Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 34 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
34
Dung lượng
0,91 MB
Nội dung
Chương I: ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ Bài 1: SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ. Tiết PPCT: 01 Ngày soạn: 5/8/2013 Ngày dạy: 12A1: 12A2: 12A4: I. MỤC TIÊU: 1/ Kiến thức: + Nắm được mối liên hệ giữa dấu của đạo hàm và tính đơn điệu của hàm số. + Nắm được qui tắc xét tính đơn điệu của hàm số. 2/ Kỹ năng: Biết xét tính đơn điệu của một số hàm số đơn giản. Biết kết hợp nhiều kiến thức liên quan để giải toán. 3/ Tư duy và thái độ: Thận trọng, chính xác. II. CHUẨN BỊ. + GV: Giáo án, bảng phụ. + HS: SGK, đọc trước bài học. III. PHƯƠNG PHÁP. Thông qua các hoạt động tương tác giữa trò – trò, thầy – trò để lĩnh hội kiến thức, kĩ năng theo mục tiêu bài học. IV. TIẾN TRÌNH DẠY HỌC. * Ổn định và làm quen: Sĩ số 12A1: 12A2: 12A4: Giới thiệu tổng quan chương trình Giải tích 12 chuẩn * Bài mới: Hoạt động của GV và HS Yêu cầu cần đạt Hoạt động 1: Nhắc lại các kiến thức liên quan tới tính đơn điệu của hàm số Gv treo bảng phụ có hình vẽ H1 và H2 − SGK trg 4. Phát vấn: + Các em hãy chỉ ra các khoảng tăng, giảm của các hàm số, trên các đoạn đã cho? + Nhắc lại định nghĩa tính đơn điệu của hàm số? + Nhắc lại phương pháp xét tính đơn điệu của hàm số đã học ở lớp dưới? + Nêu lên mối liên hệ giữa đồ thị của hàm số và tính đơn điệu của hàm số? HS + Ôn tập lại kiến thức cũ thông qua việc trả lời các câu hỏi phát vấn của giáo viên. + Ghi nhớ kiến thức. I. Tính đơn điệu của hàm số: 1. Nhắc lại định nghĩa tính đơn điệu của hàm số. (SGK) + Đồ thị của hàm số đồng biến trên K là một đường đi lên từ trái sang phải. + Đồ thị của hàm số nghịch biến trên K là một đường đi xuống từ trái sang phải. Hoạt động 2: Tìm hiểu mối liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm + Ra đề bài tập: (Bảng phụ) Cho các hàm số sau: y = 2x − 1 và y = x 2 − 2x. I. Tính đơn điệu của hàm số: 2. Tính đơn điệu và dấu của đạo hàm: * Định lí 1: (SGK) Cho hàm số y = f(x) có đạo hàm trên K * Nếu f'(x) > 0 x K ∀ ∈ thì hàm số y = f(x) đồng biến trên K. * Nếu f'(x) < 0 x K ∀ ∈ thì hàm số y = f(x) nghịch biến trên K x O y x O y + Xét dấu đạo hàm của mỗi hàm số và điền vào bảng tương ứng. + Phân lớp thành hai nhóm, mỗi nhóm giải một câu. HS Giải bài tập theo yêu cầu của giáo viên. GV Gọi hai đại diện lên trình bày lời giải lên bảng + Có nhận xét gì về mối liên hệ giữa tính đơn điệu và dấu của đạo hàm của hai hàm số trên? + Rút ra nhận xét chung và cho HS lĩnh hội ĐL 1 trang 