Tổng hợp các chuyên đề Bài toán liên quan Khảo sát hàm số CỰC HAY

86 537 0
Tổng hợp các chuyên đề Bài toán liên quan Khảo sát hàm số CỰC HAY

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

LỜI NÓI ĐẦU + Mục tiêu của chúng tôi khi tạo ra trang :eboookluyenthi.blogspot.com là cung cấp các tài liệu hay và có chọn lọc từ nhiều nguồn khác nhau trên mạng . ( web mới đi vào hoạt động , các bạn hãy vào để cập nhập tài liệu thường xuyên nhé) + Và mãng chính web xây dựng là tài liệu Toán- Lý- Hóa- Sinh- Anh văn từ lớp 6 đến12 và LTĐH +Đến với :eboookluyenthi.blogspot.com bạn sẽ ko phải phân vâng khi phải chọn tài liệu cho riêng mình khi đứng trước sự chia sẽ các tài liệu tràn lan và không chọn lọc hiện nay của nhiều nguồn trên Trang web. - Vì khi đến :eboookluyenthi.blogspot.com thì chúng tôi đã sàn lọc các tài liệu hay cho các bạn và đa số các tài liệu ở đây là hoàn toàn miễn phí được lọc từ nhìu nguồn như ( tailieu.vn, doc123,vnmath…v.v) + Các tài liệu sẽ Bám sát đề thi đại học nhằm giúp cho học sinh học theo chương trình chuẩn ôn thi hiệu quả. Những nội dung không phù hợp với chương trình thi đại học đã được loại bỏ. + Chúng tôi đã cố gắng cập nhật các bài toán mới lạ cũng như một số cách giải hay và phương pháp tư duy mới vào Trang web này. Hi vọng eboookluyenthi.blogspot.com là 1 trang tài liệu thiết thực giúp các em học sinh học tập có hiệu quả. - Ngoài ra, eboookluyenthi.blogspot.com là trang tài liệu tham khảo hữu ích cho các Thầy, Cô giáo giảng dạy các môn ở THPT và LTĐH + Trong quá trình soạn thảo và chọn lọc tài liệu chắc chắn sẽ còn một số thiếu sót, chúng tôi rất cần sự đóng góp ý kiến của các Thầy, Cô giáo và các em học sinh để Trang hoàn thiện hơn trong những lần tái bản sau. Liên Hệ : Face: https://www.facebook.com/lai.huy Hoặc Mail : hocmai552@gmail.com TRẦN SĨ TÙNG ›š & ›š TÀI LIỆU ÔN THI ĐẠI HỌC – CAO ĐẲNG Năm 2012 www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com Trần Sĩ Tùng Khảo sát hàm số Trang 1 KSHS 01: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ A. Kiến thức cơ bản Giả sử hàm số yfx () = có tập xác định D. · Hàm số f đồng biến trên D Û yxD 0, ¢ ³"Î và y 0 ¢ = chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Hàm số f nghịch biến trên D Û yxD 0, ¢ £"Î và y 0 ¢ = chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Nếu yaxbxca 2 '(0) =++¹ thì: + a yxR 0 '0, 0 D ì > ³"ÎÛ í £ î + a yxR 0 '0, 0 D ì < £"ÎÛ í £ î · Định lí về dấu của tam thức bậc hai gxaxbxca 2 ()(0) =++¹ : + Nếu D < 0 thì gx () luôn cùng dấu với a. + Nếu D = 0 thì gx () luôn cùng dấu với a (trừ b x a 2 =- ) + Nếu D > 0 thì gx () có hai nghiệm x x 12 , và trong khoảng hai nghiệm thì gx () khác dấu với a, ngoài khoảng hai nghiệm thì gx () cùng dấu với a. · So sánh các nghiệm x x 12 , của tam thức bậc hai gxaxbxc 2 () =++ với số 0: + xxP S 12 0 00 0 D ì ³ ï £<Û> í ï < î + xxP S 12 0 00 0 D ì ³ ï <£Û> í ï > î + xxP 12 00 <<Û< · ab gxmxabgxm (;) (),(;)max() £"ÎÛ£ ; ab gxmxabgxm (;) (),(;)min() ³"ÎÛ³ B. Một số dạng câu hỏi thường gặp 1. Tìm điều kiện để hàm số yfx () = đơn điệu trên tập xác định (hoặc trên từng khoảng xác định). · Hàm số f đồng biến trên D Û yxD 0, ¢ ³"Î và y 0 ¢ = chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Hàm số f nghịch biến trên D Û yxD 0, ¢ £"Î và y 0 ¢ = chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Nếu yaxbxca 2 '(0) =++¹ thì: + a yxR 0 '0, 0 D ì > ³"ÎÛ í £ î + a yxR 0 '0, 0 D ì < £"ÎÛ í £ î 2. Tìm điều kiện để hàm số yfxaxbxcxd 32 () ==+++ đơn điệu trên khoảng (;) ab . Ta có: yfxaxbxc 2 ()32 ¢¢ ==++ . a) Hàm số f đồng biến trên (;) ab Û yx 0,(;) ¢ ³"Î ab và y 0 ¢ = chỉ xảy ra tại một số hữu hạn điểm thuộc (;) ab . Trường hợp 1: · Nếu bất phương trình fxhmgx ()0()() ¢ ³Û³ (*) thì f đồng biến trên (;) ab Û hmgx (;) ()max() ³ ab www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com Khảo sát hàm số Trần Sĩ Tùng Trang 2 · Nếu bất phương trình fxhmgx ()0()() ¢ ³Û£ (**) thì f đồng biến trên (;) ab Û hmgx (;) ()min() £ ab Trường hợp 2: Nếu bất phương trình fx ()0 ¢ ³ không đưa được về dạng (*) thì đặt tx =- a . Khi đó ta có: ygtatabtabc 22 ()32(3)32 aaa ¢ ==+++++ . – Hàm số f đồng biến trên khoảng a (;) -¥ Û gtt ()0,0 ³"< Û a a S P 0 00 00 0 D D ì > ï ï ì >> Ú íí £> î ï ³ ï î – Hàm số f đồng biến trên khoảng a (;) +¥ Û gtt ()0,0 ³"> Û a a S P 0 00 00 0 D D ì > ï ï ì >> Ú íí £< î ï ³ ï î b) Hàm số f nghịch biến trên (;) ab Û yx 0,(;) ¢ ³"Î ab và y 0 ¢ = chỉ xảy ra tại một số hữu hạn điểm thuộc (;) ab . Trường hợp 1: · Nếu bất phương trình fxhmgx ()0()() ¢ £Û³ (*) thì f nghịch biến trên (;) ab Û hmgx (;) ()max() ³ ab · Nếu bất phương trình fxhmgx ()0()() ¢ ³Û£ (**) thì f nghịch biến trên (;) ab Û hmgx (;) ()min() £ ab Trường hợp 2: Nếu bất phương trình fx ()0 ¢ £ không đưa được về dạng (*) thì đặt tx =- a . Khi đó ta có: ygtatabtabc 22 ()32(3)32 aaa ¢ ==+++++ . – Hàm số f nghịch biến trên khoảng a (;) -¥ Û gtt ()0,0 £"< Û a a S P 0 00 00 0 D D ì < ï ï ì <> Ú íí £> î ï ³ ï î – Hàm số f nghịch biến trên khoảng a (;) +¥ Û gtt ()0,0 £"> Û a a S P 0 00 00 0 D D ì < ï ï ì <> Ú íí £< î ï ³ ï î 3. Tìm điều kiện để hàm số yfxaxbxcxd 32 () ==+++ đơn điệu trên khoảng có độ dài bằng k cho trước. · f đơn điệu trên khoảng xx 12 (;) Û y 0 ¢ = có 2 nghiệm phân biệt xx 12 , Û a 0 0 D ì ¹ í > î (1) · Biến đổi xxd 12 -= thành xxxxd 22 1212 ()4 +-= (2) · Sử dụng định lí Viet đưa (2) thành phương trình theo m. · Giải phương trình, so với điều kiện (1) để chọn nghiệm. 4. Tìm điều kiện để hàm số axbxc yad dxe 2 (2),(,0) ++ =¹ + a) Đồng biến trên (;) a -¥ . b) Đồng biến trên (;) a +¥ . www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com Trn S Tựng Kho sỏt hm s Trang 3 c) ng bin trờn (;) ab . Tp xỏc nh: e DR d \ ỡỹ - = ớý ợỵ , ( ) ( ) adxaexbedcfx y dxedxe 2 22 2() ' ++- == ++ 5. Tỡm iu kin hm s axbxc yad dxe 2 (2),(,0) ++ =ạ + a) Nghch bin trờn (;) a -Ơ . b) Nghch bin trờn (;) a +Ơ . c) Nghch bin trờn (;) ab . Tp xỏc nh: e DR d \ ỡỹ - = ớý ợỵ , ( ) ( ) adxaexbedcfx y dxedxe 2 22 2() ' ++- == ++ Trng hp 1 Trng hp 2 Nu: fxgxhmi ()0()()() Nu bpt: fx ()0 khụng a c v dng (i) thỡ ta t: tx a =- . Khi ú bpt: fx ()0 tr thnh: gt ()0 , vi: gtadtadetadaebedc 22 ()2()2 aaa =+++++- a) (2) ng bin trờn khong (;) a -Ơ e d gxhmx()(), a a ỡ - ù ớ ù "< ợ e d hmgx (;] ()min() a a -Ơ ỡ - ù ớ Ê ù ợ a) (2) ng bin trờn khong (;) a -Ơ e d gttii ()0,0() a ỡ - ù ớ ù "< ợ a a ii S P 0 00 () 00 0 ỡ > ù ù ỡ >D> ớớ DÊ> ợ ù ù ợ b) (2) ng bin trờn khong (;) a +Ơ e d gxhmx()(), a a ỡ - ù Ê ớ ù "> ợ e d hmgx [;) ()min() a a +Ơ ỡ - Ê ù ớ Ê ù ợ b) (2) ng bin trờn khong (;) a +Ơ e d gttiii ()0,0() a ỡ - ù Ê ớ ù "> ợ a a iii S P 0 00 () 00 0 ỡ > ù ù ỡ >D> ớớ DÊ< ợ ù ù ợ c) (2) ng bin trờn khong (;) ab ( ) e d gxhmx ; ()(),(;) ab ab ỡ - ù ẽ ớ ù "ẻ ợ ( ) e d hmgx [;] ; ()min() ab ab ỡ - ẽ ù ớ Ê ù ợ www.MATHVN.com - Toỏn Hc Vit Nam www.MATHVN.com Khảo sát hàm số Trần Sĩ Tùng Trang 4 Trường hợp 1 Trường hợp 2 Nếu fxgxhmi ()0()()() £Û³ Nếu bpt: fx ()0 ³ không đưa được về dạng (i) thì ta đặt: tx a =- . Khi đó bpt: fx ()0 £ trở thành: gt ()0 £ , với: gtadtadetadaebedc 22 ()2()2 aaa =+++++- a) (2) nghịch biến trên khoảng (;) a -¥ e d gxhmx()(), a a ì - ï ³ Û í ï ³"< î e d hmgx (;] ()min() a a -¥ ì - ³ ï Û í £ ï î a) (2) đồng biến trên khoảng (;) a -¥ e d gttii ()0,0() a ì - ï ³ Û í ï £"< î a a ii S P 0 00 () 00 0 ì < ï ï ì <D> ÛÚ íí D£> î ï ³ ï î b) (2) nghịch biến trên khoảng (;) a +¥ e d gxhmx()(), a a ì - ï £ Û í ï ³"> î e d hmgx [;) ()min() a a +¥ ì - £ ï Û í £ ï î b) (2) đồng biến trên khoảng (;) a +¥ e d gttiii ()0,0() a ì - ï £ Û í ï £"> î a a iii S P 0 00 () 00 0 ì < ï ï ì <D> ÛÚ íí D£< î ï ³ ï î c) (2) đồng biến trong khoảng (;) ab ( ) e d gxhmx ; ()(),(;) ab ab ì - ï Ï Û í ï ³"Î î ( ) e d hmgx [;] ; ()min() ab ab ì - Ï ï Û í £ ï î www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com Trn S Tựng Kho sỏt hm s Trang 5 Cõu 1. Cho hm s ymxmxmx 32 1 (1)(32) 3 =-++- (1) 1) Kho sỏt s bin thiờn v v th (C) ca hm s (1) khi m 2 = . 2) Tỡm tt c cỏc giỏ tr ca tham s m hm s (1) ng bin trờn tp xỏc nh ca nú. ã Tp xỏc nh: D = R. ymxmxm 2 (1)232  =-++- . (1) ng bin trờn R yx 0,  " m 2 Cõu 2. Cho hm s yxxmx 32 34 =+ (1) 1) Kho sỏt s bin thiờn v v th ca hm s (1) khi m 0 = . 2) Tỡm tt c cỏc giỏ tr ca tham s m hm s (1) ng bin trờn khong (;0) -Ơ . ã Tp xỏc nh: D = R. yxxm 2 36  =+- . y  cú m 3(3) D  =+ . + Nu m 3 Ê- thỡ 0 D Â Ê ị yx 0,  " ị hm s ng bin trờn R ị m 3 Ê- tho YCBT. + Nu m 3 >- thỡ 0 D  > ị PT y 0  = cú 2 nghim phõn bit xxxx 1212 ,() < . Khi ú hm s ng bin trờn cỏc khong xx 12 (;),(;) -Ơ+Ơ . Do ú hm s ng bin trờn khong (;0) -Ơ xx 12 0 Ê< P S 0 0 0 D  ỡ > ù ớ ù > ợ m m 3 0 20 ỡ >- ù - ớ ù -> ợ (VN) Vy: m 3 Ê- . Cõu 3. Cho hm s yxmxmmx 32 23(21)6(1)1 =-++++ cú th (C m ). 1) Kho sỏt s bin thiờn v v th ca hm s khi m = 0. 2) Tỡm m hm s ng bin trờn khong (2;) +Ơ ã Tp xỏc nh: D = R. yxmxmm 2 '66(21)6(1) =-+++ cú mmm 22 (21)4()10 D =+-+=> xm y xm '0 1 ộ = = ờ =+ ở . Hm s ng bin trờn cỏc khong mm (;),(1;) -Ơ++Ơ Do ú: hm s ng bin trờn (2;) +Ơ m 12 +Ê m 1 Ê Cõu 4. Cho hm s yxmxmxm 32 (12)(2)2 =+-+-++ . 1) Kho sỏt s bin thiờn v v th (C) ca hm s khi m = 1. 