TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 180 NGHIÊN CỨU TƯƠNG TÁC ĐỘNG GIỮA ĐẤT NỀN VÀ KẾT CẤU (SSI) LÊN CẦU DÂY VĂNG CHỊU TÁC ĐỘNG CỦA ĐỘNG ĐẤT THEO PHƯƠNG PHÁP PHỔ PHẢN ỨNG A RESEARCH ON SOIL-STRUCTURE INTERACTION ON SEISMIC RESPONSE OF A CABLE STAYED BRIDGE USING THE RESPONSE SPECTRUM METHOD Nguyễn Văn Mỹ, Đỗ Việt Hải, Đoàn Việt Lê Trường Đại học Bách khoa, Đại học Đà Nẵng TÓM TẮT Cầu dây văng là loại công trình nhạy cảm với các tải trọng động như tải trọng di động, gió và đặc biệt là tải trọng động đất. Bài báo nghiên cứu tổng quan các phương pháp tính toán động đất, các mô hình tính toán cầu dây văng, các mô hình tương tác cọc và đất nền. Từ đó, nghiên cứu phân tích ứng xử động đất của cầu dây văng có xét đến hiệu ứng tương tác đất nền và kế t cấu (SSI) được thực hiện. Trong một ví dụ cụ thể, cầu dây văng được mô hình hóa bằng sơ đồ 3D-Spine, tương tác giữa cọc - đất nền được mô hình hoá bằng mô hình Kelvin- Voigt và phương pháp phổ phản ứng được sử dụng để tính toán nội lực và các dạng dao động của cầu dây văng. Kết quả nghiên cứu cho thấy khi hiệu ứng SSI được kể đến thì nội lực trong cầu dây v ăng giảm đáng kể khi chịu tác động của động đất. ABSTRACT A cable stayed bridge is the kind of structure that is very sensitive to different dynamic loads such as moving loads, wind load and especially seismic load. This paper presents an overall research on the methods of seismic analysis, models of cable stayed bridge and models of soil-structure interaction. The research paper focuses on the behavior of cable stayed bridge during earthquakes in which investigation into the effects of soil-structure interaction (SSI) was done. In a particular example, the modeling of cable stayed bridge in this paper is 3D-Spine. Soil-pile interaction is modeled by the Kelvin-Voigt model and the response spectrum method is applied in calculating its internal forces and modes to show some results of seismic response of a cable stayed bridge. The results of the example show that when soil-structure interaction is taken into account, the internal forces of the cable stayed bridge are significantly reduced during an earthquake. 1. Đặt vấn đề Ở Việt Nam, việc tính toán động đất còn khá mới mẻ và rất ít tài liệu đề cập đến các cách tính toán động đất cũng như các tác động của động đất gây ra đối với công trình cầu dây văng, đặc biệt là các kết quả nghiên cứu của các nhà khoa học về phân tích ảnh hưởng cầu dây văng dưới tác dụng của động đất có xét đến hiệu ứng SSI. Trước đây, các kết quả nghiên cứu về công trình chịu tác động của động đất thường bỏ qua ảnh hưởng điều kiện đất nền đến khả năng chịu lực của công trình và giả thiết công trình ngàm cứng tại vị trí ranh giới giữa công trình và nền đất. Tuy nhiên, các kết quả nghiên cứu gần đây chỉ ra sự cần thiết của việc nghiên cứu của điều kiện đất nền TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 181 đến sự ổn định của kết cấu do hiệu ứng SSI có xu hướng kéo dài chu kỳ tự nhiên của hệ đất nền- kết cấu và