1. Trang chủ
  2. » Giáo án - Bài giảng

CHUYEN DE CĂN BẠC 2 ( CÓ HƯỚNG DẪN)

7 428 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 375,5 KB

Nội dung

Chơng trình ôn thi vào lớp 10 Năm học: 2011 - 2012 phần I đại số Chuyên đề i: căn thức bậc hai - bậc ba Các phép biến đổi căn thức bậc hai- bậc ba A. Những công thức biến đổi căn thức: 1) AA = 2 2) BAAB .= ( với A 0 và B 0 ) 3) B A B A = ( với A 0 và B > 0 ) 4) BABA = 2 (với B 0 ) 5) BABA 2 = ( với A 0 và B 0 ) BABA 2 = ( với A < 0 và B 0 ) 6) B AB B A = ( với AB 0 và B 0 ) 7) B BA B A = ( với B > 0 ) 8) 2 )( BA BAC BA C = ( Với A 0 và A B 2 ) 9) BA BAC BA C = )( ( với A 0, B 0 và A B B. Bài tập cơ bản: Bài 1: Tìm ĐKXĐ của các biểu thức sau: a) 32 + x b) 12 3 + x c) 1 2 x d) 2 2 1 x HD: a) 2 3 x b) 2 1 < x c) 1 0 x x d) 0 x Bài 2: Phân tích thành nhân tử ( với x 0 ) a) 8632 +++ b) x 2 - 5 c) x - 4 d) 1 xx HD: a) ( )( ) 1232 ++ b) ( )( ) 55 + xx c) ( )( ) 22 + xx d) ( )( ) 11 ++ xxx Bài 3: Đa các biểu thức sau về dạng bình phơng. a) 223 + b) 83 c) 549 + d) 7823 HD: a) ( ) 2 12 + b) ( ) 2 12 c) ( ) 2 25 + d) ( ) 2 74 Bài 4: Rút gọn các biểu thức sau: a) ( ) 2 174 b) 2832 146 + + c) 5 5 2 + x x (với x 5) d) 1 1 x xx ( với 1,0 xx ) HD: a) 417 b) 2 2 c) 5 x d) 1 ++ xx Bài 5: Tìm giá trị của x Z để các biểu thức sau có giá trị nguyên. a) 2 3 + x ( với x 0) b) 1 5 + + x x ( với x 0) c) 2 2 + x x ( với x 0 và x 4) HD: a) { } 1=x b) { } 9;1;0=x c) { } 36;1 6;9;1;0=x Bài 6: Giải các phơng trình, bất phơng trình sau: a) 35 = x b) 523 x c) 2 3 3 = + x x d) 1 1 3 > x HD: a) x = 14 b) 2 3 1 x c) x = 81 d) 161 << x C. Bài tập tổng hợp: Bài 1: Cho biểu thức: A = 1 1 1 1 + + x x x xx a)Tìm ĐKXĐ và rút gọn A. b) Tính giá trị biểu thức A khi x = 4 9 . c) Tìm tất cả các giá trị của x để A < 1. HD: a) ĐKXĐ là: 1 0 x x , rút gọn biểu thức ta có: A = 1x x . b) x = 4 9 thì A = 3 c) 10 < x . Bài 2: Cho biểu thức: B = 4 52 2 2 2 1 + + + + x x x x x x a) Tìm điều kiện xác định và rút gọn biểu thức B. b) Tìm x để B = 2. HD: a) Điều kiện: 4 0 x x , rút gọn biểu thức ta có: B = 2 3 +x x . c) B = 2 x = 16. Bài 3: Cho biểu thức: C = + + 1 2 2 1 : 1 1 1 a a a a aa a) Tìm điều kiện xác định và rút gọn biểu thức C. b) Tìm giá trị a để C dơng. HD: a) Điều kiện: > 1 4 0 a a a , rút gọn biểu thức ta có: C = a a 3 2 b) C dơng khi a > 4. Bài 4: Cho biểu thức D = x x x x x x 4 4 . 22 + + a) Tìm điều kiện xác định và rút gọn biểu thức D. b) Tính giá trị của D khi x = 526 . HD: a) Điều kiện: > 4 0 x x , rút gọn biểu thức ta có: D = x . b) D = 15 Bµi 5: Cho biĨu thøc E = 1 3 11 − − + − − + x x x x x x a) T×m ®iỊu kiƯn x¸c ®Þnh vµ rót gän biĨu thøc E. b) T×m x ®Ĩ E = -1. HD: a) §iỊu kiƯn:    ≠ > 1 0 x x ,rót gän biĨu thøc ta cã: E = x + − 1 3 . c) x = 4. Bµi 6: Cho biĨu thøc: F = 8 44 . 