2) Tỡm m hm ng bin trờn khong K (0;) =+Ơ . ã Hm ng bin trờn (0;) +Ơ yxmxm 2 3(12)(22 )0  + =-+- vi x 0) ( ; "ẻ +Ơ x fxm x x 2 23 () 41 2+ = + + vi x 0) ( ; "ẻ +Ơ Ta cú: xx xx xxfx x 2 2 2 6( 1)1 1 2 ()02 () 01; 2 41  = +- +-==-= = + Lp BBT ca hm fx () trờn (0;) +Ơ , t ú ta i n kt lun: fmm 15 24 ổử ỗữ ốứ . Cõu hi tng t: a) ymxmxmx 32 1 (1)(21)3(21)1 3 =+ +-+ m (1) ạ- , K (;1) =-Ơ- . S: m 4 11 b) ymxmxmx 32 1 (1)(21)3(21)1 3 =+ +-+ m (1) ạ- , K (1;) =+Ơ . S: 0 m c) ymxmxmx 32 1 (1)(21)3(21)1 3 =+ +-+ m (1) ạ- , K (1;1) =- . S: m 1 2 www.MATHVN.com - Toỏn Hc Vit Nam www.MATHVN.com Kho sỏt hm s Trn S Tựng Trang 6 Cõu 5. Cho hm s ymxmxx 232 1 (1)(1)21 3 =-+ + (1) m (1) ạ . 1) Kho sỏt s bin thiờn v v th (C) ca hm s khi m = 0. 2) Tỡm m hm nghch bin trờn khong K (;2) =-Ơ . ã Tp xỏc nh: D = R; ymxmx 22 (1)2(1)2  =-+ . t tx 2 = ta c: ygtmtmmtmm 2222 ()(1)(426)4410  ==-++-++- Hm s (1) nghch bin trong khong (;2) -Ơ gtt ()0,0 Ê"< TH1: a 0 0 ỡ < ớ DÊ ợ m mm 2 2 10 3210 ỡ ù -< ớ Ê ù ợ TH2: a S P 0 0 0 0 ỡ < ù ù D> ớ > ù ù ợ m mm mm m m 2 2 2 10 3210 44100 23 0 1 ỡ -< ù > ù ù ớ +-Ê ù ù > ù + ợ Vy: Vi m 1 1 3 - Ê< thỡ hm s (1) nghch bin trong khong (;2) -Ơ . Cõu 6. Cho hm s ymxmxx 232 1 (1)(1)21 3 =-+ + (1) m (1) ạ . 1) Kho sỏt s bin thiờn v v th (C) ca hm s khi m = 0. 2) Tỡm m hm nghch bin trờn khong K (2;) =+Ơ . ã Tp xỏc nh: D = R; ymxmx 22 (1)2(1)2  =-+ . t tx 2 = ta c: ygtmtmmtmm 2222 ()(1)(426)4410  ==-++-++- Hm s (1) nghch bin trong khong (2;) +Ơ gtt ()0,0 Ê"> TH1: a 0 0 ỡ < ớ DÊ ợ m mm 2 2 10 3210 ỡ ù -< ớ Ê ù ợ TH2: a S P 0 0 0 0 ỡ < ù ù D> ớ < ù ù ợ m mm mm m m 2 2 2 10 3210 44100 23 0 1 ỡ -< ù > ù ù ớ +-Ê ù ù < ù + ợ Vy: Vi m 11 -<< thỡ hm s (1) nghch bin trong khong (2;) +Ơ Cõu 7. Cho hm s yxxmxm 32 3 =+++ (1), (m l tham s). 1) Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 3. 2) Tỡm m hm s (1) nghch bin trờn on cú di bng 1. ã Ta cú yxxm 2 '36 =++ cú m 93 D  =- . + Nu m 3 thỡ yxR 0,  "ẻ ị hm s ng bin trờn R ị m 3 khụng tho món. + Nu m < 3 thỡ y 0  = cú 2 nghim phõn bit xxxx 1212 ,() < . Hm s nghch bin trờn on xx 12 ; ộự ởỷ vi di lxx 12 = Ta cú: m xxxx 1212 2; 3 +=-= . YCBT l 1 = xx 12 1 -= xxxx 2 1212 ()41 +-= m 9 4 = . Cõu 8. Cho hm s yxmx 32 231 =-+- (1). 1) Kho sỏt s bin thiờn v v th ca hm s khi m = 1. 2) Tỡm cỏc giỏ tr ca m hm s (1) ng bin trong khong xx 12 (;) vi xx 21 1 -= . ã yxmx 2 '66 =-+ , yxxm '00 === . + Nu m = 0 yx 0,  ịÊ"ẻ Ă ị hm s nghch bin trờn Ă ị m = 0 khụng tho YCBT. www.MATHVN.com - Toỏn Hc Vit Nam www.MATHVN.com Trn S Tựng Kho sỏt hm s Trang 7 + Nu m 0 ạ , yxmkhim 0,(0;)0  "ẻ> hoc yxmkhim 0,(;0)0  "ẻ< . Vy hm s ng bin trong khong xx 12 (;) vi xx 21 1 -= xxm xxm 12 12 (;)(0;) (;)(;0) ộ = ờ = ở v xx 21 1 -= m m m 01 1 01 ộ -= = ờ -= ở . Cõu 9. Cho hm s yxmxm 42 231 = + (1), (m l tham s). 