ảnh hưởng trực tiếp đến nội lực cũng như chuyển vị của kết cấu. Vì vậy, yếu tố tương tác giữa đất nền và kết cấu cần phải được nghiên cứu một cách kỹ lưỡng hơn trong việc phân tích kết cấu chịu tác động của động đất. 2. Nội dung nghiên cứu 2.1. Các phương pháp tính toán công trình chịu động đất Phương trình chuyển động của hệ nhiều bậc tự do chịu động đất được viết như sau: [ ]{} [ ]{} [ ]{} [ ]{ } g M uCuKu MBu++ =− (1) trong đó [K] là ma trận độ cứng, [C] là ma trận cản nhớt, [M] là ma trận khối lượng, {}u là véctơ chuyển vị của kết cấu, {}u là véctơ vận tốc của kết cấu, g u là gia tốc dịch chuyển của đất nền. Phương trình trên được xem là phương trình dao động cơ bản của hệ kết cấu chịu tác dụng của đất; và được áp dụng để tính toán tất cả các thông số phản ứng của kết cấu. Tuỳ thuộc vào điều kiện địa hình, địa chất và tầm quan trọng của công trình cầu mà những phương pháp thường dùng để thiết kế cầu có xét đến ảnh hưởng của động đất là phương pháp phổ phản ứng hay phương pháp lịch sử thời gian. Thông thường ta hay giả thiết rằng, các gối cầu cùng chịu một kích thích như nhau khi động đất xảy ra. Giả thiết này chỉ đúng đối với kết cấu mà móng các công trình cầu gần nhau. Tuy nhiên đối với cầu nhịp lớn, các móng cách xa nhau một khoảng đáng kể. Như đã phân tích ở trên, dịch chuyển nền đất tại mỗi điểm phụ thuộc vào tính chất của đất tại đó và khoảng cách từ đó đến tâm chấn. Như vậy, rõ ràng là cầu nhịp lớn với khoảng cách các móng trụ lớn, sẽ chịu kích thích khác nhau. Phương trình chuyển động của kết cấu cầu nhịp lớn cũng tương tự như phương trình chuyển động của kết cấu cầu có nhiều bậc tự do. Tuy nhiên giá trị {} g B u thay thế bằng {} g u : [ ]{} [ ]{} [ ]{} [ ]{ } g M uCuKu Mu++ =− (2) trong đó {} g u là véctơ gia tốc có giá trị khác 0 tại các gối và bằng 0 tại những vị trí không phải là gối. Ba hệ số ảnh hưởng đến phản ứng của kết cấu dưới kích thích đa gối là khoảng cách giữa các gối của kết cấu, mức độ khác nhau của kết cấu đất nền, và độ cứng của kết cấu. Khi kết cấu cầu đòi hỏi phải phân tích phi tuyế n hoặc tính chất cản không còn được mô hình như thông thường thì kỹ thuật phân tích dạng chính không còn được sử dụng. Một phương pháp tích phân số, thông thường được hiểu là phân tích lịch sử thời gian, được sử dụng để phân tích chính xác phản ứng của kết cấu. 2.2. Phân tích kết cấu cầu dây văng chịu động đất 2.2.1. Mô hình hóa cầu dây văng Trong phân tích kết cấu cầu dây văng, việc mô hình hoá sơ đồ tính là rất quan TP CH KHOA HC V CễNG NGH, I HC NNG - S 4(39).2010 182 trng vỡ mi gi thit t ra khi phõn tớch u nh hng rt ln n kt cu. Thụng thng thỏp cu c mụ hỡnh hoỏ bng cỏc phn t dm (beam) v c ni cng vi t. i vi hu ht cỏc loi thỏp, vic mụ hỡnh hoỏ nh vy l chớnh xỏc, ngoi tr cỏc trng hp cn thit phõn tớch ng sut ti cỏc v trớ chu lc cc b nh kờ dm, neo cỏp Cỏp trong cu dõy vng t bn thõn nú ó cú nhng ng x phi tuyn. Vỡ vy, vic tng hp li mt s nghiờn cu trc õy nhm a ra nhng gi thit phự hp tớnh toỏn l tht s quan trng. Phi tuyn cú th chia thnh hai dng l phi