6. HS Rút ra mối liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm của hàm số. Hoạt động 3: Giải bài tập củng cố định lí. + Giáo viên ra bài tập 1. + GV hướng dẫn học sinh lập BBT. + Gọi 1 hs lên trình bày lời giải. + Điều chỉnh lời giải cho hoàn chỉnh. Bài tập 1: Tìm các khoảng đồng biến, nghịch biến của hàm số: y = x 3 − 3x + 1. Giải: + TXĐ: D = R. + y' = 3x 2 − 3. y' = 0 ⇔ x = 1 hoặc x = −1. + BBT: x − ∞ −1 1 + ∞ y' + 0 − 0 + y + Kết luận: Hoạt động 4: Mở rộng định lí về mối liên hệ giữa dấu của đạo hàm và tính đơn điệu của hàm số + GV nêu định lí mở rộng và chú ý cho hs là dấu "=" xảy ra tại một số hữu hạn điểm thuộc K. + Ra ví dụ. + Phát vấn kết quả và giải thích. I. Tính đơn điệu của hàm số: 2. Tính đơn điệu và dấu của đạo hàm: * Định lí: (SGK) * Chú ý: (SGK) + Ví dụ: Xét tính đơn điệu của hàm số y = x 3 . ĐS: Hàm số luôn đồng biến. Hoạt động 5: Tiếp cận quy tắc xét tính đơn điệu của hàm số + Từ các ví dụ trên, hãy rút ra quy tắc xét tính đơn điệu của hàm số? + Nhấn mạnh các điểm cần lưu ý. II. Quy tắc xét tính đơn điệu của hàm số. 1. Quy tắc: (SGK) + Lưu ý: Việc tìm các khoảng đồng biến, nghịch biến của hàm số còn được gọi là xét chiều biến thiên của hàm số đó. Hoạt động 6: Áp dụng quy tắc để giải một số bài tập liên quan đến tính đơn điệu của hàm số + Ra đề bài tập. HS giải bài tập theo hướng dẫn của giáo viên. + Quan sát và hướng dẫn (nếu cần) học sinh giải bài tập. + Gọi học sinh trình bày lời giải lên bảng. + Hoàn chỉnh lời giải cho học sinh. Bài tập 2: Xét tính đơn điệu của hàm số sau: 1 2 x y x − = + ĐS: Hàm số đồng biến trên các khoảng ( ) ; 2−∞ − và ( ) 2;− +∞ Bài tập 3: Chứng minh rằng: tanx > x với mọi x thuộc khoảng 0; 2 π ÷ HD: Xét tính đơn điệu của hàm số y = tanx − x trên khoảng 0; 2 π ÷ . từ đó rút ra bđt cần chứng minh. Hoạt động7: Tổng kết + Gv tổng kết lại các vấn đề trọng tâm của bài học HS ghi nhận kiến thức * Qua bài học học sinh cần nắm được các vấn đề sau: + Mối liên hệ giữa đạo hàm và tính đơn điệu của hàm số. + Quy tắc xét tính đơn điệu của hàm số. + Ứng dụng để chứng minh BĐT. Củng cố: Cho hàm số f(x) = 3x 1 1 x + − và các mệnh đề sau: (I) : Trên khoảng (2; 3) hàm số f đồng biến. (II): Trên các khoảng (- ∞ ; 1) và (1; + ∞ ) đồ thị của hàm số f đi lên từ trái qua phải. (III): f(x) > f(2) với mọi x thuộc khoảng (2; + ∞ ). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? A. 1 B. 3 C. 2 D. 0 HS trả lời đáp án. GV nhận xét. * Hướng dẫn học bài ở nhà và ra bài tập về nhà: + Nắm vững qui tắc xét tính đơn điệu của hàm số và ứng dụng. + Giải các bài tập ở sách giáo khoa. V. PHỤ LỤC: Bảng phụ có các hình vẽ H1 và H4 − SGK trang 4 Rút kinh nghiệm giờ dạy …………………………………………… ________________________________________________ Tiết PPCT: 02 Ngày soạn: 7/8/2013 Ngày dạy: 12A1: 12A2: 12A4: BÀI TẬP SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ I - Mục tiêu: 1. Về kiến thức: - Củng cố định nghĩa hàm số đồng biến, nghịch biến trên khoảng, nửa khoảng, đoạn. - Củng cố điều kiện đủ để hàm số đồng biến, nghịch biến trên khoảng, nửa khoảng, đoạn. 2. Về kỹ năng: - Có kỹ năng thành thạo giải toán về xét tính đơn điệu của hàm số bằng đạo hàm. - Áp dụng được đạo hàm để giải các bài toán đơn giản. 3. Về tư duy và thái độ: Thận trọng, chính xác. II- Chuẩn bị của thầy và trò: Giáo viên: Giáo án, bảng phụ Học sinh: Sách giáo khoa và bài tập đã được chuẩn bị ở nhà. III- Phương pháp: Vấn đáp gợi mở IV - Tiến trình tổ chức bài học: * Ổn định lớp: Sĩ số 12A1: 12A2: 12A4: Hoạt động 1: (Kiểm tra bài cũ) Câu hỏi: 1. Cho hàm số y = f(x) có đạo hàm trên K, với K là khoảng, nửa khoảng hoặc đoạn. Các em nhắc lại mối liên hệ giữa sự đồng biến, nghịch biến của hàm số trên K và dấu của đạo hàm trên K ? 2. Nêu lại qui tắc xét sự đồng biến, nghịch biến của hàm số 3. (Chữa bài tập 1b trang 9 SGK) :Xét sự đồng biến, nghịch biến của hàm số y = 3 2 1 3 7 2 3 x x x+ − − Hoạt động của GV và HS Yêu cầu cần đạt - Học sinh lên bảng trả lời câu 1, 2 đúng và trình bày bài giải đã chuẩn bị ở nhà. - Nhận xét bài giải của bạn. Uốn nắn sự biểu đạt của học sinh về tính toán, cách trình bày bài giải Hoạt động 2: Chữa bài tập 2a, 2c a) y = 3x 1 1 x + − c) y = 2 x x 20− − Hoạt động của GV và HS Yêu cầu cần đạt - Trình bày bài giải. - Nhận xét bài giải của bạn. Uốn nắn sự biểu đạt của học sinh về tính toán, cách trình bày bài giải Hoạt động 3: (Nối tiếp hoạt động 2). Bảng phụ có nội dung Cho hàm số f(x) = 3x 1 1 x + − và các mệnh đề sau: (I) : Trên khoảng (2; 3) hàm số f đồng biến. (II): Trên các khoảng (- ∞ ; 1) và (1; + ∞ ) đồ thị của hàm số f đi lên từ trái qua phải. (III): f(x) > f(2) với mọi x thuộc khoảng (2; + ∞ ). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? A. 1 B. 3 C. 2 D. 0 HS trả lời đáp án. GV nhận xét. Hoạt động 4: (Chữa bài tập 5a SGK) Chứng minh bất đẳng thức sau: tanx > x ( 0 < x < 2 π ) Hoạt động của GV và HS Yêu cầu cần đạt + Thiết lập hàm số đặc trưng cho bất đẳng thức cần chứng minh. + Khảo sát về tính đơn điệu của hàm số đã lập ( nên lập bảng). + Từ kết quả thu được đưa ra kết luận về bất đẳng thức cần chứng minh. Xét hàm số g(x) = tanx - x xác định với các giá trị x ∈ 0; 2 