1) Kho sỏt s bin thiờn v v th ca hm s (1) khi m = 1. 2) Tỡm m hm s (1) ng bin trờn khong (1; 2). ã Ta cú yxmxxxm 32 '444() =-=- + m 0 Ê , yx 0,(0;)  "ẻ+Ơ ị m 0 Ê tho món. + m 0 > , y 0  = cú 3 nghim phõn bit: m m ,0,- . Hm s (1) ng bin trờn (1; 2) m m 101 Ê<Ê . Vy ( m ;1 ự ẻ-Ơ ỷ . Cõu hi tng t: a) Vi yxmxm 42 2(1)2 = +- ; y ng bin trờn khong (1;3) . S: m 2 Ê . Cõu 10. Cho hm s mx y xm 4 + = + (1) 1) Kho sỏt s bin thiờn v v th ca hm s (1) khi m 1 =- . 2) Tỡm tt c cỏc giỏ tr ca tham s m hm s (1) nghch bin trờn khong (;1) -Ơ . ã Tp xỏc nh: D = R \ {m}. m y xm 2 2 4 () -  = + . Hm s nghch bin trờn tng khong xỏc nh ym 022  <-<< (1) hm s (1) nghch bin trờn khong (;1) -Ơ thỡ ta phi cú mm 11 -Ê- (2) Kt hp (1) v (2) ta c: m 21 -<Ê- . Cõu 11. Cho hm s xxm y x 2 23 (2). 1 -+ = - Tỡm m hm s (2) ng bin trờn khong (;1) -Ơ- . ã Tp xỏc nh: DR{ \1} = . xxmfx y xx 2 22 243() '. (1)(1) -+- == Ta cú: fxmxx 2 ()0243 Ê-+ . t gxxx 2 ()243 =-+ gxx '()44 ị=- Hm s (2) ng bin trờn (;1) -Ơ- yxmgx (;1] '0,(;1)min() -Ơ- "ẻ-Ơ-Ê Da vo BBT ca hm s gxx (),(;1] "ẻ-Ơ- ta suy ra m 9 Ê . Vy m 9 Ê thỡ hm s (2) ng bin trờn (;1) -Ơ- Cõu 12. Cho hm s xxm y x 2 23 (2). 1 -+ = - Tỡm m hm s (2) ng bin trờn khong (2;) +Ơ . ã Tp xỏc nh: DR{ \1} = . xxmfx y xx 2 22 243() '. (1)(1) -+- == Ta cú: fxmxx 2 ()0243 Ê-+ . t gxxx 2 ()243 =-+ gxx '()44 ị=- Hm s (2) ng bin trờn (2;) +Ơ yxmgx [2;) '0,(2;)min() +Ơ "ẻ+ƠÊ www.MATHVN.com - Toỏn Hc Vit Nam www.MATHVN.com Kho sỏt hm s Trn S Tựng Trang 8 Da vo BBT ca hm s gxx (),(;1] "ẻ-Ơ- ta suy ra m 3 Ê . Vy m 3 Ê thỡ hm s (2) ng bin trờn (2;) +Ơ . Cõu 13. Cho hm s xxm y x 2 23 (2). 1 -+ = - Tỡm m hm s (2) ng bin trờn khong (1;2) . ã Tp xỏc nh: DR{ \1} = . xxmfx y xx 2 22 243() '. (1)(1) -+- == Ta cú: fxmxx 2 ()0243 Ê-+ . t gxxx 2 ()243 =-+ gxx '()44 ị=- Hm s (2) ng bin trờn (1;2) yxmgx [1;2] '0,(1;2)min() "ẻÊ Da vo BBT ca hm s gxx (),(;1] "ẻ-Ơ- ta suy ra m 1 Ê . Vy m 1 Ê thỡ hm s (2) ng bin trờn (1;2) . Cõu 14. Cho hm s xmxm y mx 22 23 (2). 2 -+ = - Tỡm m hm s (2) nghch bin trờn khong (;1) -Ơ . ã Tp xỏc nh: DR{m} \2 = . xmxmfx y xmxm 22 22 4() '. (2)(2) -+- == t tx 1 =- . Khi ú bpt: fx ()0 Ê tr thnh: gttmtmm 22 ()2(12)410 = +-Ê Hm s (2) nghch bin trờn (;1) -Ơ m yx gtti 21 '0,(;1) ()0,0() ỡ > Ê"ẻ-Ơ ớ Ê"< ợ i S P '0 '0 () 0 0 ộ D= ờ ỡ D> ờ ù > ớ ờ ù ờ ợ ở m m m mm 2 0 0 420 410 ộ = ờ ỡ ạ ờ ù -> ớ ờ ù ờ -+ ợ ở m m 0 23 ộ = ờ + ở Vy: Vi m 23 + thỡ hm s (2) nghch bin trờn (;1) -Ơ . Cõu 15. Cho hm s xmxm y mx 22 23 (2). 2 -+ = - Tỡm m hm s (2) nghch bin trờn khong (1;) +Ơ . ã Tp xỏc nh: DR{m} \2 = . xmxmfx y xmxm 22 22 4() '. (2)(2) -+- == t tx 1 =- . Khi ú bpt: fx ()0 Ê tr thnh: gttmtmm 22 ()2(12)410 = +-Ê Hm s (2) nghch bin trờn (1;) +Ơ m yx gttii 21 '0,(1;) ()0,0() ỡ < Ê"ẻ+Ơ ớ Ê"> ợ ii S P '0 '0 () 0 0 ộ D= ờ ỡ D> ờ ù < ớ ờ ù ờ ợ ở m m m mm 2 0 0 420 410 ộ = ờ ỡ ạ ờ ù -< ớ ờ ù ờ -+ ợ ở m 23 Ê- Vy: Vi m 23 Ê- thỡ hm s (2) nghch bin trờn (1;) +Ơ www.MATHVN.com - Toỏn Hc Vit Nam www.MATHVN.com [...]... Câu 17 Cho hàm số y = (m + 2) x 3 + 3 x 2 + mx - 5 , m là tham số 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 0 Trang 15 www.MATHVN.com Khảo sát hàm số www.MATHVN.com - Tốn Học Việt Nam Trần Sĩ Tùng 2) Tìm các giá trị của m để các điểm cực đại, cực tiểu của đồ thị hàm số đã cho có hồnh độ là các số dương · Các điểm cực đại, cực tiểu của đồ thị hàm số đã cho có hồnh độ là các số dương... thị hàm số có hai điểm cực trị A, B cách đều đường thẳng d cho trước – Tìm điều kiện để hàm số có cực đại, cực tiểu Trang 9 www.MATHVN.com Khảo sát hàm số www.MATHVN.com - Tốn Học Việt Nam Trần Sĩ Tùng – Giải điều kiện: d ( A, d ) = d (B, d ) 6 Tìm điều kiện để đồ thị hàm số có hai điểm cực trị A, B và khoảng cách giữa hai điểm A, B là lớn nhất (nhỏ nhất) – Tìm điều kiện để hàm số có cực đại, cực. .. Nam Khảo sát hàm số KSHS 02: CỰC TRỊ CỦA HÀM SỐ Dạng 1: Cực trị của hàm số bậc 3: y = f ( x ) = ax 3 + bx 2 + cx + d A Kiến thức cơ bản · Hàm số có cực đại, cực tiểu Û phương trình y¢ = 0 có 2 nghiệm phân biệt · Hồnh độ x1, x2 của các điểm cực trị là các nghiệm của phương trình y¢ = 0 · Để viết phương trình đường thẳng đi qua các điểm cực đại, cực tiểu, ta có thể sử dụng phương pháp tách đạo hàm –... hàm số y = x 3 - 3 x 2 + mx ĐS: m = 0 (1) Trang 12 www.MATHVN.com Trần Sĩ Tùng www.MATHVN.com - Tốn Học Việt Nam Khảo sát hàm số 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0 2) Với giá trị nào của m thì đồ thị hàm số (1) có các điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng d: x - 2 y - 5 = 0 · Ta có y = x 3 - 3 x 2 + mx Þ y ' = 3 x 2 - 6 x + m Hàm số có cực đại, cực. .. www.MATHVN.com - Tốn Học Việt