2 2 2 2 ++         + − − xx xx a) Tìm TXĐ rồi rút gọn biểu thức F. b) Tính giá trò của biểu thức F khi x=3 + 8 ; c) Tìm giá trò nguyên của x để biểu thức F có giá trò nguyên ? HD: a) §KX§:    ≠ ≥ 4 0 x x ,rót gän biĨu thøc ta cã: F = 2 2 − + x x b) x = 3+ ( ) 2 122238 +=+= ⇒ A = 122 − c) BiĨu thøc A nguyªn khi: { } 1;2;42 ±±±=−x ⇒ x = {0; 1; 9; 16; 36} D. Bµi tËp lun tËp: Bµi1: Cho biĨu thøc : + −+ − + + = 6 5 3 2 aaa a P a − 2 1 a) T×n §KX§ vµ rót gän P. b) TÝnh gi¸ trÞ cđa P khi: a = 347 − . c) T×m gi¸ trÞ cđa a ®Ĩ P < 1. Bµi2 : Cho biĨu thøc: Q=         − + − − +         − − 1 2 2 1 : 1 1 1 a a a a aa a. Rót gän Q. b. T×m gi¸ trÞ cđa a ®Ĩ Q d¬ng. Bµi3: Cho biĨu thøc: A = x x x x xx x − + − − + − +− − 3 12 2 3 65 92 a, T×m §KX§ vµ rót gän biĨu thøc A. b, T×m c¸c gi¸ trÞ cđa x ®Ĩ A > 1. c, T×m c¸c gi¸ trÞ cđa x ∈ Z ®Ĩ A ∈ Z. Bµi4 : Cho biĨu thøc: C = 1 2 1 3 1 1 +− + + − + xxxxx a, T×m §KX§ vµ rót gän biĨu thøc C. b, T×m c¸c gi¸ trÞ cđa x ®Ĩ C = 1. Bµi5: Cho biĨu thøc: M = . 2 x)(1 1x2x 2x 1x 2x 2 − ⋅         ++ + − − − a) Rót gän M. b) T×m c¸c gi¸ trÞ cđa x ®Ĩ M d¬ng. c) Tìm giá trị lớn nhất của M. Bài6: Cho biểu thức: P = + + 1 2 1 1 : 1 1 x xxxx x a) Tìm ĐKXĐ và rút gọn P b) Tìm các giá trị của x để P > 0 c) Tìm x để P = 6. Bài tập tự rèn Bài 1 Cho biểu thức: + + + + = 6 5 3 2 aaa a P a2 1 a) Rút gọn P b) Tìm giá trị của a để P<1 Bài 2 Cho biểu thức: P = + + + + + + + 65 2 3 2 2 3 : 1 1 xx x x x x x x x a) Rút gọn P b)Tìm giá trị của a để P<0 Bài 3 Cho biểu thức: P= + + + 13 23 1: 19 8 13 1 13 1 x x x x xx x a) Rút gọn P b) Tìm các giá trị của x để P= 5 6 Bài 4 Cho biểu thức: P = + + + 1 2 1 1 : 1 1 aaaa a a a a a) Rút gọn P b) Tìm giá trị của a để P<1 c) Tìm giá trị của P nếu 3819 =a Bài 5 Cho biểu thức: P = + + + + a a a a a a a aa 1 1 . 1 1 : 1 )1( 332 a) Rút gọn P b) Xét dấu của biểu thức M=a.(P- 2 1 ) Bài 6 Cho biểu thức: P= + + + + + + + + 12 2 12 1 1:1 12 2 12 1 x xx x x x xx x x a) Rút gọn P b) Tính giá trị của P khi x ( ) 223. 2 1 += Bài 7 Cho biểu thức: P = + + + 1 1: 1 1 1 2 x x xxxxx x a) Rút gọn P b) Tìm x để P 0 Bài 8 Cho biểu thức: P = + + ++ + a a a aa a a a 1 1 . 1 12 3 3 a) Rút gọn P b) Xét dấu của biểu thức P. a1 Bài 9 Cho biểu thức: P = . 1 1 1 1 1 2 :1 + ++ + + + x x xx x xx x a) Rút gọn P b) So sánh P với 3 Bài 10 Cho biểu thức: P = + + + a a aa a a aa 1 1 . 1 1 a) Rút gọn P b) Tìm a để P < 347 Bài 11 Cho biểu thức: P = + + + 1 3 22 : 9 33 33 2 x x x x x x x x a) Rút gọn P b) Tìm x để P< 2 1 c) Tìm giá trị nhỏ nhất của P Bài 12 Cho biểu thức: P = + + 3 2 2 3 6 9 :1 9 3 x x x x xx x x xx a) Rút gọn P b) Tìm giá trị của x để P<1 Bài 13 Cho biểu thức: P = 3 32 1 23 32 1115 + + + + x x x x xx x a) Rút gọn P b) Tìm các giá trị của x để P= 2 1 c) Chứng minh P 3 2 Bài 14 Cho biểu thức: P= 2 2 44 2 mx m mx x mx x + + với m>0 a) Rút gọn P b) Tính x theo m để P = 0. c) Xác định các giá trị của m để x tìm đợc ở câu b thoả mãn điều kiện x >1 Bài 15 Cho biểu thức: P = 1 2 1 2 + + + + a aa aa aa a) Rút gọn P b) Biết a>1 Hãy so sánh P với P c) Tìm a để P=2 d) Tìm giá trị nhỏ nhất của P Bài 16 Cho biểu thức: P = + + + + + + + + 1 11 1 :1 11 1 ab aab ab a ab aab ab a a) Rút gọn P b) Tính giá trị của P nếu a = 32 và b = 31 13 + c) Tìm giá trị nhỏ nhất của P nếu 4=+ ba Bài 17 Cho biểu thức: P = + + + + + + 1 1 1 1111 a a a a a a aa aa aa aa a) Rút gọn P b) Với giá trị nào của a thì P = 7 c) Với giá trị nào của a thì P >6 Bài 18 Cho biểu thức: P = + + 1 1 1 1 2 1 2 2 a a a a a a a) Rút gọn P b) Tìm các giá trị của a để P < 0 c) Tìm các giá trị của a để P = -2 Bài 19 Cho biểu thức: P = ( ) ab abba ba abba + + . 4 2 a) Tìm điều kiện để P có nghĩa. b) Rút gọn P c) Tính giá trị của P khi a= 32 và b= 3 Bài 20 Cho biểu thức: P = 2 1 : 1 1 11 2 + ++ + + x xxx x xx x a) Rút gọn P b) Chứng minh rằng P>0 x 1 Bài 21 Cho biểu thức: P = ++ + + 1 2 1: 1 1 1 2 xx x xxx xx a) Rút gọn P b) Tính P khi x= 325 + Bài 22 Cho biểu thức: P = xx x x x 24 1 : 24 2 4 2 3 2 1 :1 + + a) Rút gọn P b) Tìm giá trị của x để P = 20 Bài 23 Cho biểu thức: P = ( ) yx xyyx xy yx yx yx + + + 2 33 : a) Rút gọn P b) Chứng minh P 0 Bài 24 Cho biểu thức: P = ++ + + + baba ba bbaa ab babbaa ab ba : 31 . 31 a) Rút gọn P b) Tính P khi a = 16 và b = 4 Bài 25 Cho biểu thức: P = 12 . 1 2 1 12 1 + + + a aa aa aaaa a aa a) Rút gọn P b) Cho P= 61 6 + tìm giá trị của a c) Chứng minh rằng P> 3 2 Bài 26 Cho biểu thức: P = + + + + 3 5 5 3 152 25 :1 25 5 x x x x xx x x xx a) Rút gọn P b) Với giá trị nào của x thì P<1 Bài 27 Cho biểu thức: P = ( ) ( ) baba baa babbaa a baba a 222 .1 : 133 ++ + ++ a) Rút gọn P b) Tìm những giá trị nguyên của a để P có giá trị nguyên Bài 28 Cho biểu thức: P = + + 1 2 2 1 : 1 1 1 a a a a aa a) Rút gọn P b) Tìm giá trị của a để P > 6 1 Bài 29: Cho biểu thức: P = 33 33 : 112 . 11 xyyx yyxxyx yx yxyx + +++ ++ + + a) Rút gọn P b) Cho x.y = 16. Xác định x, y để P có giá trị nhỏ nhất Bài 30 Cho biểu thức: P = x x yxyxx x yxy x + 1 1 . 22 2 2 3 a) Rút gọn P b) Tìm tất cả các số nguyên dơng x để y = 625 và P < 0,2 . ( )( ) 123 2 ++ b) ( )( ) 55 + xx c) ( )( ) 22 + xx d) ( )( ) 11 ++ xxx Bài 3: Đa các biểu thức sau về dạng bình phơng. a) 22 3 + b) 83 c) 549 + d) 7 823 HD: a) ( ) 2 12 + b) ( ) 2 12 c). ) 2 12 c) ( ) 2 25 + d) ( ) 2 74 Bài 4: Rút gọn các biểu thức sau: a) ( ) 2 174 b) 28 32 146 + + c) 5 5 2 + x x (với x 5) d) 1 1 x xx ( với 1,0 xx ) HD: a) 417 b) 2 2 c) 5 x d). thức sau: a) 32 + x b) 12 3 + x c) 1 2 x d) 2 2 1 x HD: a) 2 3 x b) 2 1 < x c) 1 0 x x d) 0 x Bài 2: Phân tích thành nhân tử ( với x 0 ) a) 86 32 +++ b) x 2 - 5 c) x - 4

Ngày đăng: 07/02/2015, 03:00

TỪ KHÓA LIÊN QUAN

w