π ÷ và có: g’(x) = tan 2 x 0 ≥ x ∀ ∈ 0; 2 π ÷ và g'(x) = 0 chỉ tại điểm x = 0 nên hàm số g đồng biến trên 0; 2 π ÷ Do đó g(x) > g(0) = 0, ∀ x ∈ 0; 2 π ÷ Củng cố: 1) Phương pháp xét sự đồng biến, nghịch biến của hàm số. 2) Áp dụng sự đồng biến, nghịch biến của hàm số để chứng minh một số bất đẳng thức. Bài tập về nhà: 1) Hoàn thiện các bài tập còn lại ở trang 11 (SGK) 2) Giới thiệu thêm bài toán chứng minh bất đẳng thức bằng tính đơn điệu của hàm có tính phức tạp hơn cho các học sinh khá: Chứng minh các bất đẳng thức sau: a) x - 3 3 5 x x x x sin x x 3! 3! 5! − < < − + với các giá trị x > 0. b) sinx > 2x π với x ∈ 0; 2 π ÷ . Rút kinh nghiệm giờ dạy …………………………………………… _____________________________________________________ Tiết PPCT: 03 Ngày soạn: 8/8/2013 Ngày dạy: 12A1: 12A2: 12A4: CỰC TRỊ CỦA HÀM SỐ I - Mục tiêu: * Về kiến thức: + Biết các khái niệm cực đại, cực tiểu; biết phân biệt các khấi niệm lớn nhất, nhỏ nhất. + Biết các điều kiện đủ để hàm số có cực trị. * Về kĩ năng: + Sử dụng thành thạo các điều kiện đủ để tìm cực trị của hàm số. * Về tư duy và thái độ: + Hiểu mối quan hệ giữa sự tồn tại cực trị và dấu của đạo hàm. + Cẩn thận, chính xác; Tích cực hoạt động; rèn luyện tư duy trực quan, tương tự. II. Chuẩn bị: * Giáo viên: Giáo án, bảng phụ… * Học sinh: Nắm kiến thức bài cũ, nghiên cứu bài mới, đồ dùng học tập. III. Phương pháp: Kết hợp nhiều phương pháp, trong đó vấn đáp, gợi mở là phương pháp chủ đạo. IV. Tiến trình: 1. Ổn định tổ chức: Sĩ số: 12A1: 12A2: 12A4: 2. Kiểm tra bài cũ (5’): Xét sự đồng biến, nghịch bến của hàm số: 3 2 1 2 3 3 y x x x= − + 3. Bài mới: Hoạt động 1: Khái niệm cực trị và điều kiện đủ để hàm số có cực trị. Hoạt động của GV và HS Yêu cầu cần đạt + Treo bảng phụ (H8 tr 13 SGK) và giới thiệu đây là đồ thị của hàm số trên. H1 Dựa vào đồ thị, hãy chỉ ra các điểm tại đó §2 CỰC TRỊ CỦA HÀM SỐ hàm số có giá trị lớn nhất trên khoảng 1 3 ; 2 2 ÷ ? H2 Dựa vào đồ thị, hãy chỉ ra các điểm tại đó hàm số có giá trị nhỏ nhất trên khoảng 3 ;4 2 ÷ ? + Cho HS khác nhận xét sau đó GV chính xác hoá câu trả lời và giới thiệu điểm đó là cực đại (cực tiểu). + Cho học sinh phát biểu nội dung định nghĩa ở SGK, đồng thời GV giới thiệu chú ý 1. và 2. + Từ H8, GV kẻ tiếp tuyến tại các điểm cực trị và dẫn dắt đến chú ý 3. và nhấn mạnh: nếu 0 '( ) 0f x ≠ thì 0 x không phải là điểm cực trị. + Yêu cầu HS xem lại đồ thị ở bảng phụ và bảng biến thiên ở phần KTBC (Khi đã được chính xác hoá). H1 Nêu mối liên hệ giữa tồn tại cực trị và dấu của đạo hàm? + Cho HS nhận xét và GV chính xác hoá kiến thức, từ đó dẫn dắt đến nội dung định lí 1 SGK. + Dùng phương pháp vấn đáp cùng với HS giải vd2 như SGK. + Cho HS nghiên cứu vd3 rồi lên bảng trình bày. + Cho HS khác nhận xét và GV chính xác hoá lời giải. I. Khái niệm cực đại, cực tiểu Định nghĩa (SGK) Chú ý (SGK) II. Điều kiện đủ để hàm số có cực trị Định lí 1 (SGK) x x 0 -h x 0 x 0 +h f’(x) + - f(x) f CD 4. Củng cố toàn bài(3’): + Cho học sinh giải bài tập trắc nghiệm: Số điểm cực trị của hàm số: 4 2 2 1y x x= + − là: A. 0 B. 1 C. 2 D. 3 + Nêu mục tiêu của tiết. 5. Hướng dẫn học bài ở nhà và ra bài tập về nhà (1’): HS về nhà xem kĩ lại phần đã học, xem trước bài mới và làm các bài tập: 1, 3-6 tr18 SGK. V. Phụ lục: Bảng phụ: x y 4 3 3 2 1 2 3 4 O 1 2 Rút kinh nghiệm giờ dạy x x 0 -h x 0 x 0 +h f’(x) - + f(x) f CT …………………………………………… Tiết PPCT: 04 Ngày soạn: 15/8/2013 Ngày dạy: 12A1: 12A2: 12A4: CỰC TRỊ CỦA HÀM SỐ I-Mục tiêu: + Về kiến thức: - Nắm vững định lí 1 và định lí 2 - Phát biểu được các bước để tìm cực trị của hàm số (quy tắc I và quy tắc II) + Về kỹ năng: Vận dụng được quy tắc I và quy tắc II để tìm cực trị của hàm số + Về tư duy và thái độ: - Áp dụng quy tắc I và II cho từng trường hợp - Biết quy lạ về quen - Tích cực học tập, chủ động tham gia các hoạt động II-Chuẩn bị của GV và HS: - GV: giáo án, bảng phụ - HS: học bài cũ và xem trước bài mới ở nhà III-Phương pháp giảng dạy: vấn đáp, gợi mở, hoạt động nhóm IV-Tiến trình bài học: 1. Ổn định lớp: Sĩ số 12A1: 12A2: 12A4: 2. Kiểm tra bài cũ: Hoạt động của GV và HS Yêu cầu cần đạt +Treo bảng phụ có ghi câu hỏi +HS lên bảng trả lời + Nhận xét, bổ sung thêm 1/Hãy nêu định lí 1 2/Áp dụng định lí 1, tìm các điểm cực trị của hàm số sau: x xy 1 += Giải: Tập xác định: D = R\{0} 10' 11 1' 2 2 2 ±=⇔= − =−= xy x x x y BBT: x -∞ -1 0 1 +∞ y’ + 0 - - 0 + y -2 +∞ +∞ -∞ -∞ 2 Từ BBT suy ra x = -1 là điểm cực đại của hàm số và x = 1 là điểm cực tiểu của hàm số 3. Bài mới: *Hoạt động 1: Dẫn dắt khái niệm Hoạt động của GV và HS Yêu cầu cần đạt +Yêu cầu HS nêu các bước tìm cực trị của hàm số từ định lí 1 +GV treo bảng phụ ghi quy tắc I +Yêu cầu HS tính thêm y”(-1), y”(1) ở câu 2 trên +Phát vấn: Quan hệ giữa đạo hàm cấp hai với cực trị của hàm số? III-Quy tắc tìm cực trị: *Quy tắc I: sgk/trang 16 +GV thuyết trình và treo bảng phụ ghi định lí 2, quy tắc II *Định lí 2: sgk/trang 16 *Quy tắc II: sgk/trang 17 *Hoạt động 2: Luyện tập, củng cố Hoạt động của GV và HS Yêu cầu cần đạt +Yêu cầu HS vận dụng quy tắc II để tìm cực trị của hàm số +Phát vấn: Khi nào nên dùng quy tắc I, khi nào nên dùng quy tắc II ? +Đối với hàm số không