1. Trang chủ
  2. » Giáo án - Bài giảng

ĐÁP ÁN THI THỬ ĐH TỈNH BÁC GIANG NĂM 2013_Khối D

5 186 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 170,48 KB

Nội dung

http://toanhocmuonmau.violet.vn SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC GIANG HƯỚNG DẪN CHẤM ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2013 MÔN: TOÁN; KHỐI: D Câu Nội dung Điểm Tập xác định D = R\{- 1} Sự biến thiên: -Chiều biến thiên: 2 4 ' 0, ( 1) y x D x = > ∀ ∈ + . Hàm số đồng biến trên mỗi khoảng (- ∞; - 1) và (- 1 ; + ∞). - Cực trị: Hàm số không có cực trị. 0,25 - Giới hạn tại vô cực, giới hạn vô cực và tiệm cận: 2 2 2 2 lim 2 ; lim 2 1 1 x x x x →−∞ →+∞ − − = = + + x x . Đường thẳng y = 2 là tiệm cận ngang. 1 1 2 2 2 2 lim ; lim 1 1 x x x x − + →− →− − − = +∞ = −∞ + + x x . Đường thẳng x = - 1 là tiệm cận đứng. 0,25 -Bảng biến thiên: x -∞ - 1 +∞ y’ + + y +∞ 2 2 - ∞ 0,25 I.1 Đồ thị: 0,25 Phương trình hoành độ giao điểm: ( ) ( )( ) 2 2 2 2 3 0 1 1 1 x x m x m x m x x − = + − ⇔ + − + = ≠ − + (d) cắt (C) tại 2 điểm phân biệt ⇔ PT(1) có 2 nghiệm phân biệt khác -1 ⇔ 2 1 10 9 0 9 m m m m <  − + > ⇔  >  (*) 0,25 Với điều kiện (*) thì (d) cắt (C) tại hai điểm phân biệt A,B có hoành độ 1 2 , x x là hai nghiệm của phương trình (1) Theo ĐL Viét ta có 1 2 1 2 3 ; x x m x x m + = − = . 0,25 I.2 Hoành độ của hai điểm A,B là độ dài hai cạnh của một tam giác vuông có bán kính đường tròn ngoại tiếp bằng 21 4 khi và chỉ khi hai nghi ệ m 1 2 , x x ph ả i d ươ ng và th ỏ a mãn 0,25 y x 2 - 1 O 1 - 2 http://toanhocmuonmau.violet.vn 2 2 1 2 21 4 x x+ = Vậy phải có : ( ) ( ) 1 2 1 2 2 2 1 2 1 2 0 3 0 1 . 0 0 2 21 21 3 2 2 . 4 4 x x m x x m m m m x x x x     + > − >   > ⇔ > ⇒ =       − − = + − =   (Thỏa mãn (*)) KL : 1 2 m = 0,25 1) Giải phương trình : ( ) ( ) 2 3 2sin sinx 2 cos 3 2sin 0 x x x + − + − = ( ) ( ) 2 2 3 2sin sinx 2 cos 3 2sin 0 3sin 3cos 2 3cos 2sin cos 0 x x x x x x x x + − + − = ⇔ + − − = ( ) ( ) 3 sin 3 cos 2cos 3cos sinx 0 x x x x ⇔ + − + = ( ) ( ) sin 3 cos 3 2cos 0 x x x ⇔ + − = 0,5 sin 3 cos 0 x x ⇔ + = ho ặ c 3 2cos 0 x − = 0,25 II +) sin 3 cos 0 tan 3 3 x x x x k π π + = ⇔ = − ⇔ = − + +) 2 3 6 3 2cos 0 cos 2 2 6 x k x x x k π π π π  = +  − = ⇔ = ⇔   = − +   k Z ∈ KL : 0,25 2) 3 3 2 2 2 2 2 9 ( )(2 ) 3 x y x y xy x y xy Hpt x y xy  − = − + + − ⇔  + − =  0,25 3 3 3 3 3 3 2 2 2 2 2 9 8 3 3 x y x y x y x y xy x y xy  − = − =  ⇔ ⇔   + − = + − =   0,25 2 2 3 3 x y y =  ⇔  =  0,25 III V ậ y h ệ có 2nghi ệ m (x ;y)=(2 ;1)và (-2 ;-1) 0,25 Bi ế n đổ i : ( ) 2 2 2 2 2 2 2 4 4 4 sin 2 cot os 2 cot I x x xdx c xdx x xdx π π π π π π = − = − ∫ ∫ ∫ 0,25 Tính : 2 2 2 2 1 4 4 4 1 2 1 1 1 os sin 2 2 2 4 8 4 cos x I c xdx dx x x π π π π π π π +   = = = + = −     ∫ ∫ 0,25 Tính 2 2 2 2 2 4 4 1 2 cot 2 1 sin I x xdx x dx x π π π π   = = −     ∫ ∫ Tính ra 2 2 3 ln 2 2 16 I π π = − + 0,25 IV Tính ra 2 1 2 3 3 1 ln 2 8 16 4 I I I π π = − = − + − − và KL 0,25 http://toanhocmuonmau.violet.vn E D B A C S Gọi E là trung điểm của AB. +)Chứng minh ( ) SE ABCD ⊥ suy ra SE là đường cao của hình chóp 0,25 +)Đưa ra công thức tính thể tích khối chóp : . 1 . 3 S ABCD ABCD V SE S= +)Tính đượ c 2 ABCD S a = 0,25 +)Xác đị nh đượ c góc gi ữ a SC và m ặ t đ áy là  0 45 SCE = .Tính đượ c 5 2 a SE EC= = 0,25 V +)Tính đượ c 3 2 . 1 1 5 5 . 3 3 2 6 S ABCD ABCD a a V SE S a= = = ( đ vtt) 0,25 Đặ t 1 1 1 , 1x a y b a b     = + + = + +         .Ta có 3 3 P x y = + và 1 1 4 2 2 4 7 x y a b a b a b + = + + + + ≥ + + = + (B ấ t đẳ ng th ứ c Côsi) 0,25 Ta có ( ) 2 2 4 x y x y xy xy + + ≥ ⇒ ≤ Bi ế n đổ i : ( ) ( ) ( ) ( ) ( ) 3 3 3 3 3 3 3 1 3 4 4 P x y x y xy x y x y x y x y = + = + − + ≥ + − + = + 0,25 V ậ y ( ) 3 3 3 3 7 4 4 x y P x y + = + ≥ ≥ 0,25 VI. D ấ u ‘=’ x ả y ra khi a=b=2. K ế t lu ậ n 0,25 T ừ gi ả thi ế t cho ta gi ả s ử B(3b+1 ;b) ;C(3-3c ;c) G ọ i N là trung đ i ể m BC. Xác đị nh đượ c 3 3 4 ; 2 2 b c b c N − + +       và ( ) 3 3 2; CB c b b c = + − −  ( ) 1 1;5 u −  là m ộ t véc t ơ ch ỉ ph ươ ng c ủ a 1 d 0,25 VII.a S ử d ụ ng gi ả thi ế t 1 :5 2 0 d x y + − = là trung tr ự c BC có h ệ : 0,25 http://toanhocmuonmau.violet.vn 1 1 3 3 4 5 2 0 8 7 8 0 1 2 2 3 3 2 4 1 0 0 . 0 5 1 b c b c N d b c b b c b c b c c CB u − + +  + − =  ∈  − + = = −     ⇒ ⇔ ⇒     + − − − + = = =      =     . Vậy B(-2;-1),C(3;0) +)Vì ( ) 2 3 3 ; M d M m m ∈ ⇒ − .Do M là trung điểm AB nên xác định được ( ) 8 6 ;2 1 A m m − + có ( ) 5 6 ;2 1 CA m m = − +  và AC vuông góc với 3 : 3 1 0 d x y − − = nên ta suy ra: ( ) 3 5 6 2 1 0 1 m m m − + + = ⇒ = .Dẫn đến A(2;3) Kết luận tọa độ 3 đỉnh của tam giác ABC là: A(2;3), B(-2;-1),C(3;0) 0,5 Viết lại x t d y t z t 1 1 1 1 1 2 : 1 2  = +  = − +   =  , x t d y t z t 2 2 2 2 2 : 1 2  = +  =   = −  . (P) có VTPT n (2;1;5) =  0,25 Gọi A = d ∩ d 1 , B = d ∩ d 2 . Giả sử: A t t t 1 1 1 (1 2 ; 1 ;2 ) + − + , B t t t 2 2 2 ((2 2 ; ;1 2 ) + − ⇒ AB t t t t t t 2 1 2 1 2 1 ( 2 1; 1; 2 2 1) = − + − + − − +  . 0,25 d ⊥ (P) ⇔ AB n ,   cùng phương ⇔ t t t t t t 2 1 2 1 2 1 2 1 1 2 2 1 2 1 5 − + − + − − + = = ⇔ t t 1 2 1 1  = −  = −  0,25 VIII.a ⇒ A(–1; –2; –2) ⇒ Phương trình đường thẳng d: x y z 1 2 2 2 1 5 + + + = = . 