Nam Khảo sát hàm số Câu 31 Cho hàm số y = x 3 - 3 x 2 + mx + 1 (1), với m là tham số thực 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0 ỉ 1 11 ư ÷ è2 4 ø 2) Tìm m để đồ thị hàm số (1) có hai điểm cực trị sao cho khoảng cách từ điểm I ç ; đến đường thẳng đi qua hai điểm cực trị là lớn nhất · Ta có: y¢ = 3 x 2 - 6 x + m Hàm số có 2 điểm cực trị Û PT y¢ = 0 có 2 nghiệm... ỵ Cho hàm số y = x 3 - 3 x 2 - mx + 2 (m là tham số) có đồ thị là (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1 2) Xác định m để (Cm) có các điểm cực đại và cực tiểu cách đều đường thẳng y = x - 1 Câu 5 · Ta có: y ' = 3 x 2 - 6 x - m Hàm số có CĐ, CT Û y ' = 3 x 2 - 6 x - m = 0 có 2 nghiệm phân biệt x1; x2 Û D ' = 9 + 3m > 0 Û m > -3 (*) Trang 11 www.MATHVN.com Khảo sát hàm số Trần... Việt Nam y = x 3 - 3mx 2 + 3(m 2 - 1) x - m3 + m (1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1 2) Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc tọa độ O · Ta có y ¢= 3 x 2 - 6mx + 3(m2 - 1) Hàm số (1) có cực trị Û PT y ¢= 0 có 2 nghiệm phân biệt Û x 2 - 2mx... cực tiểu – Tìm toạ độ các điểm cực trị A, B (có thể dùng phương trình đường thẳng qua hai điểm cực trị) – Tính AB Dùng phương pháp hàm số để tìm GTLN (GTNN) của AB 7 Tìm điều kiện để hàm số có cực đại, cực tiểu và hồnh độ các điểm cực trị thoả hệ thức cho trước – Tìm điều kiện để hàm số có cực đại, cực tiểu – Phân tích hệ thức để áp dụng định lí Vi-et 8 Tìm điều kiện để hàm số có cực trị trên khoảng... Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 3 2) Xác định m để đồ thị của hàm số (1) có cực tiểu mà khơng có cực đại éx = 0 2 ëx = m · y ¢= 2 x 3 - 2mx = 2 x( x 2 - m) y ¢= 0 Û ê Đồ thị của hàm số (1) có cực tiểu mà khơng có cực đại Û PT y ¢= 0 có 1 nghiệm Û m £ 0 Câu 52 Cho hàm số y = - x 4 + 2mx 2 - 4 (Cm ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 2 2) Tìm các. .. cần tìm của m là: m = 0 Cho hàm số y = x 3 - 3mx 2 + 4m3 (m là tham số) có đồ thị là (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1 2) Xác định m để (Cm) có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng y = x Câu 6 · Ta có: y¢ = 3 x 2 - 6mx ; y¢ = 0 Û ê x = 0 Để hàm số có cực đại và cực tiểu thì m ¹ 0 é ë x = 2m uuu r Đồ thị hàm số có hai điểm cực trị là: A(0; 4m3), B(2m;

Ngày đăng: 30/01/2015, 17:52

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan