os x"k x F c t m α − − + Ω = hay 0 x" ' os F k x x c t m m m α + + = Ω (2.1) Đặt : 2 0 2 ; . k m m α β ω = = thì phương trình (2.1) có thể viết: 2 0 0 x" 2 ' os F x x c t m β ω + + = Ω (2.2) Phương trình này gọi là phương trình vi phân của dao động cưỡng bức. Đó là một phương trình vi phân tuyến tính không thuần nhất (có vế phải). Nghiệm tổng quát của nó bằng tổng của hai nghiệm : + Nghiệm tổng quát của phương trình thuần nhất ( không có vế phải ) tương ứng khi lực cản nhỏ là ( ) 1 0 1 os t x A e c t β ω ϕ − = + (2.3). Trong đó 2 2 0 ω ω β = − còn A 0 và ϕ là hai hằng số được xác định từ điều kiện ban đầu. + Nghiệm riêng của phương trình không thuần nhất (2.2). Ta sẽ tìm nghiệm riêng dưới dạng : ( ) osx Ac t ϕ = Ω + , trong đó A và ϕ là các giá trị mà ta phải tìm. Ta có: ( ) ( ) 2 ' sin ; '' osx A t x A c t ϕ ϕ =− Ω Ω + =− Ω Ω + . Thay vào (2.2) được: 10 ( ) ( ) ( ) ( ) ( ) ( ) 2 2 0 0 2 2 0 0 os 2 sin os os os 2 os os 2.4 2 F A c t A t Ac t c t m F A c t A c t c t m ϕ β ϕ ω ϕ π ω ϕ β ϕ − Ω Ω + − Ω Ω + + Ω + = Ω   ⇔ − Ω Ω + + Ω Ω + + = Ω  ÷   Vế trái của phương trình (2.4) là tổng của hai dao động điều hòa cùng phương, cùng tần số cũn là một dao động điều hòa ( ) 2 2 2 osx A c t ϕ = Ω + . Với ( ) 2 2 2 2 2 2 0 4A A ω β = −Ω + Ω Và ( ) ( ) ( ) ( ) 2 2 2 2 0 0 2 2 2 2 2 0 0 sin 2 sin sin 2 os 2 tan os 2 sin os 2 os 2 A A c c A c A c π ω ϕ β ϕ ω ϕ β ϕ ϕ π ω ϕ β ϕ ω ϕ β ϕ   − Ω + Ω +  ÷ − Ω + Ω   = =   − Ω − Ω − Ω + Ω +  ÷   VT= VP ⇔ ( ) ( ) ( ) ( ) ( ) ( ) 2 0 2 2 2 2 0 2 2 0 2 2 2 2 0 2 2 0 2 2 2 2 2 2 0 0 4 4 2.5 sin 2 os 2 tan tan 0 0 tan os 2 sin F F A A A m m c c ω β ω β ω ϕ β ϕ β ϕ ϕ ω ϕ β ϕ ω   = = −Ω + Ω =   − Ω + Ω   ⇒   − Ω + Ω Ω   = = = =−   − Ω − Ω − Ω   Thay (2.5) vào (2.3) ta được nghiệm riêng của phương trình thuần nhất là : ( ) ( ) ( ) ( ) 0 2 2 2 2 2 2 2 2 0 0 2 os arctan 2.6 4 F x t c t m β ω ω β     Ω    ÷ = Ω −  ÷ − Ω   − Ω + Ω     Nghiệm tổng quát của phương trình dao động cưỡng bức là : ( ) ( ) ( ) ( ) 2 0 1 0 2 2 2 2 2 2 2 0 0 os 2 os arctan 2.7 4 t x A e c t F c t m β ω ϕ β ω ω β − = + +     Ω    ÷ + Ω −  ÷ − Ω   − Ω + Ω     Số hạng thứ nhất ở vế phải của nghiệm do có chứa exp(-βt) nên mô tả dao động tắt dần và giảm rất nhanh theo thời gian, do đó sau giai đoạn quá độ ta có thể bỏ qua nó và chỉ giữ lại số hạng thứ hai của (2.7). Vậy ta có thể nói dao động cưỡng bức cũng là một dao động điều hòa với tần số Ω của ngoại lực. Biên độ cực 11 đại của dao động cưỡng bức tỷ lệ với biên độ của ngoại lực. 2.3. Các đặc