tuyn hỡnh hc v phi tuyn vt liu. Phi tuyn hỡnh hc ca cỏp trong cu dõy vng thng bt ngun t nh h ng ca vừng ca cỏp n gión di dc trc v ng sut kộo dc trc, nh hng ca lc nộn trong dm v thỏp, s bin dng ln ca c kt cu cu dõy vng. i vi bi toỏn dõy mm c bn, chỳng ta ó bit dõy cỏp chu ti trng bn thõn s cú dng ng dõy xớch. Khi lc dc tng s lm cho bin dng dc trc t ng v vừng ca cỏp gim, do ú quan h ca ng sut v chuyn v l phi tuyn. Mt si cỏp di tỏc dng ca ti trng bn thõn thỡ moun n hi qui i c a vo tớnh toỏn n gin húa. Nh ó núi trờn, mụ hỡnh hoỏ cỏp dõy vng l mt vn khú vỡ tớnh phi tuyn ca nú phỏt sinh do vừng ca cỏp. cng ca cỏp thay i theo ti trng tỏc dng v khi k n vừng ca cỏp thỡ ta s phi dựng cng tng ng khỏc nhau cho mi cỏp cú chiu di v nghiờng khỏc nhau. Lỳc ny, vic tớnh toỏn tr nờn phc tp v tn nhiu thi gian hn phõn tớch quan h lc-bin dng ca cỏp. Tuy nhiờn, trong thit k cu dõy vng, cỏc dõy luụn c cng kộo mt lc tớnh toỏn trc nhm tho món iu kin trc dc ca cu. Vỡ vy lc cng trc gi thit c iu chnh sao cho vừng ca cỏp l nh. Do ú, cỏp cú th mụ hỡnh nh l mt thanh gin tuyn tớnh (truss). Phỏửn tổớ caùp y x Phỏửn tổớ caùp Lk cổùng Dỏửm khọỳi lổồỹng tỏỷp trung Lk cổùng Hỡnh 1. Mụ hỡnh hoỏ dm 3D - Spine Phỏửn tổớ caùp Lk cổùng khọỳi lổồỹng tỏỷp trung y x Phỏửn tổớ caùp Lk cổùng khọỳi lổồỹng tỏỷp trung Dỏửm Hỡnh 2. Mụ hỡnh hoỏ dm hỡnh ch Khi mụ hỡnh hoỏ cu dõy vng, dm cú th cú nhiu cỏch mụ hỡnh hoỏ khỏc nhau ph thuc vo loi dm v cỏc quan im tớnh toỏn. Dm cu cú th c mụ hỡnh bng phn t tm gia cỏc v trớ neo cỏp vng, hoc mụ hỡnh dm kộp vi mi dm mi bờn mt phng cỏp v liờn kt cng ti cỏc v trớ neo, hoc phn t tm i vi bn mt cu i vi s ph ng 2D, dm cu c mụ hỡnh nh phn t dm chu un v kộo nộn. Tuy nhiờn khi mụ hỡnh 2D nh vy thỡ kh nng b xon trong khụng gian ca cu khụng c xột n. gii quyt vn ny, phn t spine beam c a ra mụ hỡnh cu dõy vng trong khụng gian (xem hỡnh 1). Dm cu c mụ hỡnh nh TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 183 phần tử dầm nằm ở chính giữa và các nút dầm tương ứng được liên kết cứng với vị trí neo cáp nằm ở ngoài mặt phẳng thẳng đứng chứa dầm. Độ cứng của dầm được gán cho phần tử spine beam, khối lượng được qui về vị trí các nút dầm. Mô hình này không kể đến độ cứng của dầm sàn và sự oằn của dầm, vì vậy nó thích hợp để mô hình cho dầm hộp có độ cứng chống xoắn thuần tuý lớn và độ cứng chống oằn nhỏ. Để kể đến độ cứng chống oằn của dầm, Wilson & Gravelle đã đưa ra mô hình chữ Π trong đó độ cứng của dầm và khối lượng được xem xét riêng biệt (xem hình 2). Lúc này tâm khối lượng và tâm cắt của dầm được xây dựng bằng cách qui khối lượng của dầm về hai bên, mỗi khối lượng này được liên kết với dầm bằng liên kết cứng. Với cách mô hình như vậy thì hiệu ứng xoay của khối lượng dầm có thể được kể đến. Đồng thời, mô hình chữ Π cũng có thể xét đến hiệu ứng kép giữa chuyển động xoắn và oằn kết hợp bằng cách sử dụng độ cứng chống xoắn thuần tuý tương đương. Ngoài ra còn có những cách mô hình dầm kép hoặc mô hình triple-beam (ba dầm) để kể đến độ cứng chống xoắn hay chống oằn một cách