có đạo hàm cấp 1 (và do đó không có đạo hàm cấp 2) thì không thể dùng quy tắc II. Riêng đối với hàm số lượng giác nên sử dụng quy tắc II để tìm các cực trị *Ví dụ 1: Tìm các điểm cực trị của hàm số: f(x) = x 4 – 2x 2 + 1 Giải: Tập xác định của hàm số: D = R f’(x) = 4x 3 – 4x = 4x(x 2 – 1) f’(x) = 0 1 ±=⇔ x ; x = 0 f”(x) = 12x 2 - 4 f”( ± 1) = 8 >0 ⇒ x = -1 và x = 1 là hai điểm cực tiểu f”(0) = -4 < 0 ⇒ x = 0 là điểm cực đại Kết luận: f(x) đạt cực tiểu tại x = -1 và x = 1; f CT = f( ± 1) = 0 f(x) đạt cực đại tại x = 0; f CĐ = f(0) = 1 *Hoạt động 3: Luyện tập, củng cố Hoạt động của GV và HS Yêu cầu cần đạt +Yêu cầu HS hoạt động nhóm. Nhóm nào giải xong trước lên bảng trình bày lời giải +HS thực hiện hoạt động nhóm *Ví dụ 2: Tìm các điểm cực trị của hàm số f(x) = x – sin2x Giải: Tập xác định : D = R f’(x) = 1 – 2cos2x f’(x) = 0 ⇔ cos2x = +−= += ⇔ π π π π kx kx 6 6 2 1 (k Ζ∈ ) f”(x) = 4sin2x f”( π π k+ 6 ) = 2 3 > 0 f”(- π π k+ 6 ) = -2 3 < 0 Kết luận: x = π π k+ 6 ( k Ζ∈ ) là các điểm cực tiểu của hàm số x = - π π k+ 6 ( k Ζ∈ ) là các điểm cực đại của hàm số 4. Củng cố toàn bài: (5’) Các mệnh đề sau đúng hay sai? 1/ Số điểm cực tr ị của hàm số y = 2x 3 – 3x 2 là 3 2/ Hàm số y = - x 4 + 2x 2 đạt cực trị tại điểm x = 0 Đáp án: 1/ Sai 2/ Đúng 5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: (3’) - Định lý 2 và các quy tắc I, II tìm cực trị của hàm số - BTVN: làm các bài tập còn lại ở trang 18 sgk - Đọc bài và tìm hiểu bài mới trước ở nhà V-Phụ lục: bảng phụ ghi các quy tắc I, II và định lí 2 Rút kinh nghiệm giờ dạy …………………………………………… _____________________________________________________ Tiết PPCT: 05 Ngày soạn: 15/8/2013 Ngày dạy: 12A1: 12A2: 12A4: BÀI TẬP CỰC TRỊ CỦA HÀM SỐ I. MỤC TIÊU: 1/ Kiến thức: +Khắc sâu khái niệm cực đại ,cực tiểu của hàm số và các quy tắc tìm cực trị của hàm số 2/ Kỹ năng: +Vận dụng thành thạo các quy tắc để tìm cực trị của hàm số +Sử dụng thành thạo các điều kiện đủ và chý ý 3 để giải các bài toán liên quan đến cực trị của hàm số 3/ Tư duy: Biết chuyển hoá qua lại giữa kiến thức từ trực quan (hình vẽ) và kiến thức từ suy luận logic. 4/ Thái độ: Tích cực, chủ động tham gia hoạt động. II. CHUẨN BỊ. + GV: Giáo án,câu hỏi trắc,phiếu học tập và các dụng cụ dạy học + HS: Làm bài tập ở nhà III. PHƯƠNG PHÁP: Gợi mở, nêu vấn đề, diễn giải IV. TIẾN TRÌNH DẠY HỌC. 1.Ổn định tổ chức: Sĩ số 12A1: 12A2: 12A4: 2. Kiểm tra bài cũ: Câu hỏi:Nêu các quy tắc để tìm cực trị của hàm số Hoạt động của GV và HS Yêu cầu cần đạt Hoạt động 1:AD quy tắc I, hãy tìm cực trị của các hàm số 1/ 1 y x x = + 2/ 2 1y x x= − + + Dựa vào QTắc I và giải + Gọi 1 nêu TXĐ của hàm số + HS tính y’ và giải pt: y’ = 0 + HS lên vẽ BBT,từ đó suy ra các điểm cực trị của hàm số + Chính xác hoá bài giải của học sinh + Cách giải bài 2 tương tự như bài tập 1 1/ 1 y x x = + TXĐ: D = ¡ \{0} 2 2 1 ' x y x − = ' 0 1y x= ⇔ = ± Bảng biến thiên x −∞ -1 0 1 +∞ y’ + 0 - - 0 + y -2 2 + Gọi 1 HS xung phong lên bảng giải,các HS khác theo dõi cách giải của bạn và cho nhận xét +Hoàn thiện bài làm của học sinh(sửa chữa sai sót(nếu có)) Hàm số đạt cực đại tại x= -1 và y CĐ = -2 Hàm số đạt cực tiểu tại x =1 và y CT = 2 2/ 2 1y x x= − + LG: vì x 2 -x+1 >0 , x∀ ∈¡ nên TXĐ của hàm số là :D=R 2 2 1 ' 2 1 x y x x − = − + có tập xác định là R 1 ' 0 2 y x= ⇔ = x −∞ 1 2 +∞ y’ - 0 + y 3 2 Hàm số đạt cực tiểu tại x = 1 2 và y CT = 3 2 Hoạt động 2: AD quy tắc II,hãy tìm cực trị của các hàm số y = sin2x-x *HD:GV cụ thể các bước giải cho học sinh +Nêu TXĐ và tính y’ +giải pt y’ =0 và tính y’’=? +Gọi HS tính y’’( 6 k π π + )=? y’’( 6 k π π − + ) =? và nhận xét dấu của chúng ,từ đó suy ra các cực trị của hàm số *GV gọi 1 HS xung phong lên bảng giải *Gọi HS nhận xét *Chính xác hoá và cho lời giải Tìm cực trị của các hàm số y = sin2x-x LG: TXĐ D =R ' 2 os2x-1y c= ' 0 , 6 y x k k Z π π = ⇔ = ± + ∈ y’’= -4sin2x y’’( 6 k π π + ) = -2 3 <0,hàm số đạt cực đại tạix= 6 k π π + , k Z∈ vày CĐ = 3 , 2 6 k k z π π − − ∈ y’’( 6 k π π − + ) =8>0,hàm số đạt cực tiểu tại x= 6 k π π − + k Z∈ ,vày CT = 3 , 2 6 k k z π π − + − ∈ Hoạt động 3:Chứng minh rằng với mọi giá trị của tham số m,hàm số y =x 3 -mx 2 –2x +1 luôn có 1 cực đại và 1 cực tiểu + Hs cho biết TXĐ và tính y’ + Gợi ý gọi HS xung phong nêu điều kiện cần và đủ để hàm số đã cho có 1 cực đại và 1 cực tiểu, từ đó cần chứng minh ∆ >0, m∀ ∈ R TXĐ: D =R. y’=3x 2 -2mx –2 Ta có: ∆ = m 2 +6 > 0, m∀ ∈ R nên phương trình y’ =0 có hai nghiệm phân biệt Vậy: Hàm số đã cho luôn có 1 cực đại và 1 cực tiểu Hoạt động 4:Xác định giá trị của tham số m để hàm số 2 1x mx y x m + + = + đạt cực đại tại x [...]... trang 30 sgk - Xem bi kho sỏt s bin thiờn v v th hm s 6 PH LC: 1 Phiu hc tp: Phiu hc tp 1: Tỡm TCN nu cú ca th cỏc Hs sau: 1) y = 3x 2 x +3 2) y = 2 3) y = 2x 3 3x + 1 4) y = 2x + 1 x 4 x 2 1 Phiu hc tp 2: Tỡm TC nu cú ca th cỏc hs sau: x 2 + x +1 1) y = 2x + 3 2) y = x 2 x24 3) y = x 1 x 2 +1 Phiu hc tp 3: Tỡm cỏc tim cn nu cú ca cỏc hs sau: 3 x 2x 2 x 3 1) y = 2) y = 3) y = 2x + 1 x 4 1 x 2. .. 1;1] Bng ph 3: [ 1;1] [ 1;1] x +1 trờn [ 2; 3] x 1 y = 4 x2 TX Đ :D= [ -2; 2 ] x y'= 4 x2 y ' = 0 x = 0 D (chọn) y( 2) = 0; y( 0) = 2; y( 2) KL : max y = 2; min = 0 D D Bng ph 4: hs y=1/x x y y - + 0 - + 0 - - 0 P N CU HI TRC NGHIM B1: D B2: D Rỳt kinh nghim gi dy _ Tit PPCT: 08 Ngy dy: 12A1: Ngy son: 20 /8 /20 13 12A2: 12A4: BI TP GI TR LN NHT NH NHT CA HM S I MC TIấU: 1 V kin... đồ thị hàm số: x4 2 3 y= - -x + 2 2 Giải: * TXĐ: D=R * y=-2x 3 -2x H1? Tính lim y = ? x H2? Hãy tìm giao điểm của đồ thị với trục hoành * y =0 x=0 y= * Giới hạn: 3 2 1 1 3 lim y = lim x 4 ( + 2 4 ) = x 2 x x 2x * BBT x - Y + y - 0 0 + - 3 2 * Đồ thị: f ( x) = ( ) -x4 2 -x2 + 3 2 2 -5 5 -2 Hàm số đã cho là hàm số chẵn do đó đò thị nhận trục tung là trục đối xứng VD2: Hai hàm số sau có... hc: 1/ n nh t chc: S s 12A1: 12A2: 12A4: 2/ Kim tra bi c : Cõu hi : Kho sỏt s bin thiờn v v th hm s bc hai: y= x2 - 4x + 3 3/ Bi mi: Hot ng ca GV v HS Yờu cu cn t H1: ng dng th kho sỏt s bin TX : D=R 2 thiờn v v th hm s:y= x - 4x +3 y= 2x - 4 CH1 : TX ca hm s y= 0 => 2x - 4 = 0 CH2: Xột tớnh n iu v cc tr ca hm s x = 2 => y = -1 CH3: Tỡm cỏc gii hn 2 lim x (x - 4x + 3 ) 2 lim x+ ( x - 4x + 3 )... =2 +Gi 1HS nờu TX +Gi 1HS lờn bngtớnh y v y,cỏc HS khỏc tớnh nhỏp vo giy v nhn xột Cho kt qu y +GV:gi ý v gi HS xung phong tr li cõu hi:Nờu K cn v hm s t cc i ti x =2? +Chớnh xỏc cõu tr li TX: D =R\{-m} y'= x 2 + 2mx + m 2 1 ( x + m) 2 y '' = 2 ( x + m) 3 y ' (2) = 0 y '' (2) < 0 Hm s t cc i ti x =2 m 2 + 4m + 3 =0 2 (2 + m) m = 3 2 0 x 2 + Gi ln lt hs lờn bng tin hnh cỏc bc Suy ra hm s luụn ng bin trờn ( ,2) ( 2, + ) + ng TC +BBT: x - + 2 y' -1 + y -1 - * th: 4 2 -5 5 -2 -4 -6 H3: S tng giao ca cỏc th III.S tng giao ca cỏc th:... cõu H6(SGK- 42) hi S giao im ca (C1) v ( C2) bng s nghim ca phỏt trin no? VD7,8(SGK) 4 Cng c: 5 Bi tp v nh: Bi3/Sgk Cho hm s y = VD 7,8(SGK) 2 mx + 1 a/ Kho sỏt v v th ca hm s vi m=1v vit phng trỡnh tip tuyn ca th hm s ú ti giao im ca nú vi trc tung b/ Tỡm m th hm s i qua im (2; -1) Rỳt kinh nghim gi dy _ Tit PPCT: 15 Ngy son: 1/9 /20 13 Ngy dy: 12A1: 12A2: 12A4: BI TP KHO . TIẾN TRÌNH DẠY HỌC: 1. Ổn định lớp: Sĩ số 12A1: 12A2: 12A4: 2. Bài cũ: 1) 2 1. N x T− + 2 x ªu ®Þnh nghÜa TC§, ¸p dông t×m TC§ cña ®å thÞ hs: y = . 2- x 2) Cho hs y = x ×m tiÖm cËn cña ®å thÞ hs. phụ: x y 4 3 3 2 1 2 3 4 O 1 2 Rút kinh nghiệm giờ dạy x x 0 -h x 0 x 0 +h f’(x) - + f(x) f CT …………………………………………… Tiết PPCT: 04 Ngày soạn: 15/8 /20 13 Ngày dạy: 12A1: 12A2: 12A4: CỰC TRỊ CỦA. định lớp : Sĩ số 12A1: 12A2: 12A4: 2 Bài cũ : Nêu quy tắc tìm gtln, nn của hàm số trên đoạn. Áp dụng tìm gtln, nn của hs y = x 3 – 6x 2 + 9x – 4 trên đoạn [0;5]; [ -2; -1]; ( -2; 3). Nhận xét,