điểm của dao động cưỡng bức : - Dao động cưỡng bức gồm hai giai đoạn : + Giai đoạn chuyển tiếp : xảy ra trong khoảng thời gian rất ngắn, khi đó dao động của hệ là tổng hợp của hai dao động : dao động tự do tắt dần của hệ và dao động cưỡng bức. Sau khoảng thời gian này thì dao động tự do tắt hẳn. + Giai đoạn ổn định : Vật thực hiện dao động điều hòa cưỡng bức theo phương trình ( ) osx Ac t ϕ = Ω + . Trong đó ,A ϕ được xác định từ (2.5). - Tần số góc của dao động cưỡng bức bằng tần số góc Ω của ngoại lực cưỡng bức. - Biên độ dao động cưỡng bức phụ thuộc vào biên độ 0 F của ngoại lực cưỡng bức, phụ thuộc vào tần số ngoại lực, vào lực cản môi trường và phụ thuộc vào độ chênh lệnh giữa tần số Ω của ngoại lực và tần số riêng 0 ω của hệ. - Nếu 0 ω ω ∆ = Ω − lớn , tức là Ω càng khác 0 ω thì biên độ dao động nhỏ. - Nếu Ω = 0 ω thì biên độ dao động đạt cực đại ⇒ cộng hưởng dao động. - Pha ban đầu của dao động cưỡng bức phụ thuộc vào đặc tính của hệ và tần số của ngoại lực cưỡng bức. 2.4. Hiện tượng cộng hưởng. Một điều rất quan trọng là biên độ của dao động cưỡng bức phụ thuộc vào tần số Ω của ngoại lực. Đồ thị sự phụ thuộc của ( ) A Ω như hình vẽ. Từ đồ thị ta thấy với một tần số nào đó của ngoại lực thì biên độ của dao động cưỡng bức sẽ đạt giá trị cực đại. Hiện tượng này gọi là hiện tượng cộng hưởng, còn tần số tương ứng gọi là tần số cộng hưởng. Tần số cộng hưởng được xác định từ điều kiện cực tiểu của biểu thức dưới dấu căn của (2.5) : ( ) 2 2 2 2 2 0 4 miny ω β = − Ω + Ω Lấy đạo hàm theo Ω và cho bằng không, ta có : ( ) 2 2 2 0 4 8 0 ω β − Ω −Ω + Ω = Phương trình bậc ba này có nghiệm : 0Ω = và 2 2 0 2 ω β Ω = − Nghiệm Ω = 0 ứng với cực đại của mẫu số, tức là cực tiểu của biên độ dao động cưỡng bức nên ta bỏ qua không xét đến. Chỉ giữ lại nghiệm duy nhất: đó là tần số cộng hưởng 12 [...]... Gọi N là số chu kỳ cần thi t thì t = NT ⇒ N = π Như vậy N = Q (hệ số βT phẩm chất của hệ dao động) Vậy hệ số phẩm chất của hệ dao động cũng là số chu kỳ cần thi t để năng lượng của hệ giảm đi e2π = 535 lần Bài toán 4.2: Nghiên cứu hệ số phẩm chất của một hệ dao động tắt dần Ta quan tâm tới 1 thi t bị cơ học đặt trong hệ qui chiếu phòng thí nghiệm được giả thi t là quán tính Hệ bao gồm viên bi khối... một dao động tắt dần với hệ số tắt dần là β , tần số dao động riêng là ω0 Khi chịu tác dụng thêm của ngoại lực cưỡng bức F = F0 cos ωt theo phương thẳng đứng, quả cầu thực hiện một dao dộng điều hòa Hãy tìm: 1 Công suất trung bình Ptb sau một chu kỳ dao động 2 Tần số ω của ngoại lực khi Ptb là cực đại Ptb max bằng bao nhiêu 3 Gọi Pch là công suất trung bình sau một chu kỳ khi hệ thực hiện dao động. .. tần số của ngoại lực Trong hình là ba đường cong cộng hưởng ứng với ba giá trị khác nhau của lực cản của môi trường Ta thấy lực cản càng yếu thì đường cong cộng hưởng càng nhọn và tần số cộng hưởng càng gần giá trị ω 0 là tần số dao động riêng của hệ 13 CHƯƠNG II ÁP DỤNG LÝ THUYẾT CƠ BẢN VỀ DAO ĐỘNG TẮT DẦN GIẢI MỘT SỐ BÀI TOÁN THUỘC CHƯƠNG TRÌNH THI ĐẠI HỌC 1 Bài toán 2.1: Nghiên cứu dao động của con... ngang người ta tác dụng vào đầu B của thanh AB một lực cưỡng bức F = F0cosωt theo phương thẳng đứng Giả thi t trong quá trình dao động nhỏ lò xo luôn có phương thẳng đứng Bỏ qua mọi ma sát 1 Tìm phương trình dao động cưỡng bức của quả cầu 2 Ta xét điều kiện ở gần cộng hưởng, bằng cách viết ω = ω0 + ∆ω trong đó ω0 là tần số riêng của hệ, ∆ω . nhất THÔNG TIN CHUNG VỀ SÁNG KIẾN 1. Tên sáng kiến: Nghiên cứu tính chất của hệ dao động tắt dần và dao động cưỡng bức. Áp dụng bồi dưỡng học sinh giỏi và học sinh ôn thi đại học . 2. Lĩnh vực áp. thi t. Vì những lí do đó tôi chọn đề tài Nghiên cứu tính chất của hệ dao động tắt dần và dao động cưỡng bức. Áp dụng bồi dưỡng học sinh giỏi và học sinh ôn thi đại học . 2. Cấu trúc đề tài bao gồm: Phần. lý thuyết của dao động tắt dần và dao động cưỡng bức. Chương II: Áp dụng lý thuyết cơ bản về dao động tắt dần giải một số bài toán thuộc chương trình thi đại học. Chương III: Áp dụng lý thuyết

Ngày đăng: 03/04/2015, 16:38

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[6] Đề thi tuyển sinh đại học khối A 2010 [7] http://thuvienvatly.com Link
[1] Bài tập vật lý 12, NXB giáo dục (2012) Khác
[2] ĐẶNG LÊ MINH, NGUYỄN NGỌC ĐỈNH, ĐẶNG VĂN SỬ, Bài tập và lời giải Cơ học, NXB giáo dục Khác
[3] Đề thi chọn học sinh vào đội tuyển dự thi APHO năm 2005 [4] Đề thi HSG lớp 12 chuyên tỉnh Nam Định năm 2010 Khác
[5] Đề thi HSG THPT tỉnh Nam Định năm 2012 Khác
[10] PHẠM QUÝ TƯ, Dao động và sóng, NXB ĐHSP Khác
[11] PHAN HỒNG LIÊN, LÂM VĂN HÙNG, NGUYỄN TRUNG KIÊN, Các bài tập vật lý đại cương, NXBGD (2009) Khác
[12] Vật lý 12, NXB giáo dục (2012) Khác
[13] VŨ CAO ĐÀM, Phương pháp luận nghiên cứu khoa học. NXB khoa học và kỹ thuật- Hà Nội (2002) Khác
[14] VŨ ĐỨC THỌ, Phương pháp tương tự hóa trong các bài toán vật lý Khác
[15] VŨ THANH KHIẾT, VŨ ĐÌNH TÚY, Các đề thi học sinh giỏi vật lý, NXB giáo dục (2008) Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w