thích đáng. 2.2.2. Cơ sở mô hình hóa tương tác cọc và đất nền Tương tác giữa đất nền và cọc được mô hình như dầm trên nền đàn hồi Winkler. Theo phương pháp tĩnh thì hệ số nền được tính toán bởi công thức của Terzaghi hoặc Hansen: (0.5) n scc q kCcNs BNs CNZ γγ γγ =+ + (3) trong đó Z là độ sâu của điểm đang xét, C là hệ số chuyển đổi đơn vị C=40 (SI), c là lực dính, γ là trọng lượng riêng của đất, B là bề rộng móng cọc, , , cq N NN γ là các thông số phụ thuộc vào góc nội ma sát của đất. Công thức (3) không thể áp dụng để tính toán hệ số nền cho công trình chịu tác dụng của tải trọng động đất vì tải trọng động đất là tải trọng động, lặp theo chu kỳ nên cần phải xây dựng cơ sở lý thuyết mới. Do đó, các thông số đặc trưng của mô hình tương tác động giữa đất nền và cọc được ki ến nghị tính toán theo công thức trong tiêu chuẩn của hiệp hội cầu đường bộ Nhật. Tương tác giữa đất và cọc được mô hình theo mô hình dầm trên nền đàn hồi Winkler cải tiến, tương tác giữa đất nền và cọc được biểu diễn thông qua các hệ lò xo và hệ cản đặt song song nhau, nó được biểu diễn qua mô hình Kelvin- Voigt (hình 3). Trên cơ sở đó, tính toán được các thông số độ cứng và độ cản của mô hình tương tác giữa c ọc và đất nền: 0 1.2 30 s E k = 3/4 0 30 r d kk − = s rf kkdd = (4) (5) (6) trong đó 0 k là hệ số sức kháng của đất, r k là hệ số sức kháng của đất trên mỗi đơn vị diện tích, s k là độ cứng của lò xo theo phương vuông góc với cọc, S G là mođun cắt của đất, s µ là hệ số poisson của đất, s E là môđun đàn hồi của đất được tính với đơn vị kg/cm 2 , d là đường kính của cọc được tính với đơn vị cm, d f là chiều dày của cọc chôn sâu trong lớp đất được tính với đơn vị cm. Thông số thứ hai ảnh hưởng quan trọng TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 184 đến tương tác giữa móng và đất nền là độ cản. Có hai hiện tượng xảy ra liên quan đến nền đất là độ cản vật liệu và độ cản do bức xạ, nó tính toán năng lượng bị mất mát khi động đất xảy ra. Độ cản nhớt được xác định bởi công thức (7) với G s là môđun cắt của kết cấu, V s là vận tốc sóng cắt, s ξ là tỷ số cản của đất, s ρ là khối lượng riêng của đất. 1/4 0 62 s ss ss s s k cQa Vd ρξ ω − =+ / s ss VG ρ = (7) (8) / 2 s sf Vd ω π = 0 / s s adV ω = 1.25 0.75 3.4 2(1 ) ( ) (1 ) 4 s s Q π πµ =+ − (9) (10) (11) 2.3. Áp dụng phân tích cầu dây văng xét đến tương tác đất nền khi chịu động đất Trong phạm vi nghiên cứu, một sơ đồ cầu dây văng ba nhịp 152m+307m+152m được lựa chọn để phân tích. Dầm cầu là dầm hộp rỗng, cáp văng được neo vào dầm. Cáp văng được mô hình hoá bằng các thanh giàn (truss), tháp và dầm được mô hình bằng phần tử dầm (beam) và mô hình spine-beam được sử dụng, liên kết cứng được sử dụng để mô hình liên kết giữa tháp và dầm. Tương tác giữa hệ cọc và đất nền được mô hình nh ư mô hình dầm trên nền Winkler cải tiến gồm các hệ lò xo và hệ cản đặt song song nhau. Việc mô hình hóa được thực hiện trên Sap2000 Version11. Như đã phân tích, phương pháp phổ phản ứng là phương pháp khá thích hợp để phân tích kết cấu cầu chịu ảnh hưởng bởi động đất. Phổ thiết kế được áp dụng cho ví dụ dựa trên cơ sở tiêu chuẩn TCXDVN 375: 2006 (dựa theo tiêu chuẩn Euro Code 8 có sửa đổi cho phù hợp với đ iều kiện Việt Nam). Phương pháp tổ hợp được dùng là CQC - tổ hợp bậc hai hoàn toàn. Hệ số cản được xem như là hằng số và bằng 5% cho tất cả dạng dao động. Khi tính toán động lực học cầu dây văng nói chung và động đất nói riêng cần chú ý đến số dạng dao động cần xét đến vì nó trực tiếp ảnh hưởng đến kết quả phân tích kết cấu. Vì vậy, phả i xét đến số dạng dao động cần thiết tham gia để phân tích chính xác phản ứng chung của hệ. Đối với trường hợp cụ thể của sơ đồ cầu này, số lượng dao động cần xét đến phải lớn hơn 70 dạng dao động thì sự chênh lệch giữa các kết quả tính toán là không đáng kể. Phân tích sơ đồ cầu trên với 150 dạng (mode) dao động tham gia vào phản ứng và có xét đến hiệu ứng SSI. Sau khi thực hiện tính toán, kết quả phân tích kết cấu khi có xét đến hiệu ứng SSI và không xét đến hiệu ứng SSI cho thấy sự chênh lệch là khá lớn (xem Bảng 3). x F C K Hình 3. Mô hình Kelvin- Voigt TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(39).2010 185 Bảng 3. So sánh nội lực tại chân tháp cầu dây văng khi xét đến SSI và không xét đến SSI M 33 V 22 N M 11 M 22 V 33 Nội lực tại chân tháp KN.m KN KN-m KN-m KN.m KN Có xét SSI 75133,21 6309,16 13457,06 6340,30 89559,98 10722,96 Không xét SSI 97673,18 7886,46 17090,47 8115,59 116427,98 13725,39 Chênh lệch 23% 20% 21% 22% 23% 22% (1, 2, 3 là các trục toạ độ địa phương tương ứng của các phần tử thanh) 3. Kết luận Nghiên cứu đã tiến hành phân tích động lực học động đất đối với kết cấu cầu dây văng theo mô hình 3D-Spine có xét đến yếu tố tương tác giữa đất nền và kết cấu và có đánh giá đến các phương pháp tính toán động đất đối với công trình hiện nay. Từ đó, phân tích nội lực của kết cấu cầu dây văng chịu ảnh hưởng của động đất có xét đến hiệu ứ ng SSI và không xét đến hiệu ứng SSI. Qua kết quả phân tích, ta thấy rằng khi xét đến yếu tố tương tác giữa đất nền và kết cấu do động đất gây ra thì hiệu ứng lực tác dụng lên công trình được giảm đáng kể. Vì vậy, vấn đề tương tác giữa nền đất và kết cấu cần phải được xem xét trong tính toán động đất tác dụng lên công trình cầu nói chung cũng như cầu dây văng nói riêng. TÀI LIỆU THAM KHẢO [1] Nguyễn Lê Ninh, Động đất và thiết kế công trình chịu tải trọng động đất, Nhà xuất bản Xây dựng, Hà Nội, năm 2007. [2] Bowles J.E, Foundation Analysis and Design, McGraw Hill Press, Singapore, 1997. [3] Kenji Ishiharasoil, Behaviour in earthquake geotechnics, Oxford University Press, New York, 2003. [4] Robert W. Day, Geotechnical Earthquake Engineering Handbook. [5] Bowles J.E, Foundation Analysis and Design, McGraw Hill Press, Singapore, 1997. [6] Das B.M, Principles of Foundation Engineering, PWS Press, California, 1998. [7] Tomlinson M.J, Pile Design and Construction Practice, E&FN Spon Press, London, 1994. [8] Wai-Fah Chen, Lian Duan, Bridge Engineering Handbook, CRC PressBoca Raton London New York Washington DC, 1988.