0,25 1 4 3 7( 3) ( 4)( 3)( 2) ( 3)( 2)( 1) 42( 3) n n n n c c n n n n n n n n + + + − = + ⇔ + + + − + + + = + 2 2 5 6 14( 3) 9 36 0 n n n n n ⇔ + + = + ⇔ − − = 0,25 3( ) 12( ) n loai n tm = −  ⇔  =  Với n=12 ta có nhị thức: 5 12 3 2 ( ) x x + 0,25 Ta có : 5(12 ) 60 11 12 12 5 12 3 2 2 12 12 3 0 0 2 ( ) ( ) 2 2 k k k k k k k k k P x x c x x c x x − − − = = = + = = ∑ ∑ 0,25 IX.a 60 11 8 60 11 16 4 2 k k k − = ⇔ − = ⇔ = . Hê s ố c ủ a 8 x là 4 4 12 c 2 7920 = 0,25 Đườ ng tròn (C) có tâm I(-6;6) bán kính 50 R = . Gi ả s ử đườ ng th ẳ ng ( ) ∆ c ắ t hai tr ụ c t ọ a độ t ạ i hai đ i ể m A(a;0) và B(0;b) ( 0 ab ≠ ).M là trung đ i ể m c ủ a AB suy ra ; 2 2 a b M       Đườ ng th ẳ ng AB ti ế p xúc v ớ i đườ ng tròn (C) t ạ i M nên: ( ) ( ) . 0 M C M C IM AB IM AB ∈  ∈   ⇒   ⊥ =      0,25 Có ( ) 0 6; 6 ; ; 0 6 6 0 (1) 12 0 2 2 2 2 a b a b a b IM AB a b IM AB a b a b + =        + − − ⇒ = ⇔ − + + − = ⇒        − + − =           0,25 M ặ t khác: ( ) 2 2 6 6 50(2) 2 2 a b M C     ∈ ⇒ + + − =         0,25 VII.b Từ (1) và (2) giải ra được ( ) ( ) ; 2;2 a b = − , ( ) ( ) ; 22;22 a b = − , ( ) ( ) ; 10;2 a b = − , ( ) ( ) ; 26; 14 a b = − − . KL có 4 đường thẳng cần lập.viết phương trình 4 đường thẳng đó. 0,25 http://toanhocmuonmau.violet.vn Gọi d là giao tuyến của ( ) α và ( ) β ⇒ d: 2 1 0 2 0 x y x z − + =   − =  . Lấy A(0;1;0), B(1;3;2) ∈ d 0,25 (P) qua A, (P) có dạng phương trình: 2 2 2 0 ( 0) Ax By Cz B A B C + + − = + + > (P) qua B nên: ( ) 3 2 0 2 2 A B C B A B C + + − = ⇒ = − + Vậy ( ) ( ): 2 2 0 P B C x By Cz B − + + + − = 0,25 2 2 2 2 2 2 2 2 2 2 2 os 13 - 8 – 5 0, 9 3 (2 2 ) B C B C c B BC C B C B C ϕ − − − + = = ⇔ = + + + chọn 1 1 5 13 B C C B C  =  = ⇒   = −   0,25 VIII.b +. Với B = C = 1 suy ra A=-4, (P): - 4x + y + z – 1 = 0 +. Với 5 13 B C = − ch ọ n B=-5 suy ra C = 13 và A=-16; (P’): - 16x - 5y + 13z + 5 = 0. KL 0,25 Xét đ a th ứ c: 2013 0 1 2 2 2013 2013 2013 2013 2013 2013 ( ) (1 ) ( ) f x x x x C C x C x C x= + = + + + + 0 1 2 2 3 2013 2014 2013 2013 2013 2013 . C x C x C x C x= + + + + 0,25 Ta có: 0 1 2 2 2013 2013 2013 2013 2013 2013 ( ) 2 3 2014 f x C C x C x C x ′ = + + + + 0 1 2 2013 2013 2013 2013 2013 (1) 2 3 2014 ( ) f C C C C a ′ ⇒ = + + + + 0,25 M ặ t khác: 2013 2012 2012 ( ) (1 ) 2013(1 ) . (1 ) (1 2014 ) f x x x x x x ′ = + + + = + + / 2012 (1) 2015.2 ( ) f b ⇒ = 0,25 IX.b T ừ (a) và (b) suy ra: 2012 2015.2 . S = 0,25 Chú ý :+)M ọ i cách làm khác đ úng cho đ i ể m t ố i đ a +) Đ i ể m toàn bài không làm tròn. . GIÁO D C VÀ ĐÀO TẠO BẮC GIANG HƯỚNG D N CHẤM ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2013 MÔN: TOÁN; KHỐI: D Câu Nội dung Điểm Tập xác định D = R{- 1} Sự biến thi n: -Chiều biến thi n:. 2013 0 1 2 2 2013 2013 2013 2013 2013 2013 ( ) (1 ) ( ) f x x x x C C x C x C x= + = + + + + 0 1 2 2 3 2013 2014 2013 2013 2013 2013 . C x C x C x C x= + + + + 0,25 Ta có: 0 1 2 2 2013. 1 2 2 2013 2013 2013 2013 2013 2013 ( ) 2 3 2014 f x C C x C x C x ′ = + + + + 0 1 2 2013 2013 2013 2013 2013 (1) 2 3 2014 ( ) f C C C C a ′ ⇒ = + + + + 0,25 M ặ t khác: 2013 2012 2012 (

Ngày đăng: 23/01/2015, 22:00

TỪ KHÓA LIÊN QUAN

w