Giáo viên: Mai Văn Vinh SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN VĨNH LONG NĂM HỌC 2013 – 2014 Môn thi : TOÁN (HỆ SỐ 2) ĐỀ CHÍNH THỨC Thời gian làm bài: 150 phút, không kể thời gian giao đề Bài 1: (1.0 điểm) Rút gọn biểu thức 18 27 A 9 4 5 9 4 5 2 3 Bài 2: (1.0 điểm) Giải phương trình 4 2 x x 4 x x Bài 3: (2.5 điểm) a) Vẽ đồ thị (P) của hàm số y = x 2 b) Tìm tọa độ giao điểm A và B của đồ thị (P) với đường thẳng (d): y = x + 2 bằng phép tính. c) Tìm tọa độ điểm M thuộc cung AB của đồ thị (P) sao cho tam giác MAB có diện tích lớn nhất. Bài 4: (2.5 điểm) Cho phương trình x 2 + (2m – 5)x – n = 0 (x là ẩn số) a) Giải phương trình khi m = 1 và n = 4. b) Tìm m và n để phương trình có hai nghiệm là 2 và – 3. c) Cho m = 5. Tìm n nguyên dương nhỏ nhất để phương trình có nghiệm dương. Bài 5: (2.0 điểm) Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Vẽ các đường cao BE, CF của tam giác ABC. Gọi H là giao điểm của BE và CF. Kẻ đường kính BK của đường tròn (O). a) Chứng minh tứ giác BCEF nội tiếp đường tròn. b) Chứng minh tứ giác AHCK là hình bình hành. c) Đường tròn đường kính AC cắt BE tại M, đường tròn đường kính AB cắt CF tại N Chứng minh AM = AN. Câu 6: (1.0 điểm) Cho tam giác ABC có BC = a, CA = b, AB = c và R là bán kính đường tròn ngoại tiếp tam giác ABC thỏa mãn hệ thức R b c a bc . Xác định hình dạng của tam giác ABC. Hết . Văn Vinh SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN VĨNH LONG NĂM HỌC 2013 – 2014 Môn thi : TOÁN (HỆ SỐ 2) ĐỀ CHÍNH THỨC Thời gian làm bài: 150 phút, không kể thời gian giao đề Bài